

Giulia Casarosa

on behalf of the Belle II SVD Collaboration

Outline

- The Belle II Silicon Vertex Detector
- SVD Commissioning
 - highlights from small-scale SVD operations in global data taking
 - final detector commissioning
- First Results from Global Cosmic Runs

The Belle II Experiment

Belle II is a multi-purpose detector installed at the IP of the high-luminosity B-Factory SuperKEKB (design luminosity $8 \times 10^{35} \text{cm}^{-2} \text{s}^{-1}$), located at the KEK Laboratory - Tsukuba, Japan

- 10 years operation will allow to collect 50/ab (x50 the Belle dataset) providing the analysts with a statistical-error-breaking dataset.
- Physics measurements will benefit from the increase of statistics if:
 - 1. the resolution is comparable with Belle, or better
 - 2. the systematic error is reduced too
- the Belle II sub-detectors, in particular the vertex detector, have been designed to achieve these goals

Belle II SVD Giulia Casarosa

The Belle II Experiment

Belle II is a multi-purpose detector installed at the IP of the high-luminosity B-Factory SuperKEKB (design luminosity $8x \, I \, O^{35} cm^{-2} s^{-1}$), located at the KEK Laboratory - Tsukuba, Japan

The SVD Silicon Sensors

- 4 layers of DSSD on N-type silicon with AC coupled readout
- individual readout on each silicon sensor:
 - straightforward for sensors facing the non-tracking region
 - origami concept for all the other sensors (see backup)

three sensor layouts, to reduce the design and production cost:

layer	type	readout strip(p/r-φ)	readout strip(n/z)	strip pitch (p/r-φ)	strip pitch (n/z)	sensors # (+ spares)	active area (mm²)
4,5,6	large	768	512	75 µm	240 µm	120+18	122.90x57.72 = 7029.88
4,5,6 forward	trapezoidal	768	512	50-75 μm	240 µm	38+6	122.76x(57.59+38.42)/2 = 5893.09
3	small	768	768	50 µm	160 µm	14+4	122.90x38.55 = 4737.80

SVD Readout System

more details in Poster 67-B:

"Series Production Testing, Commissioning and Initial Operation of the Belle II Silicon Vertex Detector Readout System" by R.Thalmaier

The readout chip: APV25

- originally developed for CMS
- ⇒ shaping time of 50 ns
 - → low occupancy
- → thinned to 100 μm
 - → low material budget
- → operated in multi-peak mode @ ~32 MHz, equipped with a 192 deep analog pipeline
- → APV clock synchronised with bunch crossing frequency of ~ 8x32 MHz

APV25 (x1748 for 223744 channels) • provides the 6 samples (corresponding to triggered event time!), of each of the 128 readout strips

data.

clock

trigger reset

FACD (x52)

A/D Converter board

- digitizes the signal
- subtracts pedestal and common mode
- applies zero suppression on SNR basis

clock trigger reset

FACD-controller

- controls the 52 FADC boards
- generates APV trigger

FTB (x52)

Finesse Transmitter board

electrical-to-optical interface

trigger reset

clock

FTSW

Front-end Timing SWitch

- distributes clock to all subdetectors
- also provides trigger and reset

SVD Timeline

more details on background in Poster 39-B: "Measurements of Beam Background at SuperKEKB"

by L. Santeli

Phase2 experiment

- data from e⁺e⁻ collisions @ Y(4S) energy
- with an incomplete Belle II detector (no final-version VXD)
- with a reduced-scale vertex detector and
- dedicated beam-background detectors

Phase2 main goals

- · understand machine background
- understand detector performance-
- detector subsystems commissioning
- detector calibration, ...

focus of this talk is on detector performance

Phase2 collisions dataset

Outline

The Belle II Silicon Vertex Detector

SVD Commissioning

highlights from small-scale SVD operations in global data taking

SVD in Phase2 Global Data Taking

V

Phase2 SVD detector was operated since the beginning of Phase2, taking data in all runs

1. important experience gained in operating a small-scale SVD (14 vs 172 sensors) for what concerns

detector calibrations stability & subsystems commissioning

very stable calibration constants (gain, noise)
of all sensors, over Phase2 running

2. test of sensor response to MIPs from IP

• sensor efficiencies above 97% for all-except-one sensor, good considering class B sensors have been used

3. confirmed impact of SVD reconstruction on tracking, even if with only one ladder per layer

SVD Impact on Tracking in Phase2

- → IP not in the nominal position, correlation between track parameters d_0 and ϕ_0
 - evident improvement of the resolution in the VXD direction

- Phase2 SVD covers a small azimuthal, nonetheless measurements of tracks with SVD hits confirmed that:
 - svd-only tracking is working
 - outward extrapolation from SVD is working
- → track d₀ resolution ~ 20 μm (w/o PXD hits)
 - innermost SVD layer at 3.9 cm from IP

The SVD Hit Time Determination

- → Precise determination of the SVD hit time is crucial for the tracking performances at nominal luminosity
 - most of the beam background hits come from particles generated at past bunch-crossings with respect to the triggered event
 - rejection of off-time hits significantly reduces the beam background occupancy

Strong indication of excellent time resolution of hits from tracks coming from the interaction point

EventT0 estimation error included in the (tsvD - EventT0) width

- → SVD time *before* the calibration:
 - $(t_{raw} t_0)$ resolution ~ 6 ns
- → SVD time *after* calibration (with event time t₀)
 - $(t_{SVD} t_0)$ resolution ~ 5 ns

SVD Hit Time – EventT0 provided by the drift chamber

Outline

The Belle II Silicon Vertex Detector

SVD Commissioning

- highlights from small-scale SVD operations in global data taking
- final detector commissioning

First Results from Global Cosmic Runs

SVD Standalone Commissioning

- The Final SVD detector has been successfully commissioned summer last year
- → Only minor problems observed, related to cooling, very few sensors showed some issues, not serious
 - 1. detector calibrations stability confirmed as observed with small-scale SVD in Phase2

note: one point represents a sensor of layer 6 ladder 4

- 2. useful dataset to test the final detector sensors response to MIPs (not from IP!)
 - reconstruction versus track incident angle
 - sensor efficiencies above 99% for most of the sensors, details later

very stable calibration constants (gain, noise) of all sensors, over 2 months of running

SVD commissioning setup

triggers provided by scintillators coincidence:

- ~jitterless
- asynchronous with respect to SVD readout clock

Giulia Casarosa

Belle II SVE

Cluster Energy VS Azimuthal Angle

→ Cosmic rays cross vertical layers with a larger incident angle with respect to horizontal layers

Concentrate on horizontal sensor to study the \perp track incident angle use-case

Final SVD Sensor Efficiency with Cosmics

- → Sensor efficiency estimated using cosmic tracks in ~10M events
- Tracking reconstruction excluding the sensors belonging to the layer under study, and applying quality cuts on clusters used in the pattern recognition and on the track
 - fiducial region for the extrapolation of the track to the sensor plane
- → efficiency defined as the ratio between the background-subtracted clusters in the signal window (Imm wide) and the number of tracks extrapolated to the sensor plane
 - background clusters in the signal window estimated rescaling the number of clusters counted in the sidebands

V Cluster Residuals (layer 3, ladder 3, sensor 2, sideV/N)

→ Cluster residuals distribution width does not provide a measurement of the cluster position resolution: the intercept extrapolation error contributes to the residuals but can't be determined without B-field

U Cluster Residuals (layer 5, ladder 4, sensor 3, sideU/P)

SVD Efficiency, v/N side

3.x.1

3.x.2

- efficiencies around/above 99% for sensors of the three innermost layers
- slightly lower efficiencies on layer6, but still around 98%, above 97.4%
- all sensors are expected to have efficiencies compatible with the one estimated estimated with horizontal sensors
- statistical-only error < 0.1 %

device placed outside L6 99.5 98.9 99.1 98.5 98.6 98

lower since no tracking

5.x.2

5.x.3

5.x.4

6.x.3

6.x.4

layer.x.sensor

17

4.x.2

4.x.3

Outline

- SVD Commissioning
 - highlights from small-scale SVD operations in global data taking
 - final detector Commissioning

First Results from Global Cosmic Runs

SVD Final Destination

V

The Belle II vertex detector has been successfully installed and integrated in the Belle II DAQ

- → Since mid January SVD is included in Belle II global runs:
 - random triggers with variable trigger rate, I 30 kHz
 - cosmics triggers, ~ 150 Hz (actually 5 Hz for tracks in SVD acceptance)
 - cosmic + random triggers, variable trigger rate, 2 20 kHz
- → Successful operations up to now:

more details on SVD operations in Poster 66-A:
"Run and Slow Control of the Bellell Silicon Vertex Detector"
by C. Irmler

S

all sensors are working, with cluster energy and SNR expected from MIPs

all-clusters charge for v/N side

cosmics trg (100Hz) random trg (100Hz) MIP bump 10-4 10-5 Cosmics trg (100Hz) random trg (100Hz) Cosmics trg (100Hz) random trg (100Hz) All P bump Cosmics trg (100Hz) random trg (100Hz) cosmics trg (100Hz) random trg (100Hz)

all-clusters charge for u/P side

Track-related Cluster Energy

most probable cluster energy as expected from MIPs, around 80 keV

backward note: layer 3 in slide 23 Giulia Casarosa

forward

Belle II SVD

Track-related Cluster Energy

most probable cluster energy as expected from MIPs, around 80 keV

- → Cluster energy similar for u/P and v/N sides
- → 20% charge loss on N side due to coupling between floating and readout strip and large capacitance to the back side:
 - fraction of signal from floating strip to readout:

$$\frac{2C_i}{2C_i+C_b} \simeq 0.75(v/N), 0.9(u/P)$$

.

IP

layer 4

note: layer 3 in slide 23

ioi wai u

Cluster Energy, Zero Suppression Effect

correct estimation of the cluster energy

online zero suppression: SNR cut from 3 to 5

higher online zero suppression, SNR cut = 5:-

underestimation of the cluster energy of the u/P side:

- MPV cluster energy shifted to lower energy
 - loose strip(s) at the edge of the cluster
- appearance peak at low energy
 - cluster split effect

note: effect observed in all players note: higher SNR minimizes the effect on v/N side 22

Track-related Cluster SNR

good SNR for all sensors, as expected

Track-related Cluster SNR

good SNR for all sensors, as expected

$$SNR_{cls} = rac{\sum\limits_{strips}^{\sum} S_i}{\sqrt{\sum\limits_{strips}^{\sum} N_i^2}}$$

- → SNR depends on collected charge, strip noise ad cluster size
 - Noise u/P side (~900 e⁻) > Noise v/N side (~600 e⁻)
 - Signal u/P side > Signal v/N side
 - cluster size effect to be investigated
- The noise difference between the two sides is dominant with respect to cluster energy difference → higher SNR on v/N side

orward

Giulia Casarosa

backwaru

IP

SNR

24

Conclusions

The Silicon Vertex Detector has been successfully installed in Belle II

- SVD is included in global cosmics run, smooth operations so far
- all sensors are alive, detecting MIPs
- cluster energy and SNR distributions look as expected for MIPs

Phase 2 data taking allowed to test a small-scale SVD on collisions data

- excellent time resolution
- excellent feedbacks from tracking

Promising indications from the SVD standalone Commissioning, to be checked in the next weeks

- excellent sensor efficiency
- excellent detector stability

Looking forward to first collisions expected end of March

2019 01 27 cosmic track candidate Exp 5 25 Evt 14110

Thank you for your attention.

Vertexing at a B-Factory Experiment

→ The Vertex Detector (VXD) provides the precise measurement of the primary and secondary vertices of short-lived particles

- → The most important factors affecting the *precision* of the vertex position determination are:
 - the distance of the first measured hit
 - the effect of multiple scattering
- → Other important factors taken into account in the design are:
 - single hit resolution
 - impact of the machine background in terms of occupancy and radiation damage

Typical Y(4S) Event

- → Y(4S) center of mass is boosted
 - → 7 GeV e^- on 4 GeV e^+ → βγ = 0.28
 - reduced boost w.r.t. Belle
- → average multiplicities
 - II charged tracks
 - ▶ 5 neutral pions
 - ▶ I neutral kaon
- soft charged tracks momentum spectrum

The Origami Concept

- SVD will operate at a highluminosity machine (8x10³⁵cm⁻²s⁻¹)
- need short strips & short pitch adapters
 - reduce the occupancy
 - reduce the noise (lower capacitance at the charge preamplifier input)
- readout chips inside the tracking volume
- the "chip-on-sensor" Origami concept allows to minimise the analog path length

after folding

!! hidden micro bonding below the pitch adapter !!

Beam Background from Phase2

It's safe to install the final SVD detector for early Phase3 data taking

- → Use beam background estimation from Phase2 to get expected background on early Phase3:
 - decomposition of beam-induced backgrounds

occupancy beam-gas Touschek rate rate
$$O(I, P, \sigma_Y, n_b) = B PI + T \frac{I^2}{\sigma_y n_b}$$

- occupancy measured for different configurations of the beam parameters allows to extract B and T
- data MC comparison to extract scaling factors for beam-gas and Touschek rates:

$$Expected_{Phase3} = MC_{Phase3} \cdot \frac{Data_{Phase2}}{MC_{Phase2}}$$

- ➡ Background levels in earlyPhase3 will be acceptable for the final SVD detector
 - occupancy limit from tracking ~3%
 - luminosity background will be negligible in early Phase3

luminosity bkg = 1% at design luminosity & it scales with luminosity

SVD Subsystems Commissioned in Phase2

Radiation Monitor: essential to protect VXD from a large instantaneous or time-integrated dose by aborting the beams.

Diamond chambers:

- high radiation tolerance
- proper response to both rapid and slow increases of the radiation level
- reduced dependence of the leakage current on the total dose.

Phase2 highest dose 11.6 krad

Beam Abort System:

beam abort request to protect SVD and final focus magnets:

- fast abort: I rad/ms, → 86 in Phase2
 (10µs reaction time)
- slow abort: 100 mrad/s → 12 in Phase2
- thresholds adjustable

Dump the last second of data before the abort:

- Dump the last 100k samples in a R/O buffer (100kHz for 1s) to a memory.
- content of the R/O buffer correctly frozen and dump
- analysis of these data showed the abort was correctly issued

Interlock Systems: hardware and software interlocks to completely turn off the detector in case of problems

Environmental Monitors

- FOS & NTC temperatures
- humidity

- Minor but real instances happened during Phase2 operations.
- For each instance, the interlock system properly halted the SVD power supplies.

