

Flavor Physics at Belle II

Pablo Goldenzweig

Planck 2019 Granada, Spain 3 - 7 June 2019

Flavor Physics Beyond the Standard Model

Strong evidence that physics beyond the SM exists:

 Temperature fluctuations of cosmic background radiation and rotation curves from spiral galaxies indicate existence of Dark Matter.

SM not a theory of everything: Quantum mechanics and gravity do not bond. Perhaps both are a limit of a more fundamental theory?

Intensity Frontier Experiments:

Indirect search of New Physics through quantum effects.

Belle II produces large quantities of b quarks for such searches.

For $e^+e^- \rightarrow \tau^+\tau^-$, e.g., F. Tenchini @Flavor2019

6.6.2019 2 / 22

Physics of an e^+e^- B Factory

• Collide e^+ and e^- at $\sqrt{s} = 10.58$ GeV to create $\Upsilon(4S)$ resonance.

Physics of an e^+e^- B Factory

- Collide e^+ and e^- at $\sqrt{s} = 10.58$ GeV to create $\Upsilon(4S)$ resonance.
- $\Upsilon(4S)$ decays to B^+B^- and $B^0\bar{B}^0$ 96% of the time.

Physics of an e^+e^- B Factory

- Collide e⁺ and e⁻ at √s = 10.58 GeV to create Υ(4S) resonance.
- $\Upsilon(4S)$ decays to B^+B^- and $B^0\bar{B}^0$ 96% of the time.
- Reconstruct *B* meson from final state particles in detector.

B

• Spectacular accelerator and detector performance.

- Discovery of CP violation in B decays.
- Confirmation of the CKM picture of flavor physics.
- Discovery of several new particles.
- Limits on New Physics scenarios.

Integrated luminosity of B factories

- Spectacular accelerator and detector performance.
- Discovery of CP violation in B decays.
- Confirmation of the CKM picture of flavor physics.
- Discovery of several new particles.
- Limits on New Physics scenarios.

- Spectacular accelerator and detector performance.
- $\cdot\,$ Discovery of CP violation in B decays.
- Confirmation of the CKM picture of flavor physics.
- $\cdot\,$ Discovery of several new particles.
- Limits on New Physics scenarios.

Integrated luminosity of B factories

- Spectacular accelerator and detector performance.
- $\cdot\,$ Discovery of CP violation in B decays.
- Confirmation of the CKM picture of flavor physics.
- Discovery of several new particles.
- Limits on New Physics scenarios.

Flavor Physics at Belle II

- Spectacular accelerator and detector performance.
- $\cdot\,$ Discovery of CP violation in B decays.
- · Confirmation of the CKM picture of flavor physics.
- $\cdot\,$ Discovery of several new particles.
- Limits on New Physics scenarios.

6.6.2019

4/22

E.g., 2 Higgs Doublet Model (Type II)

\Rightarrow Tensions with the SM

Belle 19 1904.08794

\Rightarrow Tensions with the SM

1904.02440

Belle 19 1904.08794

P. Goldenzweig

Flavor Physics at Belle II

6.6.20195/22

\Rightarrow Tensions with the SM \Rightarrow H[±], Z', LQ ?

1904.02440

P. Goldenzweig

Flavor Physics at Belle II

6.6.2019 6/22

Belle II Physics

Broad program to search for New Physics in B, D and τ decays

- New CP violating phases?
 ⇒ CPV in B and D decays.
- Signatures of charged Higgs bosons or leptoquarks?

 $\Rightarrow B^+ \rightarrow \ell^+ \nu \text{ and } D^{(*)} \tau \nu \text{ decays.}$

- Right-handed currents from new physics?
 - ⇒ Photon polarization in radiative decays.
- New physics in flavor changing neutral current transitions?
 - $\Rightarrow Electroweak penguin decays$ $b \to s \ell^+ \ell^-, s \nu \overline{\nu}.$
- Exotic tetraquark, pentaquark and hybrid QCD states?
- Hidden dark sector accessible from *B* decays?

Observables	Expected the. accu-	Expected	Facility (2025)
	racy	exp. uncertainty	
UT angles & sides			
φ ₁ [°]	***	0.4	Belle II
φ ₂ [°]	**	1.0	Belle II
φ ₃ [°]	***	1.0	LHCb/Belle II
V _{cb} incl.	***	1%	Belle II
$ V_{cb} $ excl.	***	1.5%	Belle II
$ V_{ub} $ incl.	**	3%	Belle II
V _{ub} excl.	**	2%	Belle II/LHCb
CP Violation			
$S(B \rightarrow \phi K^0)$	***	0.02	Belle II
$S(B \rightarrow \eta' K^0)$	***	0.01	Belle II
$A(B \rightarrow K^0 \pi^0)[10^{-2}]$	***	4	Belle II
$\mathcal{A}(B \rightarrow K^+\pi^-)$ [10 ⁻²]	***	0.20	LHCb/Belle II
(Semi-)leptonic			
$\mathcal{B}(B \rightarrow \tau \nu) [10^{-6}]$	**	3%	Belle II
$\mathcal{B}(B \rightarrow \mu \nu)$ [10 ⁻⁶]	**	7%	Belle II
$R(B \rightarrow D\tau\nu)$	***	3%	Belle II
$R(B \rightarrow D^* \tau \nu)$	***	2%	Belle II/LHCb
Radiative & EW Penguins			
$B(B \rightarrow X_s \gamma)$	**	4%	Belle II
$A_{CP}(B \rightarrow X_{s,d\gamma}) [10^{-2}]$	***	0.005	Belle II
$S(B \rightarrow K_c^0 \pi^0 \gamma)$	***	0.03	Belle II
$S(B \rightarrow \rho \gamma)$	**	0.07	Belle II
$\mathcal{B}(B_* \rightarrow \gamma \gamma) [10^{-6}]$	**	0.3	Belle II
$\mathcal{B}(B \rightarrow K^* \nu \overline{\nu}) [10^{-6}]$	***	15%	Belle II
$\mathcal{B}(B \rightarrow K \nu \overline{\nu}) [10^{-6}]$	***	20%	Belle II
$R(B \rightarrow K^*\ell\ell)$	***	0.03	Belle II/LHCb
Charm			
$\mathcal{B}(D_s \rightarrow \mu\nu)$	***	0.9%	Belle II
$\mathcal{B}(D_s \rightarrow \tau \nu)$	***	2%	Belle II
$A_{CP}(D^0 \to K_{S}^0 \pi^0) [10^{-2}]$	**	0.03	Belle II
$ a/p (D^0 \rightarrow K_0^0 \pi^+ \pi^-)$	***	0.03	Belle II
$\phi(D^0 \rightarrow K_e^0 \pi^+ \pi^-)$ [°]	***	4	Belle II
Tau			
$\tau \rightarrow \mu \gamma [10^{-10}]$	***	< 50	Belle II
$\tau \rightarrow e \gamma [10^{-10}]$	***	< 100	Belle II
$\tau \rightarrow \mu \mu \mu [10^{-10}]$	***	< 3	Belle II/LHCb
· · //// (***)			m, mico

The Belle 2 Physics Book (1808.10567)

& Quarkonium... Dark Sector...

6.6.2019 7 / 22

Belle II Physics

Complementarity with LHCb

LHCb

- Large cross section.
- Decays to all charged particle final states.
- Fast mixing.

Belle II

- Clean experimental environment.
- Holistic interpretation of events with missing energy (ν).
- Decays with multiple photons.
- Inclusive decays $(B \to X_{s,d}\gamma)$.
- Long-lived particles $(K_S \text{ and } K_L)$.

Observables	Expected the. accu-	Expected	Facility (2025)
	racy	exp. uncertainty	
UT angles & sides			
φ ₁ [°]	***	0.4	Belle II
φ ₂ [°]	**	1.0	Belle II
\$\$ [°]	***	1.0	LHCb/Belle II
V _{ch} incl.	***	1%	Belle II
V _{cb} excl.	***	1.5%	Belle II
V _{wb} incl.	**	3%	Belle II
V _{ub} excl.	**	2%	Belle II/LHCb
CP Violation			
$S(B \rightarrow \phi K^0)$	***	0.02	Belle II
$S(B \rightarrow p'K^0)$	***	0.01	Belle II
$A(B \rightarrow K^0 \pi^0)[10^{-2}]$	***	4	Belle II
$A(D \rightarrow R^{+})[10^{-1}]$	***	1 0.20	LHCL/Dalla II
$A(D \rightarrow K^{+}\pi^{-})[10^{-}]$		0.20	LICO/ Belle II
(Semi-Jieptonic	**	0/7/	D. U. 17
$\mathcal{B}(B \rightarrow \tau \nu) [10^{-5}]$	**	3%	Belle II
$B(B \rightarrow \mu\nu) [10^{\circ}]$	**	1%	Belle II
$R(B \rightarrow D\tau\nu)$	***	3%	Belle II
$R(B \rightarrow D^* \tau \nu)$	***	2%	Belle II/LHCb
Radiative & EW Penguins			
$B(B \rightarrow X_s \gamma)$	**	4%	Belle II
$A_{CP}(B \rightarrow X_{s,d}\gamma) [10^{-2}]$	***	0.005	Belle II
$S(B \rightarrow K_S^0 \pi^0 \gamma)$	***	0.03	Belle II
$S(B \rightarrow \rho \gamma)$	**	0.07	Belle II
$B(B_s \rightarrow \gamma \gamma) [10^{-6}]$	**	0.3	Belle II
$B(B \rightarrow K^* \nu \overline{\nu}) [10^{-6}]$	***	15%	Belle II
$\mathcal{B}(B \rightarrow K \nu \overline{\nu}) [10^{-6}]$	***	20%	Belle II
$R(B \rightarrow K^*\ell \ell)$	***	0.03	Belle II/LHCb
Charm			
$B(D_s \rightarrow \mu\nu)$	***	0.9%	Belle II
$\mathcal{B}(D_s \rightarrow \tau \nu)$	***	2%	Belle II
$A_{CP}(D^0 \to K_{C}^0 \pi^0) [10^{-2}]$	**	0.03	Belle II
$ a/n (D^0 \rightarrow K_0^0 \pi^+ \pi^-)$	***	0.03	Belle II
$\phi(D^0 \rightarrow K^0 \pi^+ \pi^-)$ [9]	***	4	Bollo II
$\varphi(D \rightarrow RS^{n-n-1})[]$ Tau		r	Dene 11
1au	***	< 50	D-II- II
$\tau \rightarrow \mu \gamma [10^{-1}]$	***	< 00	Dene II
$\tau \rightarrow e\gamma [10^{-6}]$	***	< 100	Belle II
$\tau \rightarrow \mu \mu \mu [10^{-10}]$	***	< 3	Belle II/LHCb

The Belle 2 Physics Book (1808,10567)

& Quarkonium... Dark Sector...

SuperKEKB Accelerator

Upgrade to achieve 40x peak \mathcal{L} under 20x bkgd

$$\mathcal{L} = \frac{\gamma_{e\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \left(\frac{I_{e\pm} \xi_y^{e\pm}}{\beta_y^*} \right) \left(\frac{R_{\mathcal{L}}}{R_{\xi_y}} \right)$$

Doubling the beam currents.

Reduction in the beam size by 1/20 at the IP.

SuperKEKB Accelerator

Upgrade to achieve 40x peak \mathcal{L} under 20x bkgd

$$\mathcal{L} = \frac{\gamma_{e\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \left(\frac{I_{e\pm} \xi_y^{e\pm}}{\beta_y^*} \right) \left(\frac{R_{\mathcal{L}}}{R_{\xi_y}} \right)$$

Doubling the beam currents.

Reduction in the beam size by 1/20 at the IP.

SuperKEKB Accelerator

Upgrade to achieve 40x peak \mathcal{L} under 20x bkgd

$$\mathcal{L} = \frac{\gamma_{e\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \left(\frac{I_{e\pm} \xi_y^{e\pm}}{\beta_y^*} \right) \left(\frac{R_{\mathcal{L}}}{R_{\xi_y}} \right)$$

Doubling the beam currents.

Reduction in the beam size by 1/20 at the IP.

9 / 22

Global Schedule

- **Phase 1:** SuperKEKB commissioning without final focusing and without Belle II detector [1-6/2016].
- Phase 2: Collision data taking with final focusing. Belle II with no final vertex detector [4-7/2018]. Recorded 0.5 fb⁻¹. Results shown today.
- Phase 3: Collision data taking with full Belle II detector [3/2019].

The Belle II Detector

Targeted improvements: Increase K_S^0 efficiency; Improve IP and secondary vertex resolution, K/π separation, and π^0 efficiency; Particle and μ ID in endcaps.

P. Goldenzweig

Flavor Physics at Belle II

Sub-detector Installation

Belle II Hadronic Event

- Few tracks and clusters.
- Nothing produced in addition to the $\Upsilon(4S)$.
- High reconstruction efficiency.
- Very good particle identification.

Spring 2018 pilot run

Belle II Hadronic Event

- Few tracks and clusters.
- Nothing produced in addition to the $\Upsilon(4S)$.
- High reconstruction efficiency.
- Very good particle identification.

Spring 2018 pilot run

 \rightarrow Large beam-induced backgrounds. \rightarrow Low p_T tracks.

Neutral Reconstruction: Key Belle II Strength

Neutral Reconstruction: Key Belle II Strength

⇒ Ready for dark matter searches with NEW single & triple photon triggers

- Massive vector particle A' mixes with the SM γ .
- Can decay to experimentally invisible $A' \to \chi_1 \chi_2$ final state.
- \Rightarrow Require ISR γ :

$$E_{\gamma ISR} = \frac{s - m_{A'}^2}{2\sqrt{s}}$$

1808.10567

ALPs

- ALP-strahlung experimentally easier than γ -fusion.
- Three photons within tracking acceptance:
 - \Rightarrow Add up to beam energy.
 - Zero tracks.
 - -~ Bump in di- γ mass.

ALPs

Hadronic B Meson Reconstruction

Topological variables used to suppress light-quark-jet $e^+e^- \rightarrow q\overline{q}$ continuum background.

Rediscovery of several *B* meson decays.

Missing Energy Decays

Several key *B* decay channels contain neutrinos in the final state: $\overline{B} \to D^{(*)} \ell \overline{\nu}_{\ell}, \ B^+ \to \ell^+ \nu_{\ell}, \ B^+ \to \ell^+ \nu_{\ell} \gamma, \ B \to \pi \ell \nu_{\ell}, \ B \to h^{(*)} \nu \overline{\nu}$

Cannot be directly reconstructed

Missing Energy Decays

Several key *B* decay channels contain neutrinos in the final state: $\overline{B} \to D^{(*)} \ell \overline{\nu}_{\ell}, \ B^+ \to \ell^+ \nu_{\ell}, \ B^+ \to \ell^+ \nu_{\ell} \gamma, \ B \to \pi \ell \nu_{\ell},$

 $B
ightarrow h^{(*)}
u \overline{
u}$

- Observed limits leave room for NP contributions.
 1702.03224
- Axion/ALP are prime NP candidates.
 1612.05492
 1612.08040

Missing Energy Decays

Several key *B* decay channels contain neutrinos in the final state: $\overline{B} \to D^{(*)} \ell \overline{\nu}_{\ell}, \ B^+ \to \ell^+ \nu_{\ell}, \ B^+ \to \ell^+ \nu_{\ell} \gamma, \ B \to \pi \ell \nu_{\ell},$

 $B
ightarrow h^{(*)}
u \overline{
u}$

- Observed limits leave room for NP contributions.
 1702.03224
- Axion/ALP are prime NP candidates.
 1612.05492
 1612.08040

Take advantage of experimental setup of B-factories:

- $B\overline{B}$ pairs are produced without any additional particles;
- Detectors enclose the interaction region almost hermetically;
- Collision energy (initial state) is precisely known:

$$p_{e^+} + p_{e^-} = p_B + p_{\overline{B}}.$$

T. Keck et al., Comput Softw Big Sci (2019) 3: 6

Exclusive Tagging: The Full Event Interpretation (FEI)

Hierarchical tag-side *B*-meson recombination algorithm for Belle II.

- Utilizes $\mathcal{O}(200)$ decay channels with BDTs trained for each decay.
- Reconstructs $\mathcal{O}(10k)$ unique decay chains in 6 stages.
- 3x higher MC reconstruction efficiencey than predecessor algorithm.

Flavor Physics at Belle II

Observe ~ 571 fully reconstructed *B* mesons.

Exclusive Tagging: The Full Event Interpretation (FEI)

Hierarchical tag-side *B*-meson recombination algorithm for Belle II.

- Utilizes $\mathcal{O}(200)$ decay channels with BDTs trained for each decay.
- Reconstructs $\mathcal{O}(10k)$ unique decay chains in 6 stages.
- 3x higher MC reconstruction efficiencey than predecessor algorithm.

First look at $\overline{B}^0 \to D^{*+} e^- \overline{\nu}_e$ decays

Observed 22 events in untagged sample:

- 15 events in the signal window of cos θ_{BY} ∈ (−1, 1).
- 13 expected from simulation.

Y = visible final state system (D^*e)

First look at $\overline{B}^0 \to D^{*+} e^- \overline{\nu}_e$ decays

Observed 22 events in untagged sample:

- 15 events in the signal window of $\cos \theta_{BY} \in (-1, 1).$
- 13 expected from simulation.

Branching fraction of $\overline{B}^0 \to D^{*+} e^- \overline{\nu}_e$ decays is a key ingredient in resolving the 3.5 σ tension in exclusive vs. inclusive measurements of $|V_{cb}|$.

²⁰¹⁸ exclusive avg. includes unpublished Belle 1702.01521

Y = visible final state system (D^*e)

Flavor Physics at Belle II

Preparation for Phase 3

PXD mounted on beam pipe

PXD combined with one half of SVD

 \Rightarrow Full PXD operation (with 2 layers) scheduled for 2020.

First $B\overline{B}$ Event in Phase 3

Summary

Belle II poised to usher in a new era of precision flavor physics with 50 ab^{-1} of data collected at the SuperKEKB accelerator.

- Commissioning phase has concluded and data taking with the full detector _ commenced in 3/2019.
- Potential for exciting results in the first years of data taking. _

P. Goldenzweig

Flavor Physics at Belle II

Extra material

Vertex Detector

Si pixel (2 layers) and strip (4 layers):

• 1st pixel layer at r = 14mm to IP [Belle at r = 20mm]

> Improves vertex resolution along z-axis

• Larger SVD w/outer layer at r = 135mm. [Belle at r = 88mm]

Higher fraction of K_S ' with vertex hits improves vertex resolution

Tracking Detector

Central Drift Chamber:

- $He(50\%) C_2 H_6(50\%)$.
- Larger outer radius of 1111mm (Belle 863mm) allows for improved p resolution.
- Smaller cells with lower occupancy and capacity for higher hit rate.

Simulated track reconstruction efficiency Stable performance for up to 3x predicted beam BG

P. Goldenzweig

Particle Identification

Two RICH systems covering full momentum range

- Barrel: Time of Propagation (TOP) counter (16 modules).
 - \Rightarrow Measure x-y position of Cherenkov γ 's and their arrival time.
- Forward Endcap: Aerogel Ring Imaging Cherenkov detector (ARICH)
 - \Rightarrow Proximity focusing with silica aerogel (4 σ separation at 1 3.5 GeV/c)

P. Goldenzweig

Flavor Physics at Belle II

Electromagmetic Calorimeter

Re-usage of Belle's CsI(TI) crystal calorimeter, but with new electronics with 2MHz wave form sampling to compensate for the larger beam-related backgrounds and the long decay time of CsI(TI) signals.

 \Rightarrow Resolution much better at Belle II

Peak energy resolution in the ECL barrel as a function of true photon energy

Performance on Belle Data

Applicable in Belle *and* Belle II analyses within the Belle II analysis software framework:

Allows one to make a benchmark comparison of the tag-side efficiency with the predecessor Belle Full Reconstruction (FR) algorithm.

* Perform physics analysis on Belle data with increased statistics (from the same 711 fb⁻¹), while we await a large Belle II dataset.

Use the FEI on Belle data to reconstruct several well known semileptonic decays.

$$\epsilon = N_{DATA}/N_{MC}$$

$$P_{D^{0}} = P_{D^{0}} = P_{D^{$$

1.6

$\overline{B} \to D^{(*)} \tau \overline{\nu}$ with Belle II & LHCb arXiv:1709.

Measurement	SM	Current World	Current		Project	ed Unce	rtainty ¹	
	prediction	Average	Uncertainty	Be	lle II		LHCb	
				$5ab^{-1}$	50ab^{-1}	8fb^{-1}	22fb^{-1}	50fb^{-1}
				2020	2024	2019	2024	2030
R(D)	(0.299 ± 0.003)	$(0.403 \pm 0.040 \pm 0.024)$	11.6%	5.6%	3.2%	-	-	-
$R(D^*)$	(0.257 ± 0.003)	$(0.310\pm 0.015\pm 0.008)$	5.5%	3.2%	2.2%	3.6%	2.1%	1.6%

Currently re-analyzing the Belle hadronic-tag measurement with the Belle 2 Full Event Interpretation (improved tag-side recombination algorithm).

¹ Projected uncertainties not including improvements in detectors and algorithms.

P. Goldenzweig

Flavor Physics at Belle II

Flavor Anomalies

W

s

s

Flavor Anomalies

Belle $B \to h^{(*)} \nu \overline{\nu}$ Semileptonic Tag Result

PRD 96, 091101(R) (2017)

- Histogram templates to model signal and bkgds from charm *B* decay, charmless *B* decay, and continuum.
- Relative fractions of the background components fixed to MC expectations.
- Signal and overall background yield allowed to vary.

Channel	Observed N_{sig}	Significance
$K^+ \nu \bar{\nu}$	$17.7 \pm 9.1 \pm 3.4$	1.9σ
$K_{s}^{0} \nu \overline{\nu}$	$0.6 \pm 4.2 \pm 1.4$	0.0σ
$K^{*+}\nu\overline{\nu}$	$16.2 \pm 7.4 \pm 1.8$	2.3σ
$K^{*0}\nu\bar{\nu}$	$-2.0 \pm 3.6 \pm 1.8$	0.0σ
$\pi^+ \nu \bar{\nu}$	$5.6 \pm 15.1 \pm 5.9$	0.0σ
$\pi^0 \nu \overline{\nu}$	$0.2 \pm 5.6 \pm 1.6$	0.0σ
$\rho^+ \nu \bar{\nu}$	$6.2 \pm 12.3 \pm 2.4$	0.3σ
$\rho^0 \nu \bar{\nu}$	$11.9 \pm 9.0 \pm 3.6$	1.2σ

	Channel	Efficiency	Expected Limit	Measured Limit
• Expected (exp.) and observed upper limits at the 90% confidence level (including systematic	$ \frac{K^{+}\nu\bar{\nu}}{K_{S}^{0}\nu\bar{\nu}} \\ K^{*+}\nu\bar{\nu} \\ K^{*0}\nu\bar{\nu} \\ \pi^{+}\nu\bar{\nu} \\ \pi^{0}\nu\bar{\nu} $	$\begin{array}{c} 2.16\times10^{-3}\\ 0.91\times10^{-3}\\ 0.57\times10^{-3}\\ 0.51\times10^{-3}\\ 2.92\times10^{-3}\\ 1.42\times10^{-3} \end{array}$	$\begin{array}{c} 0.8 \times 10^{-5} \\ 1.2 \times 10^{-5} \\ 2.4 \times 10^{-5} \\ 2.4 \times 10^{-5} \\ 1.3 \times 10^{-5} \\ 1.0 \times 10^{-5} \end{array}$	$\begin{array}{c} 1.9 \times 10^{-5} \\ 1.3 \times 10^{-5} \\ 6.1 \times 10^{-5} \\ 1.8 \times 10^{-5} \\ 1.4 \times 10^{-5} \\ 0.9 \times 10^{-5} \end{array}$
uncertainties)	$\rho^+ \nu \bar{\nu}$ $\rho^0 \nu \bar{\nu}$	1.11×10^{-3} 0.82×10^{-3}	2.5×10^{-5} 2.2×10^{-5}	3.0×10^{-5} 4.0×10^{-5}

Combine charged and neutral modes:

• The systematic uncertainties are evaluated on independent MC and data control samples for charged and neutral modes.

 \Rightarrow Can be considered uncorrelated.

• Add the $-\mathcal{L}$ and scale the \mathcal{B} of the neutral modes by τ_B^+/τ_B^0 and repeat the calculation of the limit:

$$\begin{split} \mathcal{B}(B \to K \nu \bar{\nu}) &< 1.6 \times 10^{-5} \\ \mathcal{B}(B \to K^* \nu \bar{\nu}) &< 2.7 \times 10^{-5} \\ \mathcal{B}(B \to \pi \nu \bar{\nu}) &< 0.8 \times 10^{-5} \\ \mathcal{B}(B \to \rho \nu \bar{\nu}) &< 2.8 \times 10^{-5} \end{split}$$

NP in $B \to K^{(*)} \nu \overline{\nu}$ @ Belle II

Constraints on NP contributions to C_L^{NP} & C_R^{NP} (norm. to the SM value of C_L)

- $\bullet\,$ Gray areas show the 90% CL excluded regions from Belle & BaBar.
- Allowed region (@68% CL) of B → K⁺νν with 50ab⁻¹ (assuming sensitivities in prev. slide)
- Constraints from $B \to K^* \nu \overline{\nu}$ using \mathcal{B} only.
- Constraints from $B \to K^* \nu \overline{\nu}$ using \mathcal{B} and f_L .

Hints of NP in C_9 ?

- Scan of the semileptonic coefficient C_9 comprise the inclusive $B\bar{B} \to X_s l^+ l^ B \to K^{(*)} e^+ e^-$ and $B \to K^{(*)} \mu^+ \mu^-$
- Current mesurements hint at a deviation of $C_9^{\mathrm{NP}\mu\mu}$ from the SM (driven by LHCb).

P'_5 Anomaly: Full Angular Analysis of $B \to K^* \ell^+ \ell^-$

- The angular observable $P'_5 = S_5 / \sqrt{f_L(1 - f_L)}$ is considered to be largely free from form-factor uncertainties. JHEP 05 (2013) 137
- Largest deviation of 2.6σ from the SM for the muon channel for $4 < q^2 < 8 \text{ GeV}^4/c^2$.
- Electron channel deviation of 1.1σ .
- Belle II and LHCb will be comparable for this process.
- Belle II will be able to perform an isospin comparison of K^{*+} and K^{*0} , or the ground states K.

Belle II sensitivity of ${\cal P}_5$

$q^2 (GeV^2)$	Belle	Belle II $(50ab^{-1})$
0.10 - 4.00	0.416	0.059
4.00 - 8.00	0.277	0.040
10.09 - 12.00	0.344	0.049
14.18 - 19.00	0.248	0.033

 $K^+\pi^-$ VS. $K^+\pi^0$ Belle, PRD 87, 031103(R) (2013),

Measurements of DCPV in $B^+ \to K^+ \pi^0$ found to be different than $B^0 \to K^+ \pi^-$

Additional SM Diagrams or New Physics?

The difference could be due to:

- Neglected diagrams contributing to *B* decays (theoretical uncertainty is still large). $K^+\pi^-: T + P + P_{FW}^C$
 - $K^{+}\pi^{-}: T + P + P_{EW}$ $K^{+}\pi^{0}: T + P + C + P_{EW} + P_{EW}^{C} + PA$

- Some unknown NP effect that violates Isospin.

 $\Rightarrow \text{ In combination with other } K\pi \text{ measurements and with the larger Belle} \\ II dataset, strong interaction effects can be controlled and the validity of the \\ SM can be tested in a model-independent way.$

$B \to K\pi$: Test-of-sum Rule

Asymmetry (test-of-sum) rule for NP nearly free of theoretical uncertainties, where the SM can be tested by measuring all observables: [PLB 627, 82(2005), PRD 58, 036005(1998)]

$$\begin{split} I_{K\pi} &= \mathcal{A}_{K^{+}\pi^{-}} + \mathcal{A}_{K^{0}\pi^{+}} \frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}} \frac{\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{0}\pi^{0}} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \\ & \left(I_{K\pi} = -0.0088^{+0.0016+0.0131}_{-0.0091} \right) \text{ [@NNLO] PLB } 750(2015)348\text{-}355 \\ & I_{K\pi} = -0.270 \pm 0.132 \pm 0.060 \text{ [Belle]} \end{split}$$

- Most demanding measurement is $K^0 \pi^0$ final state: $\mathcal{A}_{K^0 \pi^0} = 0.14 \pm 0.13 \pm 0.06$. Belle, PRD 81, 011101(R) (2010)
- With Belle II, the uncertainty on $\mathcal{A}_{K^0\pi^0} \text{ from time-dep. analysis is expected to reach } \sim 4\%.$
 - \Rightarrow Sufficient for NP studies

Flavor Physics at Belle II

Modified P_{EW} Sector

- Data point is the WA for $\mathcal{A}_{K^0\pi^0}$ and $\mathcal{S}_{K^0\pi^0}.$
- The $\mathcal{A}_{K^0\pi^0}$ value obtained from the sum rule with WA inputs for all other $\mathcal{A}_{K\pi}$ and $\mathcal{B}(K\pi)$ values.
- Isospin relation involving tighter constraints from CKM angle γ :

$$\begin{split} \sqrt{2}\mathcal{A}_{K^{0}\pi^{0}}+\mathcal{A}_{K^{+}\pi^{0}} = \\ -\left(\hat{T}+\hat{C}\right)\left(e^{i\gamma}-qe^{i\phi}e^{i\omega}\right). \end{split}$$

$$\begin{split} & \text{EW penguin effects described by} \\ & q e^{i\phi} e^{i\omega} \equiv - \left(\hat{P}_{EW} + \hat{P}_{EW}^{\text{C}} \right) / \left(\hat{T} + \hat{C} \right) . \end{split}$$

and the standard and and a standard and a standard as the 0.8 0.6 $S_{CP}^{\pi^0 K_S}$ 04 0.2 -0.2 -0.1 0.0 0.1 0.2

 $A_{CP}^{\pi^0 K_S}$

- Discrepancy can be resolved if: CP asymmetries move by $\approx 1\sigma$; $\mathcal{B}(K^0\pi^0)$ moves by $\approx 2.5\sigma$.
- Or NP from EW Z penguins that couple to quarks: Includes models with extra Z' bosons, which can be used to resolve anomalies in $B \to K^{(*)}\ell\ell$ measurements.

Flavor Physics at Belle II

Reducible vs. Irreducible Errors

Reducible

- The systematic uncertainties of the PDF parameters.
- Particle identification requirements.
- $-\,$ The possible CP violation effect in the accompanying B meson decays.
- Vertex resolution.
- $-\Delta t$ resolution function parametrization.
- Tag-side interference.

Irreducible

- Uncertainties in the interaction-point profile.
- Dependence on the vertex selection-criteria.
- The effect of detector misalignment.
- Possible bias in the ΔZ determination.
- $K^{\pm} \pi^{\pm}, \pi^{0}$ detection efficiency.
- Uncertainty in branching fraction measurements.
- Asymmetry of charged particle detection efficiency (in A measurements).
- Vertex reconstruction uncertainty originating from the SVD mis-alignment (in S measurements)