



23 05 2022

### $|V_{ub}| \& |V_{cb}|$ Determinations

Review of 2022 and what lies beyond

florian.bernlochner@uni-bonn.de





UNIVERSITÄT BONN

### Why is it important to measure $|V_{ub}| \& |V_{cb}|$ ?



Overconstrain Unitarity condition

→ Potent test of Standard Model

# Unitarity

 $\underbrace{V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^*}_{\mathcal{O}(\lambda^3)} = 0$ 

Cabibbo angle  $\sin \theta_C \simeq 0.22$ 

### **CKM Matrix**

SM: Unitary 3x3 Matrix





1

### Why is it important to measure $|V_{ub}| \& |V_{cb}|$ ?





Why is it important to measure  $|V_{ub}| & |V_{cb}|$ ?



Why is it important to measure  $|V_{ub}| & |V_{cb}|$ ?



## Why is it important to measure $|V_{ub}| & |V_{cb}|$ ?



### How can we measure $|V_{ub}| \& |V_{cb}|$ ?







### Inclusive $|V_{ub}|$

$$B\to X_u\ell\bar\nu_\ell$$

+ Fermi Motion / Shape Function

### Inclusive $|V_{ch}|$

$$B \to X_c \ell \bar{\nu}_{\ell}$$

**Operator Product Expansion** 

$$\int \mathcal{B} = \left|V_{qb}\right|^2 \left[\Gamma(b o q \,\ell\,ar
u_\ell) + 1/m_{c,b} + lpha_s + \dots \right] 
ight]$$

### Leptonic $|V_{ub}|$



### Exclusive $|V_{ub}|$

$$B \to \pi, \rho, \omega \, \ell \bar{\nu}_{\ell}, \, \Lambda_b \to p \mu \bar{\nu}_{\mu}$$
 
$$B_s \to K \mu \, \bar{\nu}_{\mu}$$

### Exclusive $|V_{ch}|$

$$B_{(s)} \to D_{(s)}^{(*)} \ell \bar{\nu}_{\ell}$$

$$\mathscr{B} \propto |V_{qb}|^2 f^2$$
 Form Factors

$$\langle B|H_{\mu}|P\rangle = (p+p')_{\mu} f_{+}$$

### How are we doing?



### How are we doing?





## Challenges of measuring inclusive $|V_{ub}|$

Inclusive  $B \to X_u \ell \bar{\nu}_\ell$  measurements are extremely challenging due to dominant  $B \to X_c \ell \bar{\nu}_\ell$  background







1.

3.

Measurement of **partial** branching fractions of inclusive  $B \to X_u \ell \bar{\nu}_\ell$  decays with hadronic tagging [PRD 104, 012008 (2021), arXiv:2102.00020]

Inclusive

Measurement of **differential** branching fractions of inclusive  $B \to X_u \ell \bar{\nu}_\ell$  decays with hadronic tagging [Phys. Rev. Lett. 127, 261801 (2021), arXiv:2107.13855]

New!

New measurement of **ratio** of inclusive  $B \to X_u \ell \bar{\nu}_\ell / B \to X_c \ell \bar{\nu}_\ell$  with improved tagging and data-driven background templates [to appear]



# Measurement of **partial** branching fractions of inclusive $B \to X_u \ell \bar{\nu}_\ell$ decays with hadronic tagging [PRD 104, 012008 (2021), arXiv:2102.00020]

Use full Belle data set of 711/fb

Hadronic tagging with neural networks (ca. 0.2-0.3% efficiency)



# Measurement of **partial** branching fractions of inclusive $B \to X_u \ell \bar{\nu}_\ell$ decays with hadronic tagging [PRD 104, 012008 (2021), arXiv:2102.00020]

Use full Belle data set of 711/fb

Hadronic tagging with neural networks (ca. 0.2-0.3% efficiency)

Use **machine learning** (BDTs) to suppress backgrounds with 11 training features, e.g.  $m_{\rm miss}^2$ , #K±, #Ks, etc.





signal B rest frame





#### Fit kinematic distributions and measure partial BF

$$|V_{ub}| = \sqrt{\frac{\Delta \mathcal{B}(B \to X_u \,\ell^+ \,\nu_\ell)}{\tau_B \cdot \Delta \Gamma(B \to X_u \,\ell^+ \,\nu_\ell)}}$$

### 4 predictions of the partial rate

Result for most inclusive region with  $E_{\ell}^{B} > 1 \, \mathrm{GeV}$ 



#### 3 phase-space regions



#### Stability as a function of BDT cut:



#### **Arithmetic average:**

$$|V_{ub}| = (4.10 \pm 0.09 \pm 0.22 \pm 0.15) \times 10^{-3}$$

#### **CKM Unitarity:**

$$|V_{ub}| = (3.62^{+0.11}_{-0.08}) \times 10^{-3}$$

 $E_i^B$  [GeV]

Measurement of **differential** branching fractions of inclusive  $B \to X_u \ell \bar{\nu}_{\ell}$  decays with hadronic tagging [Phys. Rev. Lett. 127, 261801 (2021), arXiv:2107.13855]

Measurement of 6 kinematic variables characterizing  $B \to X_u \ell \bar{\nu}_\ell$  in  $E_\ell^B > 1 \, {\rm GeV}$  region of PS

Selection and reconstruction analogous to partial BF measurement

Apply additional selections to improve resolution and background shape uncertainties

 $P^+$  [GeV]



 $P^-$  [GeV]

## Differential Spectra



Agreement (w/o theory uncertainties)

| $\chi^2$ | $E_{\ell}^{B}$ | $M_X$ | $M_X^2$ | $q^2$ | $P_{+}$ | $\overline{P_{-}}$ |
|----------|----------------|-------|---------|-------|---------|--------------------|
| n.d.f.   | 16             | 8     | 5       | 12    | 9       | 10                 |
| Hybrid   | 13.5           | 2.5   | 2.6     | 4.5   | 1.7     | 5.2                |
| DFN      | 16.2           | 63.2  | 13.1    | 18.5  | 29.3    | 6.1                |
| BLNP     | 16.5           | 61.0  | 6.3     | 20.6  | 23.6    | 13.7               |

## Differential Spectra

#### Full experimental correlations





Can be used for future shape-function independent  $|V_{ub}|$  determinations



P. Gambino, K. Healey, C. Mondino, Phys. Rev. D 94, 014031 (2016), [arXiv:1604.07598]



F. Bernlochner, H. Lacker, Z. Ligeti, I. Stewart, F. Tackmann, K. Tackmann Phys. Rev. Lett. 127, 102001 (2021) [arXiv:2007.04320]

#### New!

#### Use full Belle data set of 711/fb

# Improved Hadronic Tagging using Belle II algorithm

(ca. 2 times more efficient)

[Full Event Interpretation, T. Keck et al, Comp. Soft. Big. Sci 3 (2019), arXiv:1807.08680]





### $B \to X_u \ell \bar{\nu}_{\ell}$ Extraction

Cut-based selection to suppress  $B \to X_c \ell \bar{\nu}_{\ell}$ :

$$|m_{\nu}^2| \approx |m_{Miss}^2| < 0.43~GeV^2/c^4$$
 Charged slow pion veto.  
Kaon veto: even  $N_{K^\pm} + N_{K_s^0}$ 

Extraction of  $B \to X_u \ell \bar{\nu}_\ell$  in 2D fit to  $q^2 : p_\ell^B$ 



Use  $B \to X_c \ell \bar{\nu}_\ell$  shape from Kaon anti-cut region with MC based transfer factors



$$B \to X_u \ell \bar{\nu}_\ell / B \to X_c \ell \bar{\nu}_\ell$$
 Extraction

Extract  $B \to X_c \ell \nu$  yield via simple background subtraction in total  $B \to X \ell \nu$  sample.



Determine directly ratio of

$$\frac{\Delta \mathcal{B}(B \to X_u \ell \nu: \ p_\ell^B > 1.0 \ GeV/c)}{\Delta \mathcal{B}(B \to X_c \ell \nu: \ p_\ell^B > 1.0 \ GeV/c)} = 1.95 (1 \pm 8.4\%_{stat} \pm 7.2\%_{syst}) \times 10^{-2} \propto \frac{|V_{ub}|^2}{|V_{cb}|^2}$$

Can also convert this for now into a direct determination of  $|V_{ub}|$ 

$$|V_{ub}| = \sqrt{\frac{1}{\tau_B \Delta \Gamma}} \frac{\Delta \mathcal{B}(B \to X_u \ell \nu)}{\Delta \mathcal{B}(B \to X_u \ell \nu)} \Delta \mathcal{B}(B \to X_c \ell \nu)$$
 $\tau_B = 1.579 \pm 0.004 \text{ ps}$ 

$$1.95(1 \pm 0.084 \pm 0.072) \times 10^{-2}$$

Belle, 2007 [PRD 75, 032001]:  $(8.41 \pm 0.15 \pm 0.17)\%$ Babar, 2010 [PRD 81, 0032003]:  $(8.63 \pm 0.17)\%$ 

Naïve average:  $(8.55 \pm 0.13)\%$  - Assume uncorrelated.

### $B \to X_u \ell \bar{\nu}_\ell / B \to X_c \ell \bar{\nu}_\ell$ Extraction

Extract  $B \to X_c \ell \nu$  yield via simple background subtraction in total  $B \to X \ell \nu$  sample.



Determine directly ratio of



**GGOU** 

P. Gambino, P. Giordano, G. Ossola, and N. Uraltsev, JHEP 10, 058 (2007), arXiv:0707.2493 [hep-ph].

**BLNP** 

B. O. Lange, M. Neubert, and G. Paz, Phys. Rev. D 72, 073006 (2005), arXiv:hep-ph/0504071.

**DGE** 

J. R. Andersen and E. Gardi, JHEP 01, 097 (2006), arXiv:hep-ph/0509360.

$$\begin{aligned} |V_{ub}|^{GGOU} &= (4.25 \pm 0.18 \pm 0.16 \stackrel{+0.09}{_{-0.09}}) \times 10^{-3} \\ |V_{ub}|^{BLNP} &= (4.15 \pm 0.17 \pm 0.15 \stackrel{+0.18}{_{-0.20}}) \times 10^{-3} \\ |V_{ub}|^{DGE} &= (4.26 \pm 0.18 \pm 0.16 \stackrel{+0.11}{_{-0.13}}) \times 10^{-3} \end{aligned}$$

Both Belle results are very compatible with each other



### New Developments in inclusive $|V_{cb}|$



Inclusive 
$$|V_{cb}|$$

$$\bar{B} \to X_c \, \ell \, \bar{\nu}_\ell$$

Operator Product Expansion (OPE)

$$\mathcal{B} = |V_{qb}|^2 \left[ \Gamma(b \to q \,\ell \,\bar{\nu}_{\ell}) + 1/m_{c,b} + \alpha_s + \dots \right]$$

**Established approach:** Use hadronic mass moments, lepton energy moments etc. to determine non-perturbative matrix elements (ME) of OPE and extract |V<sub>cb</sub>|

**Bad news**: number of these matrix elements increases if one increases expansion in  $1/m_{b,c}$ 

## New Developments in inclusive $|V_{cb}|$



Inclusive 
$$|V_{cb}|$$

$$\bar{B} \to X_c \, \ell \, \bar{\nu}_\ell$$

Operator Product Expansion (OPE)

$$\mathcal{B} = |V_{qb}|^2 \left[ \Gamma(b \to q \,\ell \,\bar{\nu}_{\ell}) + 1/m_{c,b} + \alpha_s + \dots \right]$$

**Established approach:** Use hadronic mass moments, lepton energy moments etc. to determine non-perturbative matrix elements (ME) of OPE and extract |V<sub>cb</sub>|

**Bad news**: number of these matrix elements increases if one increases expansion in  $1/m_{b,c}$ 



Innovative idea from [JHEP 02 (2019) 177, arXiv:1812.07472] (M. Fael, T. Mannel, K. Vos)

ightarrow Number of ME reduce by exploiting reparametrization invariance, but **not true for every observable** (e.g. not for  $\langle M_X \rangle$ )

But it **holds** for  $\langle q^2 \rangle$  and at  $1/m_b^4$  the # of ME reduces from 13  $\rightarrow$  8(!)

## New Developments in inclusive $|V_{cb}|$



Inclusive  $|V_{cb}|$ 

$$\bar{B} \to X_c \, \ell \, \bar{\nu}_\ell$$

Operator Product Expansion (OPE)

$$\mathcal{B} = |V_{qb}|^2 \left[ \Gamma(b \to q \,\ell \,\bar{\nu}_{\ell}) + 1/m_{c,b} + \alpha_s + \dots \right]$$

**Established approach:** Use hadronic mass moments, lepton energy moments etc. to determine non-perturbative matrix elements (ME) of OPE and extract |V<sub>cb</sub>|

**Bad news**: number of these matrix elements increases if one increases expansion in  $1/m_{b,c}$ 

nclusive



Measurements of  $q^2$  moments of inclusive  $B \to X_c \ell \bar{\nu}_\ell$  decays with hadronic tagging [PRD 104, 112011 (2021), arXiv:2109.01685]



2.

Measurements of Lepton **Mass squared moments** in inclusive  $B \to X_c \ell \bar{\nu}_{\ell}$  Decays with the Belle II Experiment [Submitted to PRD, arXiv:2205.06372]



## New Developments in inclusive $|V_{ch}|$



Inclusive 
$$|V_{cb}|$$

$$\bar{B} \to X_c \, \ell \, \bar{\nu}_\ell$$

Operator Product Expansion (OPE)

$$\mathcal{B} = |V_{qb}|^2 \left[ \Gamma(b \to q \,\ell \,\bar{\nu}_{\ell}) + 1/m_{c,b} + \alpha_s + \dots \right]$$

**Traditional approach:** Use hadronic mass moments, lepton energy moments etc. to determine non-perturbative matrix elements (ME) of OPE and extract |V<sub>cb</sub>|

Bad news: number of these matrix elements increases if one increases expansion in  $1/m_{hc}$ 



Inclusive

Third order correction to the semileptonic  $b \rightarrow c$  and the muon decays [Phys.Rev.D 104 (2021) 1, 016003, arXiv:2011.13654] Three loop calculations and inclusive  $|V_{ch}|$  [Phys.Lett.B 822 (2021) 136679, arXiv:2107.00604]

First determination of  $V_{ch}$  from  $q^2$  moments [to appear]

# Measurements of $q^2$ moments of inclusive $B \to X_c \ell \bar{\nu}_\ell$ decays with hadronic tagging [PRD 104, 112011 (2021), arXiv:2109.01685]

#### Key-technique: hadronic tagging



### Can identify X<sub>c</sub> constituents

$$q^2 = \left(p_{\text{sig}} - p_{X_c}\right)^2$$





$$M_X = \sqrt{(p_{X_c})_{\mu}(p_{X_c})^{\mu}}$$



# Measurements of $q^2$ moments of inclusive $B \to X_c \ell \bar{\nu}_{\ell}$ decays with hadronic tagging [PRD 104, 112011 (2021), arXiv:2109.01685]





Step #1: Subtract Background

Step #2: Calibrate moment

#### Event-wise **Master-formula**

$$\langle q^{2m} 
angle = rac{C_{
m cal} \cdot C_{
m acc}}{\sum_{i}^{
m events} w(q_i^2)} imes \sum_{i}^{
m events} w(q_i^2) \cdot q_{
m cal}^{2m}$$

#### Step #3: If you fail, try again





#### Step #4: Correct for selection effects

Overall event reconstruction itself also **biases** measured moment by **1-2**%

# Measurements of $q^2$ moments of inclusive $B \to X_c \ell \bar{\nu}_\ell$ decays with hadronic tagging [PRD 104, 112011 (2021), arXiv:2109.01685]



### Measurements of Lepton **Mass squared moments** in inclusive $B \to X_c \ell \bar{\nu}_{\ell}$ Decays with the Belle II Experiment [Submitted to PRD, arXiv:2205.06372]

Key-technique: hadronic tagging



### Can identify X<sub>c</sub> constituents

$$M_X = \sqrt{(p_{X_c})_{\mu}(p_{X_c})^{\mu}}$$



# Improved Hadronic Tagging using Belle II algorithm

(ca. 2 times more efficient)

[Full Event Interpretation, T. Keck et al, Comp. Soft. Big. Sci 3 (2019), arXiv:1807.08680]

$$q^2 = \left(p_{\text{sig}} - p_{X_c}\right)^2$$



### Measurements of Lepton **Mass squared moments** in inclusive $B \to X_c \ell \bar{\nu}_{\ell}$ Decays with the Belle II Experiment [Submitted to PRD, arXiv:2205.06372]

Key-technique: hadronic tagging



Can identify X<sub>c</sub> constituents





Improved Hadronic Tagging using Belle II algorithm (ca. 2 times more efficient)

[Full Event Interpretation, T. Keck et al, Comp. Soft. Big. Sci 3 (2019), arXiv:1807.08680]

$$q^2 = \left(p_{\text{sig}} - p_{X_c}\right)^2$$





## Theory progress

Fantastic progress on the theory side: semileptonic rate @ N<sup>3</sup>LO!



M. Fael, K. Schönwald, M. Steinhauser [Phys.Rev.D 104 (2021) 1, 016003, arXiv:2011.13654]

Updated inclusive fit to  $\langle E_{\ell} \rangle$ ,  $\langle M_X \rangle$  moments:

$$|V_{cb}| = 42.16(30)_{th}(32)_{exp}(25)_{\Gamma} \ 10^{-3}$$
 
$$\Delta |V_{cb}|/|V_{cb}| = 1.2\%!$$

M. Bordone, B. Capdevila, P. Gambino [Phys.Lett.B 822 (2021) 136679, arXiv:2107.00604]



SL Rate

#### Renormalization scale

| $m_b^{kin}$ | $\overline{m}_c(2{\rm GeV})$ | $\mu_{\pi}^2$ | $ ho_D^3$ | $\mu_G^2(m_b)$ | $ ho_{LS}^3$ | $BR_{c\ell\nu}$ | $10^3  V_{cb} $ |
|-------------|------------------------------|---------------|-----------|----------------|--------------|-----------------|-----------------|
| 4.573       | 1.092                        | 0.477         | 0.185     | 0.306          | -0.130       | 10.66           | 42.16           |
| 0.012       | 0.008                        | 0.056         | 0.031     | 0.050          | 0.092        | 0.15            | 0.51            |
| 1           | 0.307                        | -0.141        | 0.047     | 0.612          | -0.196       | -0.064          | -0.420          |
|             | 1                            | 0.018         | -0.010    | -0.162         | 0.048        | 0.028           | 0.061           |
|             |                              | 1             | 0.735     | -0.054         | 0.067        | 0.172           | 0.429           |
|             |                              |               | 1         | -0.157         | -0.149       | 0.091           | 0.299           |
|             |                              |               |           | 1              | 0.001        | 0.013           | -0.225          |
|             |                              |               |           |                | 1            | -0.033          | -0.005          |
|             |                              |               |           |                |              | 1               | 0.684           |
|             |                              |               |           |                |              |                 | 1               |

## $|V_{cb}|$ from $q^2$ mom.

 $q_{\rm cut}^2$  [GeV<sup>2</sup>]

F. Bernlochner, M. Fael, K. Olschwesky, E. Persson, R. Van Tonder, K. Vos, M. Welsch [arXiv:2205.10274]

#### Also first extraction of $|V_{cb}|$ from $q^2$ moments:



## Included corrections on the mom. predictions

| $\langle (q^2)^n \rangle$ | tree | $\alpha_s$ | $\alpha_s^2$ | $\alpha_s^3$ |
|---------------------------|------|------------|--------------|--------------|
| Partonic                  | 1    | 1          |              |              |
| $\mu_G^2$                 | 1    | <b>✓</b>   |              |              |
| $\rho_D^3$                | 1    | <b>√</b>   |              |              |
| $1/m_{b}^{4}$             | 1    |            |              |              |
|                           |      |            |              |              |



$$|V_{cb}| = (41.69 \pm 0.59|_{\text{fit}} \pm 0.23|_{\text{h.o.}}) \cdot 10^{-3} = (41.69 \pm 0.63) \cdot 10^{-3}$$

 $q_{\rm cut}^2$  [GeV<sup>2</sup>]



### New Developments in exclusive $|V_{ch}|$

#### **Very exciting times:**

After more than 10 years in the making, we have first beyond zero recoil LQCD predictions beyond zero recoil for  $B \to D^* \ell \bar{\nu}_{\ell}$ :-)

#### One is finished, two are nearly finished:







A. Bazavov et al. [FNAL/MILC] [Under Review, arXiv:2105.14019]

#### Also experimentally very exciting times:

LHCb keeps producing impressive results probing  $B_{\mathfrak{s}} o D_{\mathfrak{s}}^{(*)} \mathscr{C} \bar{\nu}_{\mathscr{E}}$  decays, Belle II also presented first determinations of  $|V_{ch}|$  using  $B \to D^* \ell \bar{\nu}_{\ell}$ 

Small taste of what there is to come from both experiments!

Measurement of  $|V_{cb}|$  with  $B_s \to D_s^{(*)} \mu \bar{\nu}_u$  decays [Phys. Rev. D 101, 072004, arXiv:2001.03225]



Exclusive

First glimpse at  $|V_{cb}|$  in  $B^0 \to D^{(*)-} \mathscr{C}^+ \nu_{\mathscr{C}}$  with Belle II data [Preliminary]



### Measurement of $|V_{cb}|$ with $B_s \to D_s^{(*)} \mu \bar{\nu}_\mu$ decays

LHCD

[Phys. Rev. D 101, 072004, arXiv:2001.03225]

Leverage large separation of decay vertex from primary vertex to reconstruct  $B_s$  flight direction; reconstruct corrected mass  $m_{\rm corr}$ :





Exploit  $p_{\perp}(D_s)$  correlation with w to fit form factors





# Measurement of $|V_{cb}|$ with $B_s \to D_s^{(*)} \mu \bar{\nu}_\mu$ decays [Phys. Rev. D **101**, 072004, arXiv:2001.03225]



#### Background subtracted and fitted distributions:





$$|V_{cb}|_{BGL} = (41.7 \pm 0.8(stat) \pm 0.9(syst) \pm 1.1(ext)) \times 10^{-3}$$

Also provide unfolded w spectrum for  $B_s o D_s^* \mu \bar{
u}_\mu$ 



# First glimpse at $|V_{cb}|$ in $B\to D^{(*)}\ell\bar{\nu}_\ell$ with Belle II data [Preliminary]



**Reconstructed** with hadronic tagging and using 189.3/fb



With hadronic tagging can reconstruct

$$m_{\text{miss}}^2 = (p_{\text{sig}} - p_{D^*} - p_{\ell})^2 \sim p_{\nu}^2 = 0$$



#### First glimpse at $|V_{cb}|$ in $B^0 \to D^{(*)-} \mathscr{C}^+ \nu_{\mathscr{C}}$ with Belle II data [Preliminary]



**Reconstructed** with hadronic tagging and using 189.3/fb



Background subtracted & unf. w spectrum



With hadronic tagging can reconstruct

$$m_{\rm miss}^2 = (p_{\rm sig} - p_{D^*} - p_\ell)^2 \sim p_\nu^2 = 0$$

$$= \frac{180}{160} \int_{-1}^{180} \text{Ldt} = 189.3 \text{ fb}^{-1}$$
• Data Signal





Determined  $|V_{ch}|$ :

$$|V_{cb}| = (37.9 \pm 2.7) \times 10^{-3}$$



### New Developments in exclusive $|V_{ub}|$

### First measurement with $B_{\scriptscriptstyle S} o K \mu \bar{ u}_{\mu}$

LHCb presented a year ago a spectacular first measurement of exclusive  $|V_{ub}|/|V_{cb}|$  from  $B_s$  decays

Small taste of what there is to come from both experiments!

1.

First observation of the decay  $B_s^0 \to K^- \mu^+ \nu_\mu$  & meas. of  $|V_{ub}|/|V_{cb}|$  [Phys.Rev.Lett. 126 (2021) 8, 081804, arXiv:2012.05143]



2.

Exclusive

First glimpse at  $|V_{ub}|$  in  $B^0 \to \pi^- \mathcal{C}^+ \nu_{\mathcal{C}}$  with Belle II data [Preliminary]



# First observation of the decay $B_s^0 \to K^- \mu^+ \nu_\mu$ & meas. of $|V_{ub}|/|V_{cb}|$ [Phys.Rev.Lett. 126 (2021) 8, 081804, arXiv:2012.05143]

Directly aim to measure  $|V_{ub}|/|V_{cb}|$  via the ratio

$$\mathcal{R} = \frac{\mathcal{B}(B_s^0 \to K^- \mu^+ \nu_\mu)}{\mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_\mu)} = \frac{N_K}{N_{D_s}} \frac{\epsilon_{D_s}}{\epsilon_K} \times \mathcal{B}(D_s^- \to K^+ K^- \pi^-)$$

# of signal / normalization events

Again use corrected mass  $m_{\rm corr}$  to separate signal from background and normalization:



### First observation of the decay $B_s^0 \to K^- \mu^+ \nu_\mu$ & meas. of $|V_{ub}|/|V_{cb}|$

[Phys.Rev.Lett. 126 (2021) 8, 081804, arXiv:2012.05143]

#### Extract $\mathscr{R}$ at low and high $q^2 = (p_B - p_K)^2$



First glimpse at  $|V_{ub}|$  in  $B^0 \to \pi^- \ell^+ \nu_\ell$  with Belle II data [Preliminary]



**Reconstructed** with hadronic tagging and using 189.3/fb



Fit 
$$m_{\text{miss}}^2 = (p_{\text{sig}} - p_{\pi} - p_{\ell})^2 \sim p_{\nu}^2 = 0$$

in **3 bins** of  $q^2$  to separate signal from background



# First glimpse at $|V_{ub}|$ in $B^0 \to \pi^- \ell^+ \nu_\ell$ with Belle II data [Preliminary]



Reconstructed with hadronic tagging and using 189.3/fb



Fit 
$$m_{\text{miss}}^2 = (p_{\text{sig}} - p_{\pi} - p_{\ell})^2 \sim p_{\nu}^2 = 0$$

in **3 bins** of  $q^2$  to separate signal from background



Form Factor &  $|V_{ub}|$  fit:



 $|V_{ub}| \times 10^3 = 3.88 \pm 0.45$ 

with LQCD data from FNAL/MILC Phys.Rev.D 92 (2015) 1, 014024, [arXiv: 1503.07839]











He may look cute, but that might be deceiving...

... the long-standing discrepancy is **not going away** 





#### We need to tackle this problem:

- ► There are three culprits that can cause this:
  - Experimental Problem / Theory Problem / New Physics

We need new experimental and theory results that challenge what we think we know



### Exclusive $|V_{ub}|$

## **Likelihood combination** with systematic Nuisance Parameters

of all measurements



#### Now also available for $B \to \rho/\omega\ell\bar{\nu}_{\ell}$ :



#### Plan to release public code for all of these





See also [FB, Markus Prim, Dean Robinson, Phys. Rev. D 104, 034032 (2021)]

|                                             | $\mathcal{B}(B \to X \ell \bar{\nu}_{\ell}) \ (\%)$ | $\mathcal{B}(B \to X_c \ell \bar{\nu}_\ell) \ (\%)$ | In Average |
|---------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|------------|
| Belle [62] $E_{\ell} > 0.6 \mathrm{GeV}$    | -                                                   | $10.54 \pm 0.31$                                    | <b>✓</b>   |
| Belle [62] $E_{\ell} > 0.4 \mathrm{GeV}$    | -                                                   | $10.58 \pm 0.32$                                    |            |
| CLEO [64] incl.                             | $10.91 \pm 0.26$                                    | $10.72 \pm 0.26$                                    |            |
| CLEO [64] $E_{\ell} > 0.6$                  | $10.69 \pm 0.25$                                    | $10.50 \pm 0.25$                                    | ✓          |
| BaBar [61] incl.                            | $10.34 \pm 0.26$                                    | $10.15 \pm 0.26$                                    | ✓          |
| BaBar SL [63] $E_{\ell} > 0.6 \mathrm{GeV}$ | -                                                   | $10.68 \pm 0.24$                                    | ✓          |
| Our Average                                 | -                                                   | $10.48 \pm 0.13$                                    |            |
| Average Belle [62] & BaBar [63]             | -                                                   | $10.63 \pm 0.19$                                    |            |
| $(E_{\ell} > 0.6 \mathrm{GeV})$             |                                                     |                                                     |            |

Table 2: Available measurements of the inclusive  $B \to X \ell \bar{\nu}_{\ell}$  and  $B \to X_c \ell \bar{\nu}_{\ell}$  branching fractions, extrapolated to the full region using the correction factors in (34). The  $\chi^2$  of our average with respect to the included measurements is 2.2, corresponding to a p-value of 52%. We do not include [65], as the analysis does not quote a partial branching fraction corrected for FSR radiation.

#### |V<sub>ub</sub>| Measurements over Time



#### $\left|V_{cb}\right|$ Measurements over Time





- **Update** excl. branching ratios to PDG 2020 and the masses and widths of D\*\* decays
- Generate additional MC samples to fill the gap between the exclusive & inclusive measurement (assign 100% BR uncertainty in systematics covariance matrix)

|     | BR                                               | $B^{\scriptscriptstyle +}$         | $B^0$                              |
|-----|--------------------------------------------------|------------------------------------|------------------------------------|
|     | $B \to X_c  \ell^+  \nu_{\ell}$                  |                                    |                                    |
|     | $B \to D  \ell^+  \nu_{\ell}$ D, D*              | $(2.5 \pm 0.1) \times 10^{-2}$     | $(2.3 \pm 0.1) \times 10^{-2}$     |
|     | $B \to D^*  \ell^+  \nu_\ell$                    | $(5.4 \pm 0.1) \times 10^{-2}$     | $(5.1 \pm 0.1) \times 10^{-2}$     |
|     | $B \to D_0^*  \ell^+  \nu_\ell$                  | $(0.420 \pm 0.075) \times 10^{-2}$ | $(0.390 \pm 0.069) \times 10^{-2}$ |
|     | $(\hookrightarrow D\pi)$                         |                                    |                                    |
|     | $B \to D_1^*  \ell^+  \nu_\ell$                  | $(0.423 \pm 0.083) \times 10^{-2}$ | $(0.394 \pm 0.077) \times 10^{-2}$ |
|     | $(\hookrightarrow D^*\pi)$                       |                                    |                                    |
|     | $B \to D_1 \ell^+ \nu_\ell$                      | $(0.422 \pm 0.027) \times 10^{-2}$ | $(0.392 \pm 0.025) \times 10^{-2}$ |
|     | $(\hookrightarrow D^*\pi)$                       |                                    |                                    |
|     | $B \to D_2^*  \ell^+  \nu_\ell$                  | $(0.116 \pm 0.011) \times 10^{-2}$ | $(0.107 \pm 0.010) \times 10^{-2}$ |
|     | $(\hookrightarrow D^*\pi)$                       |                                    |                                    |
|     | $B \to D_2^*  \ell^+  \nu_\ell$                  | $(0.178 \pm 0.024) \times 10^{-2}$ | $(0.165 \pm 0.022) \times 10^{-2}$ |
|     | $(\hookrightarrow D\pi)$                         |                                    |                                    |
|     | $\rho(D_2^* \to D^*\pi, D_2^* \to D\pi) = 0.693$ |                                    |                                    |
|     | $B \rightarrow D_1 \ell^+ \nu_\ell$ Gap          | $(0.242 \pm 0.100) \times 10^{-2}$ | $(0.225 \pm 0.093) \times 10^{-2}$ |
|     | $(\hookrightarrow D\pi\pi)$                      |                                    |                                    |
|     | $B \to D\pi\pi\ell^+\nu_\ell$                    | $(0.06 \pm 0.06) \times 10^{-2}$   | $(0.06 \pm 0.06) \times 10^{-2}$   |
|     | $B \to D^*\pi\pi\ell^+\nu_\ell$                  | $(0.216 \pm 0.102) \times 10^{-2}$ | $(0.201 \pm 0.095) \times 10^{-2}$ |
|     | $B \to D \eta  \ell^+  \nu_\ell$                 | $(0.396 \pm 0.396) \times 10^{-2}$ | $(0.399 \pm 0.399) \times 10^{-2}$ |
|     | $B \to D^* \eta  \ell^+  \nu_\ell$               | $(0.396 \pm 0.396) \times 10^{-2}$ | $(0.399 \pm 0.399) \times 10^{-2}$ |
|     | $B 	o X_c  \ell^+   u_\ell$                      | $(10.8 \pm 0.4) \times 10^{-2}$    | $(10.1 \pm 0.4) \times 10^{-2}$    |
| 107 |                                                  |                                    |                                    |



## Fit for partial BFs

Subtraction of bkg in fit with coarse binning to minimize  $X_u$  modelling dependence (low  $m_X$ , high  $q^2$ )

$$\mathcal{L} = \prod_{i}^{\text{bins}} \mathcal{P}(n_i; \nu_i) \times \prod_{k} \mathcal{G}_k,$$

Signal and Bkg shape errors included in Fit via NPs

#### Background Signal Data Events / bin /// MC uncertainty 3000 nonres. $X_{u}$ Resonance region 1000 Pull $M_X$ [GeV] W/o detector smearing -2.52.0 2.5 0.0 0.5 1.0 1.5 3.0 3.5 4.0 $M_X$ [GeV]

### Unfold measured yields to **3 phase-space** regions:







Projections of 2D fit in m<sub>X</sub>: q<sup>2</sup>

$$|V_{ub}| = \sqrt{\frac{\Delta \mathcal{B}(B \to X_u \,\ell^+ \,\nu_\ell)}{\tau_B \cdot \Delta \Gamma(B \to X_u \,\ell^+ \,\nu_\ell)}}$$

Fit kinematic distributions and measure partial BF

#### 4 predictions of the partial rate



#### Stability as a function of BDT cut:



#### Post-fit $N_{\pi^+}$ distribution:



Arithmetic average:

$$|V_{ub}| = (4.10 \pm 0.09 \pm 0.22 \pm 0.15) \times 10^{-3}$$

**CKM Unitarity:** 

$$|V_{ub}| = (3.62^{+0.11}_{-0.08}) \times 10^{-3}$$

## Into the tool shed: EvtGen & Pythia8

#### Many analyses need generic B-Meson decay samples

\* Pythia8 hadronized modes make up ca. 48% (!) of all simulated decays

```
1594 # Lam c X / Sigma c X
                                  4.0 %
1595
1596 0.010520663 anti-cd 0 ud 0
                                                                 PYTHIA 23:
    0.021041421 anti-cd 1 ud 1
                                                                 PYTHIA 23;
1598
    # XicX
1599
    0.002869298 anti-cs 0 ud 0
                                                                 PYTHIA 23;
    0.005738595 anti-cs 1 ud 1
                                                                 PYTHIA 23;
1603
     0.258091538 u
                         anti-d anti-c d
                                                                 PYTHIA 48;
    0.043995612 u
                         anti-d anti-c d
                                                                 PYTHIA 13;
    0.020084989 u
                         anti-s anti-c d
                                                                 PYTHIA 13;
1607 0.017215691 u
                         anti-c anti-d d
                                                                 PYTHIA 48;
1608 0.000860770 u
                         anti-c anti-s d
                                                                 PYTHIA 48;
    #lange - try to crank up the psi production....
    0.070775534 c
                         anti-s anti-c d
                                                                 PYTHIA 13;
1611 0.005738595 c
                         anti-d anti-c
                                                                 PYTHIA 13;
1612 0.002869298 u
                         anti-d anti-u d
                                                                 PYTHIA 48;
1613 0.003825730 c
                         anti-s anti-u d
                                                                 PYTHIA 48;
1614 # JGS 11/5/02 This and similar a few lines above have been divided by two
    # to solve a double-counting problem for this channel
1616 0.001960649 u
                         anti-u anti-d d
                                                                 PYTHIA 48;
1617 0.000066973 d
                         anti-d anti-d d
                                                                 PYTHIA 48;
1618 0.000086068 s
                         anti-s anti-d d
                                                                 PYTHIA 48;
1619 | 0.002104095 u
                         anti-u anti-s d
                                                                 PYTHIA 48;
1620 0.001721541 d
                                                                 PYTHIA 48;
1621 0.001434649 s
                         anti-s anti-s d
                                                                 PYTHIA 48;
1622 0.004782163 anti-s
                                                                 PYTHIA 32;
```

#### Modes for Matrix Element Processing

Some decays can be treated better than what pure phase space allows, by reweighting with appropriate matrix esignaled by a nonvanishing meMode() value for a decay mode in the particle data table. The list of allowed possintroduced, and most have been moved for better consistency. Here is the list of currently allowed meMode() co

- 0 : pure phase space of produced particles ("default"); input of partons is allowed and then the partonic cor
- 1 : omega and phi → pi+ pi- pi0
- 2 : polarization in V → PS + PS (V = vector, PS = pseudoscalar), when V is produced by PS → PS + V or F
- 11 : Dalitz decay into one particle, in addition to the lepton pair (also allowed to specify a quark-antiquark p
- 12 : Dalitz decay into two or more particles in addition to the lepton pair
- 13 : double Dalitz decay into two lepton pairs
- 21 : decay to phase space, but weight up *neutrino\_tau* spectrum in *tau* decay
- 22 : weak decay; if there is a quark spectator system it collapses to one hadron; for leptonic/semileptonic d
- 23: as 22, but require at least three particles in decay
- 31 : decays of type B → gamma X, very primitive simulation where X is given in terms of its flavour content spectrum is weighted up relative to pure phase space
- 42 50: turn partons into a random number of hadrons, picked according to a Poissonian with average val new try with another multiplicity if the sum of daughter masses exceed the mother one
- 52 60 : as 42 50, with multiplicity between code 50 and 10, but avoid already explicitly listed non-parto
- 62 70 : as 42 50, but fixed multiplicity code 60
- 72 80 : as 42 50, but fixed multiplicity code 70, and avoid already explicitly listed non-partonic channel
- 91 : decay to q qbar or g g, which should shower and hadronize
- 92 : decay onium to q q q or q q gamma (with matrix element), which should shower and hadronize
- 93 : decay of colour singlet to q qbar plus another singlet, flat in phase space (and arbitrarily ordered), whe
- 94 : same as 93, but weighted with V-A weak matrix element if the decay chain is of the type neutrino \ran;
- 100 : reserved for the description of partial widths of resonances

### Combined Extractions

Interesting if heavy quark symmetry inspired Form Factors are used:

$$\hat{h}(w) = h(w)/\xi(w) \longleftarrow \text{ Leading Isgur-Wise function}$$

$$\hat{h}_{+} = 1 + \hat{\alpha}_{s} \left[ C_{V_{1}} + \frac{w+1}{2} \left( C_{V_{2}} + C_{V_{3}} \right) \right] + (\varepsilon_{c} + \varepsilon_{b}) \hat{L}_{1} ,$$

$$\hat{h}_{-} = \hat{\alpha}_{s} \frac{w+1}{2} \left( C_{V_{2}} - C_{V_{3}} \right) + (\varepsilon_{c} - \varepsilon_{b}) \hat{L}_{4} ,$$

$$\hat{h}_{V} = 1 + \hat{\alpha}_{s} C_{V_{1}} + \varepsilon_{c} (\hat{L}_{2} - \hat{L}_{5}) + \varepsilon_{b} (\hat{L}_{1} - \hat{L}_{4}) ,$$

$$\hat{h}_{A_{1}} = 1 + \hat{\alpha}_{s} C_{A_{1}} + \varepsilon_{c} (\hat{L}_{2} - \hat{L}_{5}) + \varepsilon_{b} (\hat{L}_{1} - \hat{L}_{4}) + \varepsilon_{b} (\hat{L}_{1} - \hat{L}_{4}) ,$$

$$\hat{h}_{A_{2}} = \hat{\alpha}_{s} C_{A_{2}} + \varepsilon_{c} (\hat{L}_{3} + \hat{L}_{6}) ,$$

$$\hat{h}_{A_{3}} = 1 + \hat{\alpha}_{s} (C_{A_{1}} + C_{A_{3}}) + \varepsilon_{c} (\hat{L}_{2} - \hat{L}_{3} + \hat{L}_{6} - \hat{L}_{5}) + \varepsilon_{b} (\hat{L}_{1} - \hat{L}_{4}) ,$$

This links dynamics of  $B\to D\ell\bar\nu_\ell\,\&\,B\to D^*\ell\bar\nu_\ell$ 

Example fit for leading IW function and sub-leading parameters

| $38.8 \pm 1.2$    |
|-------------------|
| $1.055 \pm 0.008$ |
| $0.904 \pm 0.012$ |
| $1.17 \pm 0.12$   |
| $-0.26 \pm 0.26$  |
| $0.21 \pm 0.38$   |
| $0.02 \pm 0.07$   |
| $0.30 \pm 0.04$   |
| 0 (fixed)         |
| $4.70 \pm 0.05$   |
| $3.40 \pm 0.02$   |
|                   |





# LHCb Systematics

$$B_s \to K \mu \bar{\nu}_{\mu}$$

| Uncertainty             | All $q^2$            | Low $q^2$        | High $q^2$     |
|-------------------------|----------------------|------------------|----------------|
| Tracking                | 2.0                  | 2.0              | 2.0            |
| Trigger                 | 1.4                  | 1.2              | 1.6            |
| Particle identification | 1.0                  | 1.0              | 1.0            |
| $\sigma(m_{ m corr})$   | 0.5                  | 0.5              | 0.5            |
| Isolation               | 0.2                  | 0.2              | 0.2            |
| Charged BDT             | 0.6                  | 0.6              | 0.6            |
| Neutral BDT             | 1.1                  | 1.1              | 1.1            |
| $q^2$ migration         | • • •                | 2.0              | 2.0            |
| Efficiency              | 1.2                  | 1.6              | 1.6            |
| Fit template            | $^{+2.3}_{-2.9}$     | $^{+1.8}_{-2.4}$ | $+3.0 \\ -3.4$ |
| Total                   | -2.9<br>+4.0<br>-4.3 | +4.3<br>-4.5     | +5.0<br>-5.3   |

$$B_s \to D_s^{(*)} \mu \bar{\nu}_{\mu}$$

|                                                                  | Uncertainty                    |                              |                                      |                                 |                              |                              |                                |                                                 |                           |                                      |                   |                    |                           |                   |                           |                             |
|------------------------------------------------------------------|--------------------------------|------------------------------|--------------------------------------|---------------------------------|------------------------------|------------------------------|--------------------------------|-------------------------------------------------|---------------------------|--------------------------------------|-------------------|--------------------|---------------------------|-------------------|---------------------------|-----------------------------|
| Source                                                           | CLN parametrization            |                              |                                      |                                 |                              | BGL parametrization          |                                |                                                 |                           |                                      |                   |                    |                           |                   |                           |                             |
|                                                                  | $ V_{cb} $ [10 <sup>-3</sup> ] | $\rho^2(D_s^-) \\ [10^{-1}]$ | $\mathcal{G}(0)$ [10 <sup>-2</sup> ] | $\rho^2(D_s^{*-}) \\ [10^{-1}]$ | $R_1(1)$ [10 <sup>-1</sup> ] | $R_2(1)$ [10 <sup>-1</sup> ] | $ V_{cb} $ [10 <sup>-3</sup> ] | $\begin{array}{c} d_1 \\ [10^{-2}] \end{array}$ | $d_2$ [10 <sup>-1</sup> ] | $\mathcal{G}(0)$ [10 <sup>-2</sup> ] | $b_1 \ [10^{-1}]$ | $c_1 \\ [10^{-3}]$ | $a_0$ [10 <sup>-2</sup> ] | $a_1 \ [10^{-1}]$ | $\mathcal{R}$ $[10^{-1}]$ | $\mathcal{R}^*$ $[10^{-1}]$ |
| $f_s/f_d \times \mathcal{B}(D_s^- \to K^+K^-\pi^-)(\times \tau)$ | 0.8                            | 0.0                          | 0.0                                  | 0.0                             | 0.0                          | 0.0                          | 0.8                            | 0.0                                             | 0.0                       | 0.0                                  | 0.0               | 0.0                | 0.0                       | 0.1               | 0.4                       | 0.4                         |
| $\mathcal{B}(D^- 	o K^- K^+ \pi^-)$                              | 0.5                            | 0.0                          | 0.0                                  | 0.0                             | 0.0                          | 0.0                          | 0.5                            | 0.0                                             | 0.0                       | 0.0                                  | 0.0               | 0.0                | 0.0                       | 0.1               | 0.3                       | 0.3                         |
| $\mathcal{B}(D^{*-} \to D^- X)$                                  | 0.2                            | 0.0                          | 0.1                                  | 0.0                             | 0.1                          | 0.0                          | 0.1                            | 0.0                                             | 0.0                       | 0.1                                  | 0.0               | 0.2                | 0.0                       | 0.3               | _                         | 0.2                         |
| $\mathcal{B}(B^0 \to D^- \mu^+ \nu_\mu)$                         | 0.4                            | 0.0                          | 0.3                                  | 0.1                             | 0.2                          | 0.1                          | 0.5                            | 0.1                                             | 0.0                       | 0.1                                  | 0.1               | 0.4                | 0.1                       | 0.7               | _                         | _                           |
| $\mathcal{B}(B^0 \to D^{*-}\mu^+\nu_\mu)$                        | 0.3                            | 0.0                          | 0.2                                  | 0.1                             | 0.1                          | 0.1                          | 0.2                            | 0.0                                             | 0.0                       | 0.1                                  | 0.1               | 0.3                | 0.1                       | 0.4               | _                         | _                           |
| $m(B_s^0), m(D^{(*)-})$                                          | 0.0                            | 0.0                          | 0.0                                  | 0.0                             | 0.0                          | 0.0                          | 0.0                            | 0.0                                             | 0.0                       | 0.0                                  | 0.0               | 0.0                | 0.0                       | 0.1               | _                         | _                           |
| $\eta_{ m EW}$                                                   | 0.2                            | 0.0                          | 0.0                                  | 0.0                             | 0.0                          | 0.0                          | 0.2                            | 0.0                                             | 0.0                       | 0.0                                  | 0.0               | 0.0                | 0.0                       | 0.1               | _                         | _                           |
| $h_{A_1}(1)$                                                     | 0.3                            | 0.0                          | 0.2                                  | 0.1                             | 0.1                          | 0.1                          | 0.3                            | 0.0                                             | 0.0                       | 0.1                                  | 0.1               | 0.3                | 0.1                       | 0.5               | _                         | _                           |
| External inputs (ext)                                            | 1.2                            | 0.0                          | 0.4                                  | 0.1                             | 0.2                          | 0.1                          | 1.2                            | 0.1                                             | 0.0                       | 0.1                                  | 0.1               | 0.6                | 0.1                       | 0.8               | 0.5                       | 0.5                         |
| $D_{(s)}^- \to K^+ K^- \pi^- \text{ model}$                      | 0.8                            | 0.0                          | 0.0                                  | 0.0                             | 0.0                          | 0.0                          | 0.8                            | 0.0                                             | 0.0                       | 0.0                                  | 0.0               | 0.0                | 0.0                       | 0.0               | 0.5                       | 0.4                         |
| Background                                                       | 0.4                            | 0.3                          | 2.2                                  | 0.5                             | 0.9                          | 0.7                          | 0.1                            | 0.5                                             | 0.2                       | 2.3                                  | 0.7               | 2.0                | 0.5                       | 2.0               | 0.4                       | 0.6                         |
| Fit bias                                                         | 0.0                            | 0.0                          | 0.0                                  | 0.0                             | 0.0                          | 0.0                          | 0.2                            | 0.0                                             | 0.0                       | 0.0                                  | 0.2               | 0.4                | 0.2                       | 0.4               | 0.0                       | 0.0                         |
| Corrections to simulation                                        | 0.0                            | 0.0                          | 0.5                                  | 0.0                             | 0.1                          | 0.0                          | 0.0                            | 0.1                                             | 0.0                       | 0.1                                  | 0.0               | 0.0                | 0.0                       | 0.1               | 0.0                       | 0.0                         |
| Form-factor parametrization                                      |                                | _                            |                                      | _                               |                              | _                            | _                              | _                                               |                           |                                      | _                 |                    |                           | _                 | 0.0                       | 0.1                         |
| Experimental (syst)                                              | 0.9                            | 0.3                          | 2.2                                  | 0.5                             | 0.9                          | 0.7                          | 0.9                            | 0.5                                             | 0.2                       | 2.3                                  | 0.7               | 2.1                | 0.5                       | 2.0               | 0.6                       | 0.7                         |
| Statistical (stat)                                               | 0.6                            | 0.5                          | 3.4                                  | 1.7                             | 2.5                          | 1.6                          | 0.8                            | 0.7                                             | 0.5                       | 3.4                                  | 0.7               | 2.2                | 0.9                       | 2.6               | 0.5                       | 0.5                         |