

Measurement of Hadronic Vacuum Polarization contributions to muon (g-2) at Belle (II)

A.Kuzmin/B.Shwartz BINP/NSU

Motivations for precise hadronic cross section measurements

- Tests of perturbative QCD
 - **QCD** sum rules, quark masses, quark and gluon condensates
 - **Higher order QCD corrections -** Λ_{QCD} , $\alpha(s)$
- *Hadronic corrections to fundamental parameters:
 - Running fine structure constant $\alpha(M_z^2)$
 - *Anomalous magnetic moment of the muon
- measurement of parameters of light vector mesons ρ, ω, φ, ρ', ρ'',
- Search of and study of the exotic resonance states (X, Y, Z, ...)
- Study of the final states dynamics and test of theoretical models
- comparison with spectral functions of the hadronic tau decays via CVC
- **Study of nucleon-antinucleon pair production nucleon ectromagnetic form factors, search for NNbar resonances, ..**

Lepton dipole moments

$$\mathcal{H} = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}$$

Magnetic Dipole Moment

$$\vec{\mu} = \mathbf{g} \left(\frac{q}{2m} \right) \vec{s}$$

Electric Dipole Moment

$$\vec{d} = \frac{\eta}{\eta} \left(\frac{q}{2mc} \right) \vec{s}$$

An essential difference between μ and d is: μ - is calculated and precisely measured while $d \approx 0$.

Anomalous magnetic moments

Particle	$a_l = (g-2)/2$	SM		
е	0.001 159 652 180 91 (26)	0.001 159 652 181 64 (76)		
μ	0.001 165 920 89 (64)	0.001 165 918 23 (43)		
τ	>-0.052 and <0.013 (95%)	0.001 177 21(5)		

 a_e tests QED to the precision of the fine structure constant α .

 a_{μ} is more sensitive to heavy particle exchanges by a factor of $(m_{\mu}/m_e)^2$ ~42,000.

a_{μ} - SM calculations and experiment

Muon anomaly, $a_{\mu} = (g-2)_{\mu}/2$

$$a_{\mu}^{\text{theory(SM)}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{weak}} + a_{\mu}^{\text{had}}$$

$\gamma \gtrsim$
π^0, η, η'
q_1 q_3 q_2
$\mu_{\mathscr{I}}$

LbL

Source	Value (10 ⁻¹⁰)	Uncertainty (10 ⁻¹⁰)	
QED	11 658 471.895	0.008	
Weak	15.4	0.2	
Hadronic + LbL	693.0	4.9	
BNL E821	11 659 208.9	6.4	
BNL – SM Theory	28.7	8.0	

$$a_{\mu}^{\text{had}} = \frac{\alpha^2}{3 \cdot \pi^2} \int_{4m_{\pi}^2}^{\infty} ds \cdot \frac{K(s)}{s} \cdot R(s)$$

$$R(s) = \frac{\sigma(e^+e^- \to \gamma^* \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

$$a_u^{EXP} - a_u^{SM} = 3.6\sigma$$
 (M. Davier et al., EPJC71(2011)1515)

Past and future of muon (g - 2) experiments FNAL BNL CERN III CERN II CERN II CERN II CERN II 1968 1961

Fred Jegerlehner, arXiv:1705.00263v1 [hep-ph] 30 Apr 2017

Fred Jegerlehner, arXiv:1705.00263v1 [hep-ph] 30 Apr 2017

Present data: Direct energy scan and ISR

$$E_{CM}^{"} = M_{inv}^{"} = \sqrt{\sqrt{s}} \sqrt{s} - 2I$$

Scan: Novosibirsk – scan (CMD-2/SND at VEPP-2M, 0.36 $< \sqrt{s} < 1.4$ GeV, CMD-3/SND at VEPP-2000, 2m $< \sqrt{s} < 2.0$ GeV) BES, BES II, BES III – Beijing 2-5 GeV

ISR: SLAC – ISR (BaBar at PEPII, $2m < \sqrt{s} < 5$ GeV) Frascati – ISR (KLOE/KLOE-2 at DAFNE, $2m < \sqrt{s} < 1.02$ GeV) BES III

Inclusive vs exclusive measurements

2.40

2.60

2.20

1.60

1.80

E (GeV)

Why new more precise measurements are necessary?

BaBar ISR analyses

22 final states were studied, ~20 papers on low energy ISR studies were published

Belle Detector

The primary goal of the Belle and BaBar experiments was to discover the CP violation in B mesons and to measure the parameters of CPV. This was achieved by both experiments in 2001

Peak lumi record at KEKB: L=2.1 x 10^{34} /cm2/sec with crab cavities

$$E^- = 8 \text{ GeV}, E^+ = 3.5 \text{ GeV}, \sqrt{s} = 10.58 \text{ GeV}, \beta \gamma = 0.42$$

F/B asymmetric detector

High vertex resolution, magnetic spectrometry, excellent calorimetry and sophisticated particle ID ability

$$\int_{1999}^{2010} Ldt = 1 \ ab^{-1}$$

Belle: low mass ISR study

526.6 fb⁻¹

(preliminary, suspended?)

Belle systematic error goal is 5%

But difficult to achieve.

Main problems: Improper trigger

Lack of manpower: 2-3 people only vs ~20 at BaBar

By a simple separation procedure the numbers of $\pi\pi$ and $\mu\mu$ events are obtained and ratio is calculated

(just demonstration, not for usage!)

The difference \sim 5% can be caused by the different trigger efficiency for pion and muon events. This is a measure of systematics.

Bhabha veto

0.2

2

 $\overline{\mathbf{M}}_{\mu\mu,\pi\pi}$, $\overline{\mathbf{GeV}}$

M_{inv}, GeV

Advanced Bhabha veto based on the cluster identification at the trigger level will be implemented at Belle II

Sum of rings

E_{th},GeV

Design Concept of SuperKEKB

 Increase the luminosity by 40 times based on "Nano-Beam" scheme, which was first proposed for SuperB by P. Raimondi.

• Vertical β function at IP: 5.9 \rightarrow 0.27/0.30 mm (\times 20)

- Beam current: $1.7/1.4 \rightarrow 3.6/2.6 \text{ A}$ (× 2)
- Beam-beam parameter: $.09 \rightarrow .09$ (× 1)

$$L = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \left(\frac{I_{\pm} \xi_{\pm y}}{\beta_y^*} \right) \frac{R_L}{R_y} \right) = 8 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$$

Beam energy: 3.5/8.0 → 4.0/7.0 GeV

LER: Longer Touschek lifetime and mitigation of emittance growth due to the intra-beam scattering

HER: Lower emittance and lower SR power

KEKB

$$\sigma_x$$
~100 μ m, σ_y ~2 μ m

Nano-Beam SuperKEKB

	E (GeV)	β* _y (mm)	β* _x (cm)	φ	I (A)	L (cm ⁻² s ⁻¹)
	LER/HER	LER/HER	LER/HER	(mrad)	LER/HER	
KEKB	3.5/8.0	5.9/5.9	120/120	11	1.6/1.2	2.1 x 10 ³⁴
SuperKEKB	4.0/7.0	0.27/0.30	3.2/2.5	41.5	3.6/2.6	80 x 10 ³⁴

Belle II Detector

EM Calorimeter:

CsI(Tl), waveform sampling electronics (barrel)

Pure CsI + waveform sampling (end-caps) later

electrons (7GeV)

Central Drift Chamber Smaller cell size, long lever arm

Vertex Detector

2 layers Si Pixels (DEPFET) +

4 layers Si double sided strip

DSSD

+ New software, improved tracking, ...

+ Optimization for low multiplicity trigger

+ Improved simulation, generators and GRID

KL and muon detector:
Resistive Plate Counter
(barrel outer layers)
Scintillator + WLSF + MPPC
(end-caps , inner 2
barrel layers)

positrons (4GeV)

Particle Identification
Time-of-Propagation
counter (barrel)
Prox. focusing Aerogel
RICH (forward)

Belle II first look to ISR (Phase II)

Events with one photon (Eg> 3 GeV, $50 < \theta < 110$) and 2 tracks from IP were selected and 10< Etot <11 GeV.

E/p ratio for each of positive and negative charged tracks.

Analysis done by Y.Maeda

full data of 472 pb-1 was used

ππ mass spectrum

MC cross sections are taken from the Phokhara generator output, $\frac{data}{MC}(\pi\pi) = 1.065\pm0.037(stat)$

πππγ process with phase-2 data

Influence of the Bhabha veto

Two kinds of Bhabha veto logic: 1.Modified "Belle-type" Bhabha veto

2.Clusterized "new" Bhabha veto

1.: (6.4±1.3stat)%

2.: **(0.6±0.4stat)%**

the "new" Bhabha veto logic is feasible for future runs

Conclusion

- At present the discrepancy between experiment and SM in the muon (g-2) is, probably, the largest among observed.
- Two experiments on muon (g-2) measurement are in progress. We anticipate 3-4 times better precision in several years.
- Measurement of $e^+e^- \rightarrow \pi^+\pi^-$ cross section in Belle II with ISR method is critical to reduce uncertainty of theoretical value for muon (g-2)
- Analysis of the Phase 2 data provided the $e^+e^- \to \pi^+\pi^-$ and $\pi^+\pi^-\pi^0$ in a good agreement with MC simulation
- It was found that the new trigger logic provides high efficiency and low loss of the ISR event caused by the Bhabha veto
- New and more precise experimental data on the hadronic cross-sections are been waiting from Belle II in the Phase 2.