B-Decays with Missing Energy at Belle II

Lu Cao for the Belle II Collaboration

31 Jan. 2019 @ MITP, Mainz

Belle II Experiment

- •40 times higher instantaneous luminosity from KEKB to SuperKEKB: $8 \times 10^{35} \text{cm}^{-2} \text{s}^{-1}$
- Detector upgraded for intenser particle multiplicity and tracking capacity
- Physics data taking with full detector will start soon

SuperKEKB/Belle II Schedule

Phase 1: Bean operation run (2016) </

Phase 2: Commissioning run (2018)

- With partial vertex detector
- Collected int. $L = 0.5 fb^{-1}$

Phase 3: Physics run

- Will start in March 2019
- •9 months/year operation
- Will reach "flavor milestone" in two years
- will record integrated luminosity 50ab⁻¹ by 2025

4

Physics data is coming!!

Event Reconstruction with Tagging Techniques

Untagged

- Loose constraints on signal
- Very large statistics, but also very large background
- Efficiency $\epsilon \approx \mathcal{O}(100\%)$

Semileptonic tag

- Mid-range reconstruction efficiency $\epsilon \approx O(1\%)$
- Due to multiple neutrinos, less information about B_{tag}

Hadronic tag

- Cleaner sample
- Knowledge of p(B_{sig})
- Low tag-side efficiency $\epsilon \approx \mathcal{O}(0.1\%)$

Improved Tagging Algorithms

¹ T. Keck; ² J. Gemmler; ² D. Weyland

	lagging	ε on MC	
	FR^1	FEI Belle	FEI Belle II
3+	0.28%	0.76%	0.66%
	0.67%	1.80%	1.45%
3 ₀	0.18%	0.46%	0.38%
	0.63%	2.04%	1.94%

 $M_{\rm bc} = \sqrt{(\sqrt{s}/2)^2 - \overrightarrow{p}_{B_{\rm tag}}^2}$

Long-Standing Puzzle: Inclusive vs. Exclusive |V_{cb}| & |V_{ub}|

- 3σ deviation between excl. vs. incl.
- PDG2018 exclusive value based on only measured unfolded differential decay rates in $\overline{B}^0 \rightarrow D^{*+} \ell^- \overline{v}_{\ell}$ from Belle using BGL parameterisation <u>1702.01521</u>
- More unfolded results needed

- 3.5σ discrepancy between excl. vs. incl.
- LHCb provided ratio with baryonic b-decays (NP 2015)
- Leptonic measurements not precise enough, favours inclusive results
- More precise leptonic measurements needed

Exclusive $|V_{cb}|$ in $B \rightarrow D^{(*)} \ell \nu$

- Recent two measurements from Belle (both provide unfolded differential decay rate)
- \bullet
- Extract |V_{cb}| requires form factor parametrisation and LQCD input as normalisation \bullet
- Bonus: separating electron-muon to test lepton flavor universality via $R_{e/\mu}$

Hadronic tagging allows missing mass constraint on signal side $M_{\text{miss}}^2 = \left(p_{e^+e^-} - p_{B_{\text{tag}}} - p_{D^{(*)}} - p_l\right)^2$ Leading systematic uncertainty is from hadronic tag calibration (can be improved with FEI for Belle II)

Form Factor: CLN or BGL ?

- Change from CLN to BGL lead to 10% discrepancy in |V_{cb}| determination
- Might resolve inclusive vs. exclusive puzzle
- Full kinematic dependence of $B \to D^* \ell \nu$ f.f. from LQCD is underway

D* **unfolded** distributions analyzed by three groups

CLN: Phys. Lett. B380, 376 (1996)

From unfolded data, slightly higher than 'folded' result of previous slide

Similar results seen in

PRL 109, 071802(2012) PRD 94, 094008(2016)

Inclusive $B \to X_c l \nu$

$$\Gamma = \frac{G_F^2 m_b^5}{192\pi^3} \left| V_{cb} \right|^2 \left(1 + \frac{c_5(\mu) \langle O_5 \rangle(\mu)}{m_b^2} + \frac{c_6(\mu) \langle O_6 \rangle(\mu)}{m_b^3} + \mathcal{O}\left(\frac{1}{m_b^4}\right) \right)$$

- Latest measurement is from the year 2010!
- Current global fit based on measured moments of E_l, M_X^2
- New method using q^2 moments has been proposed <u>1812.07472</u>

• 2% tot. uncertainty limited by theoretical uncertainty (1.2%~1.4% at Belle II 50ab⁻¹)

Untagged $B \rightarrow \pi l \nu$ @ Belle II MC

- Select good pion and lepton (>1 GeV/c)
- Assuming neutrino is the only missing particle
- Optimized BDT selection in ROE
- Background suppressed by M_{miss}^2 , $\cos \theta_{BY}$, M_{bc} , ΔE

$$M_{\text{miss}}^{2} = \left(p_{e^{+}e^{-}} - p_{\pi} - p_{l} - p_{ROE}\right)^{2} \quad \cos\theta_{BY} = \frac{2E_{B}^{*}E_{Y}^{*} - M_{B}^{2} - M_{Y}^{2}}{2p_{B}^{*}p_{Y}^{*}} \qquad M_{\text{bc}} = \sqrt{\frac{\left(s/2 + p_{B} \cdot p_{e^{+}e^{-}}\right)^{2}}{E_{e^{+}e^{-}}^{2}}} - p_{B}^{2} \qquad \Delta E = \frac{p_{B} \cdot p_{e^{+}e^{-}}}{\sqrt{2}}$$

Tagged $B \rightarrow \pi l \nu$ @ Belle II MC

- Select good pion and lepton (>1 GeV/c)
- With new tagging algorithm FEI

• Precise tag knowledge $M_{\text{miss}}^2 = \left(p_{e^+e^-} - p_{tag} - p_{\pi} - p_l\right)^2$ • Belle II aims at excl. $|V_{ub}| \exp \sigma \sim 4\%$ (now 5%)

Inclusive $B \rightarrow X_{\mu} l \nu$

- Challenge in high $b \rightarrow c$ background
- Inclusive + exclusive hybrid modelling
- Large theoretical uncertainty close to end point
- Belle II aims at inclu. $|V_{ub}| \exp \sigma \sim 3\% \otimes 10^{-1}$ (now 5%)

A Global Fit Approach to Inclusive V_{ub}

Global model-independent fits for B meson shape function <u>1303.0958</u>

Leptonic: $B \rightarrow l\nu$ $(l = \mu, \tau)$

- Precise theoretical prediction in the SM
- Clean |V_{ub}| measurement
- Probe of LFU and new physics

$$\rightarrow l^{-}\overline{\nu}_{l} = \frac{G_{F}^{2}m_{B}m_{l}^{2}}{8\pi} \left(1 - \frac{m_{l}^{2}}{m_{B}^{2}}f_{B}^{2}\right) \left|V_{ub}\right|^{2}\tau_{B}$$

Expected data set

$\mathcal{B}_{ m SM}$	$711 \ {\rm fb}^{-1}$	5 ab^{-1}	$50 {\rm ~ab^{-1}}$
$71 \pm 0.62) \times 10^{-5}$	61200 ± 5000	430000 ± 35000	4300000 ± 3500
$46 \pm 0.28) \times 10^{-7}$	275 ± 23	1930 ± 160	19300 ± 1600
$(1 \pm 0.065) \times 10^{-11}$	0.0064 ± 0.0005	0.0453 ± 0.0037	0.453 ± 0.037

• Branching fractions are hierarchical with lepton mass ue to helicity suppression

|B| $\rightarrow \mu \nu$

Latest measurement from Belle untagged analysis

Comn	per limit @ 90% C.L.	Experiment	
reconstructed ha	$2.7 imes10^{-6}$	Belle	
Untagged analy	$1.7 imes10^{-6}$	Belle	
tagged analysis, 4	$1.0 imes10^{-6}$	BaBar	
Untagged analy	$2.9 imes10^{-7}$	Belle	
Comm reconstructed ha Untagged analy tagged analysis, 4 Untagged analy	per limit @ 90% C.L. 2.7×10^{-6} 1.7×10^{-6} 1.0×10^{-6} 2.9×10^{-7}	Experiment Belle Belle BaBar Belle	

$$\begin{array}{cccc}
 & & & \\ & &$$

$$\mathscr{B}_{\rm SM}\left(B^- \to \mu^- \overline{\nu}_{\mu}\right) = (3.80 \pm 0.31) \times 10$$

Expected uncertainty

50 ab^{-1}	$\mathcal{B}Stat.$	\mathcal{B} Syst.	$ V_{ub} $
Belle II Untagged	$\sim 5\%$	\sim 5%	3-4%
Belle II tagged	$\sim 13\%$	-	-

15

R $\rightarrow \tau \nu$

- Reconstruct B_{tag} hadronically or semileptonic
- Due to tauon decay $e^- \nu_\tau \overline{\nu}_e, \mu^- \nu_\tau \overline{\nu}_\mu, \pi^- \overline{\nu}_\tau, \rho^- \overline{\nu}_\tau$, final $N_\nu \ge 1$
- Fit remaining energy on EM calorimeter (E_{ECL})
- Expect to reach 5σ significancy with 2.6ab⁻¹

Expected yields @1 ab⁻¹

EECI		< 1 GeV	< 0	$25\mathrm{Ge}$	V
	Background vield [events]	12835	2062		·
without backgroun	ad Signal yield [events]	332	_	238	
	Signal efficiency $(\%)$	3.8		2.7	
	Background yield [events]	7420		1348	
with background	Signal yield [events]	188		136	
	Signal efficiency $(\%_0)$	2.2		1.6	
Expected uncertainty					
Integrated Luminosity (ab^{-1}) 1 5 5					
	statistical uncertainty ((%)	29	13	4
hadronic tag	systematic uncertainty	(%)	13	7	5
	total uncertainty (%)		32	15	6
	statistical uncertainty ((%)	19	8	3
semileptonic tag	systematic uncertainty	(%)	18	9	5
	total uncertainty $(\%)$		26	12	5

16

Summary of Vub Projections

	Statistical	Systematic	Total Exp	Theory	Total
		(reducible, irreducible)			
$ V_{ub} $ exclusive (had. tagged)					
711 fb^{-1}	3.0	(2.3, 1.0)	3.8	7.0	8.0
5 ab^{-1}	1.1	(0.9, 1.0)	1.8	1.7	3.2
50 ab^{-1}	0.4	(0.3, 1.0)	1.2	0.9	1.7
$ V_{ub} $ exclusive (untagged)					
605 fb^{-1}	1.4	(2.1, 0.8)	2.7	7.0	7.5
5 ab^{-1}	1.0	(0.8, 0.8)	1.2	1.7	2.1
50 ab^{-1}	0.3	(0.3, 0.8)	0.9	0.9	1.3
$ V_{ub} $ inclusive					
$605 \text{ fb}^{-1} \text{ (old } B \text{ tag)}$	4.5	(3.7, 1.6)	6.0	2.5 - 4.5	6.5 - 7.5
5 ab^{-1}	1.1	(1.3, 1.6)	2.3	2.5 - 4.5	3.4 - 5.1
50 ab^{-1}	0.4	(0.4, 1.6)	1.7	2.5 - 4.5	3.0 - 4.8
$ V_{ub} B \to \tau \nu \text{ (had. tagged)}$					
711 fb^{-1}	18.0	(7.1, 2.2)	19.5	2.5	19.6
5 ab^{-1}	6.5	(2.7, 2.2)	7.3	1.5	7.5
50 ab^{-1}	2.1	(0.8, 2.2)	3.1	1.0	3.2
$ V_{ub} B \to \tau \nu \text{ (SL tagged)}$					
711 fb^{-1}	11.3	(10.4, 1.9)	15.4	2.5	15.6
5 ab^{-1}	4.2	(4.4, 1.9)	6.1	1.5	6.3
50 ab^{-1}	1.3	(2.3, 1.9)	2.6	1.0	2.8

Belle II Physics Book

V_{ub} uncertainty @ Belle II exclusive ~1.5% inclusive ~ 4% leptonic ~ 3%

17

Radiative Leptonic: $B^+ \rightarrow \ell^+ \nu_\ell \gamma$

- Belle full data set 711fb⁻¹ with new tagging algorithm (\bullet
- Photon energy selection above 1 GeV \bullet
- Measured upper limit of ΔB and the first inverse momentum of ΔB and the first i \bullet

	$\Delta \mathcal{B}(B^+ \to$	$\ell^+ u_\ell \gamma) \lim$	it (10^{-6})	
ℓ	<u>BaBar</u> 2009	<u>Belle</u> 2015	<u>Belle</u> 2018	0.15 Ge
e	_	< 6.1	< 4.3	
μ	_	< 3.4	< 3.4	
$e,\mu \Big $	< 14	< 3.5	< 3.0	

Expected signal yields assuming $\Delta B \left(B^+ \rightarrow \ell^+ \nu_{\ell} \gamma \right) = 5.0 \times 10^{-6}$				
	$B^+ \to e^+ \nu_e \gamma$	$B^+ \to \mu^+ \nu_\mu \gamma$	Combined	
$N_{ m New}$	24.8	25.7	50.5	
$N_{\rm Published}$	8.0	8.7	16.5	

MC test: FEI brings ×3 yields!

(FEI)
$$\frac{d\Gamma(B^+ \to \ell^+ \nu_\ell \gamma)}{dE_{\gamma}} = \frac{\alpha_{\rm em} G_{\rm F}^2 |V_{ub}|^2}{6\pi^2} m_B E_{\gamma}^3 \left(1 - \frac{2E_{\gamma}}{m_B}\right) \times \left(\left|F_{\rm V}\right|^2 + \left|F_{\rm A} + \frac{e_{\ell}}{E_{\gamma}}\right|^2\right)$$

hent $\lambda_{\rm B}$ $\Delta \mathcal{B}(B^+ \to \ell^+ \nu_\ell \gamma) = \tau_B \int_{\rm Selection} dE_{\gamma} \frac{d\Gamma}{dE_{\gamma}}$

PRD 98, 112016 (2018)

Expected statistical error					
Belle	Belle II	Belle II			
New analysis	$5\mathrm{ab}^{-1}$	$50\mathrm{ab}^{-1}$			
+1.48	+0.56	+0.18			
-1.39	-0.5 3	-0.17			

B→invisibles

• Adventured by <u>BaBar 2012</u> and <u>Belle 2012</u>

Mode	Upper limit $@$ 90% C.L.	Experiment
$B^0 \to \nu \nu$	2.4×10^{-5}	BaBar PRD 86. 051105(R) (20
$B^{\circ} \rightarrow \nu \nu \gamma$	$1.7 \times 10^{\circ}$	
$B^0 \to \nu \nu$	1.3×10^{-4}	Belle PRD 86, 032002 (2012)

• Opportunity for Belle II

- Much improved tagging algorithm
- Combining hadronic and semileptonic tagging for a higher statistics
- Hadronic B_s tagging efficiency seen 2 times higher than for B^0
- Possible search for missing every signals as nonstandard invisible states $B \rightarrow X_{dark}$

Observables	Belle $0.71 \mathrm{ab^{-1}} (0.12 \mathrm{ab^{-1}})$	Belle II $5 \mathrm{ab}^{-1}$	Belle II 5
$Br(B^0 \to \nu \bar{\nu}) \times 10^6$	< 14	< 5.0	< 1.
$Br(B_s \to \nu \bar{\nu}) \times 10^5$	< 9.7	< 1.1	_

Golden Channels @ Belle II

Process	Observable	Theory	Sys. limit (Discovery) [ab ⁻¹]	vs LHCb	vs Belle	Anomaly	New Physics
$B \to \pi l \nu$	$ V_{ub} $	***	10-20	***	***	**	\star
$B \to X_{\mu} l \nu$	$ V_{ub} $	**	2-10	$\star\star\star$	**	$\star\star\star$	\star
$B \to \tau \nu$	\mathcal{B}	***	>50 (2)	***	$\star \star \star$	*	$\star\star\star$
$B \to \mu \nu$	\mathcal{B}	***	>50 (5)	***	$\star \star \star$	*	$\star \star \star$
$B ightarrow D^{(*)} l u$	$ V_{cb} $	***	1-10	***	**	**	\star
$B \to X_c l \nu$	$ V_{cb} $	***	1-5	***	**	**	**
$B ightarrow D^{(*)} au u$	$R(D^{(*)})$	***	5-10	**	***	***	***
$B \to D^{(*)} \tau \nu$	$P_{ au}$	***	15-20	***	$\star \star \star$	**	$\star \star \star$
$B \rightarrow D^{**} l \nu$	\mathcal{B}	*	-	**	$\star \star \star$	**	-
$B \rightarrow l \nu \gamma$	λ_B	**	_	***	$\star \star \star$	\star	**
$B \to K^{(*)} \nu \nu$	\mathcal{B}, F_L	***	>50	***	$\star\star\star$	\star	**

Flavor Milestone

Summary

- Belle II has successfully finished commissioning run and ready for taking physics data
- Improved tagging algorithm increases reconstruction efficiency significantly
- Promising performance of missing energy channels proved by MC studies
- Issues seen in form factor parameterisation need to be understood
- Deviation between inclusive and exclusive measurements still exist
- Upcoming Belle II data will help to resolve these questions...

Thank you

Back up

$\bar{B}^0 ightarrow \pi^+ l^- \nu$ @Be	elle		
Source	Error (Limit) [%]		
	Tagged [%]	Untagged	
Tracking efficiency	0.4	2.0	
Pion identification	_	1.3	
Lepton identification	1.0	2.4	
Kaon veto	0.9	_	
Continuum description	1.0	1.8	
Tag calibration and $N_{B\overline{B}}$	4.5 (2.0)	2.0 (1.0)	
$X_u \ell \nu$ cross-feed	0.9	0.5 (0.5)	
$X_c \ell \nu$ background	_	0.2 (0.2)	
Form factor shapes	1.1	1.0(1.0)	
Form factor background	_	0.4 (0.4)	
Total	5.0	4.5	
(reducible, irreducible)	(4.6, 2.0)	(4.2, 1.6)	

Source	Error on \mathcal{B} (
	ducible limit
$\mathcal{B}(D^{(*)}\ell\nu)$	1.2 (0.6)
Form factors $(D^{(*)}\ell\nu)$	1.2 (0.6)
Form factors & $\mathcal{B}(D^{(**)}\ell\nu)$	0.2
$B \to X_u \ell \nu(\mathrm{SF})$	3.6(1.8)
$B \to X_u \ell \nu (g \to s\bar{s})$	1.5
$\mathcal{B}(B \to \pi/\rho/\omega\ell\nu)$	2.3
$\mathcal{B}(B \to \eta^{(\prime)} \ell \nu)$	3.2
$\mathcal{B}(B \to X_u \ell \nu)$ unmeasured/fragmentation	2.9(1.5)
Continuum & Combinatorial	1.8
Secondaries, Fakes & Fit	1.0
PID& Reconstruction	3.1
BDT/Normalisation	3.1(2.0)
Total	8.1
(Total reducible)	7.4
(Total irreducible)	3.2

