Latest τ and dark sector results from Belle and Belle II

Stefan Wallner (swallner@mpp.mpg.de)

Max Planck Institute for Physics

61st International Winter Meeting on Nuclear Physics January 28, 2025

MAX PLANCK INSTITUTE FOR PHYSICS

▶ B factories at KEK (Tsukuba/Japan): e^+e^- collider at E_{CM} around $\Upsilon(4S)$ mass

▶ B factories at KEK (Tsukuba/Japan): e^+e^- collider at $E_{ m CM}$ around $\Upsilon(4S)$ mass

Belle at KEKB accelerator (1999-2010)

Collected integrated luminosity of about 1000 fb⁻¹

Belle II at SuperKEKB accelerator (2019–

Goals

- ▶ 50× Belle data-sample size by increasing luminosity
- Renewed detector, trigger, analysis techniques, …
- Run 1 (2019–2022)
 - Collected about 1/2× Belle data-sample size

1 imes BaBar data-sample size

- Run2 started in spring 2024
 - Upgraded detector
 - World-record luminosity: 5.1 imes 10³⁴ cm⁻² s

▶ B factories at KEK (Tsukuba/Japan): e^+e^- collider at $E_{
m CM}$ around $\Upsilon(4S)$ mass

Belle at KEKB accelerator (1999-2010)

Collected integrated luminosity of about 1000 fb⁻¹

Belle II at SuperKEKB accelerator (2019–)

Goals

- ▶ 50× Belle data-sample size by increasing luminosity
- Renewed detector, trigger, analysis techniques, …
- Run 1 (2019–2022)
 - $\blacktriangleright \text{ Collected about } 1/2 \times \text{ Belle data-sample size}$

1 imes BaBar data-sample size

- Run2 started in spring 2024
 - Upgraded detector
 - World-record luminosity: $5.1 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

• B factories at KEK (Tsukuba/Japan): e^+e^- collider at $E_{\rm CM}$ around $\Upsilon(4S)$ mass

Belle at KEKB accelerator (1999-2010)

Collected integrated luminosity of about 1000 fb⁻¹

Belle II at SuperKEKB accelerator (2019–)

Goals

- ▶ $50 \times$ Belle data-sample size by increasing luminosity
- Renewed detector, trigger, analysis techniques, …
- Run 1 (2019–2022)
 - Collected about $1/2 \times$ Belle data-sample size

 $1 \times$ BaBar data-sample size

- Run2 started in spring 2024
 - Upgraded detector
 - World-record luminosity: $5.1 \times 10^{34} \, \text{cm}^{-2} \, \text{s}^{-1}$

Updated on 2025/01/03 14:53 JST

Unique environment for high-precision measurements and New Physics searches

The Belle and Belle II Experiments Unique environment for high-precision measurements and New Physics searches

- Precision studies of the weak interaction
- τ lepton decays potentially sensitive to Beyond Standard Model physics
- Unique and clean environment to study hadronic decays
- Precision measurement of τ requires τ factory
 Belle : 900 M τ pairs produced (L ≈ 1 ab⁻¹)
 Belle II: 400 M τ pairs produced (L ≈ 0.4 ab⁻¹)
- Production of \(\tau\) pairs separated in signal and tag hemispheres

- Precision studies of the weak interaction
- τ lepton decays potentially sensitive to Beyond Standard Model physics
- Unique and clean environment to study hadronic decays
- Precision measurement of τ requires τ factory
 - Belle : 900 M au pairs produced ($\mathcal{L} \approx 1 \text{ ab}^{-1}$)
 - Belle II: 400 M au pairs produced ($\mathcal{L} \approx 0.4 \, \mathrm{ab^{-1}}$)
- Production of \(\tau\) pairs separated in signal and tag hemispheres

- Precision studies of the weak interaction
- τ lepton decays potentially sensitive to Beyond Standard Model physics
- Unique and clean environment to study hadronic decays
- Precision measurement of τ requires τ factory
 - Belle : 900 M au pairs produced ($\mathcal{L} \approx 1 \text{ ab}^{-1}$)
 - Belle II: 400 M au pairs produced ($\mathcal{L} \approx 0.4 \, \mathrm{ab^{-1}}$)
- Production of \(\tau\) pairs separated in signal and tag hemispheres

- Fundamental physics parameter and important input, e.g. for lepton-universality tests
- ▶ Pseudomass method in $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_\tau$
 - M_{\min} distribution ends at $m_{ au}$
 - Smeared by resolution and initial and final state radiation
- Accuracy determined by
 - Beam energy $\sqrt{s}/2$
 - Calibrated using BB events
 - Final-state particle momentum
 - \blacktriangleright Calibrated using $D^0 o K\pi$ standard candle
- Belle II provides World's most precise result

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{\tau}$$

- Fundamental physics parameter and important input, e.g. for lepton-universality tests
 Pseudomass method in τ⁻ → π⁻π⁻π⁺ν_τ
 M_{min} distribution ends at m_τ
 Smeared by resolution and initial and final state radiation
 - - radiation
- Accuracy determined by
 - Beam energy $\sqrt{s}/2$
 - \blacktriangleright Calibrated using $B\bar{B}$ events
 - Final-state particle momentum
 - Calibrated using $D^0 \rightarrow K\pi$ standard candle
- Belle II provides World's most precise result

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s/2} - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{\tau}$$

- Fundamental physics parameter and important input, e.g. for lepton-universality tests
 Pseudomass method in τ⁻ → π⁻π⁻π⁺ν_τ
 M_{min} distribution ends at m_τ
 Smeared by resolution and initial and final state radiation
 - - radiation
- Accuracy determined by
 - Beam energy $\sqrt{s}/2$
 - \blacktriangleright Calibrated using $B\bar{B}$ events
 - Final-state particle momentum
 - Calibrated using $D^0 \rightarrow K\pi$ standard candle
- Belle II provides World's most precise result

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{\tau}$$

- Fundamental physics parameter and important input, e.g. for lepton-universality tests
 Pseudomass method in τ⁻ → π⁻π⁻π⁺ν_τ
 M_{min} distribution ends at m_τ
 Smeared by resolution and initial and final state radiation
 - - radiation
- Accuracy determined by
 - Beam energy $\sqrt{s}/2$
 - \blacktriangleright Calibrated using $B\bar{B}$ events
 - Final-state particle momentum
 - Calibrated using $D^0 \rightarrow K\pi$ standard candle
- Belle II provides World's most precise result

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{\tau}$$

- Fundamental physics parameter and important input, e.g. for lepton-universality tests
- ▶ Pseudomass method in $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_\tau$
 - M_{\min} distribution ends at $m_{ au}$
 - Smeared by resolution and initial and final state radiation
- Accuracy determined by
 - Beam energy $\sqrt{s}/2$
 - Calibrated using $B\bar{B}$ events
 - Final-state particle momentum
 - Calibrated using $D^0 \rightarrow K\pi$ standard candle
- Belle II provides World's most precise result

Partial-Wave Analysis of $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_{\tau}$ Decays

Ar Ayait

• $\pi^-\pi^-\pi^+$ system forms meson resonances

- Dominated by $a_1(1260)^- o
 ho^0 \pi^-$ decay
 - Parameters of $a_1(1260)$ poorly known
 - \blacktriangleright CLEO II measured twice larger width in τ decays compared to other experiments
 - Also other contributions possible
 - a1(1420) resonance observed only by COMPASS in scattering data
- Perform amplitude analysis to separate contributions of partial waves with well-defined quantum numbers
 - Fit partial-wave model to 7-dimensional angular and mass distribution
- Studied to far only by ARGUS and CLEO in partial-wave analysis
 [PLB 349 (1995) 576], [PRD 61 (1999) 012002]

^{[7 2023,} Hadron 2023, ICHEP 2022]

Partial-Wave Analysis of $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_{\tau}$ Decays

Ar Ayzit

• $\pi^-\pi^-\pi^+$ system forms meson resonances

- Dominated by $a_1(1260)^- \rightarrow \rho^0 \pi^-$ decay
 - Parameters of $a_1(1260)$ poorly known
 - CLEO II measured twice larger width in τ decays compared to other experiments
 - Also other contributions possible
 - a1(1420) resonance observed only by COMPASS in scattering data
- Perform amplitude analysis to separate contributions of partial waves with well-defined quantum numbers
 - Fit partial-wave model to 7-dimensional angular and mass distribution
- Studied to far only by ARGUS and CLEO in partial-wave analysis
 [PLB 349 (1995) 576], [PRD 61 (1999) 012002]

Partial-Wave Analysis of $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_{\tau}$ Decays

Ar Ayait

- > $\pi^{-}\pi^{-}\pi^{+}$ system forms meson resonances
- Dominated by $a_1(1260)^- \rightarrow \rho^0 \pi^-$ decay
 - Parameters of $a_1(1260)$ poorly known
 - CLEO II measured twice larger width in τ decays compared to other experiments
 - Also other contributions possible
 - a1(1420) resonance observed only by COMPASS in scattering data
- Perform amplitude analysis to separate contributions of partial waves with well-defined quantum numbers
 - Fit partial-wave model to 7-dimensional angular and mass distribution
- Studied to far only by ARGUS and CLEO in partial-wave analysis
 [PLB 349 (1995) 576], [PRD 61 (1999) 012002]

^{[7 2023,} Hadron 2023, ICHEP 2022]

- Clear $a_1(1260)$ signal in $1^{++}[\rho(770)\pi]_S$ wave
- ▶ Indication for a_1' in $1^{++}[\rho(770)\pi]_D$ wave at about $1.6 \, {\rm GeV}/c^2$
- Narrow a₁(1420) signal in intensity of 1⁺⁺[f₀(980)π]_P wave
 - First confirmation of COMPASS measure
 - Possible explanation: triangle singularity

PRL 124 (2021) 82501], [PRD 91 (2015) 094015

- Clear $a_1(1260)$ signal in $1^{++}[\rho(770)\pi]_S$ wave
- Indication for a_1' in $1^{++}[\rho(770)\pi]_D$ wave at about $1.6 \, {\rm GeV}/c^2$
- ► Narrow a₁(1420) signal in intensity of 1⁺⁺[f₀(980)π]_P wave
 - ► First confirmation of COMPASS measurement
 - Possible explanation: triangle singularity

PRL 124 (2021) 82501], [PRD 91 (2015) 094015]

- Clear $a_1(1260)$ signal in $1^{++}[\rho(770)\pi]_S$ wave
- Indication for a_1' in $1^{++}[\rho(770)\pi]_D$ wave at about $1.6 \, {\rm GeV}/c^2$
- ► Narrow a₁(1420) signal in intensity of 1⁺⁺[f₀(980)π]_P wave
 - ► First confirmation of COMPASS measurement
 - ► Possible explanation: triangle singularity

[PRL 124 (2021) 82501], [PRD 91 (2015) 094015]

Ratio of leptonic branching fractions

$$R_{\mu} = rac{\mathcal{B}(au^- o \mu^- ar{
u}_{\mu}
u_{ au}(\gamma))}{\mathcal{B}(au^- o e^- ar{
u}_e
u_{ au}(\gamma))} \stackrel{\mathrm{SM}}{=} 0.9726$$

is sensitive to new physics

• Measured in 1×1 prong topology with $\pi^- + n\pi^0$ tag

Most precise test of μ -e universality in au decays

Consistent with Standard Model at 1.4σ

 $R_{\mu} = 0.9675 \pm 0.0007 \, ({
m stat.}) \pm 0.0036 \, ({
m sys.})$

Main systematic uncertainty from particle identification and trigger

Ratio of leptonic branching fractions

$$R_{\mu} = rac{\mathcal{B}(au^- o \mu^- ar{
u}_{\mu}
u_{ au}(\gamma))}{\mathcal{B}(au^- o e^- ar{
u}_{e}
u_{ au}(\gamma))} \stackrel{\mathrm{SM}}{=} 0.9726$$

is sensitive to new physics

• Measured in 1×1 prong topology with $\pi^- + n\pi^0$ tag

• Most precise test of μ -e universality in τ decays

Consistent with Standard Model at 1.4 σ

 $R_{\mu} = 0.9675 \pm 0.0007 \, (\text{stat.}) \pm 0.0036 \, (\text{sys.})$

 Main systematic uncertainty from particle identification and trigger

- Lepton Flavor Violation (LVF) is negligibly small in Standard Model + ν mixing (below 10⁻⁵⁰)
- ▶ Various new-physics models predict branching fractions in the range $10^{-7} 10^{-10}$
 - \blacktriangleright Search for lepton flavor violating τ decays without ν

Lepton-Flavor Violation (LFV) in τ Decays

$\tau^- \rightarrow \ell^- V^0$

- ▶ Search for decays $\tau^- \rightarrow \ell^- V^0$, $V^{0} = \rho^{0}, \phi, \omega, K^{*,0}$
- Consider 1-prong and 3-prong decays on tag side
- Multivariate analysis (BDT) to select signal
- Signal region defined by
 - \blacktriangleright $M_{\ell V^0} = m_{\tau}$ due to missing neutrino
 - $\blacktriangleright \Delta E = E_{avo}^* \sqrt{s/2} = 0$ upon radiative effects
- ▶ World's best upper limit for 8/10 channels
 - $\blacktriangleright B(\tau^- \to e^- V^0) < (1.7-2.4) \times 10^{-8}$
 - $\blacktriangleright B(\tau^- \to \mu^- V^0) < (1.7-4.3) \times 10^{-8}$

Lepton-Flavor Violation (LFV) in τ Decays

$\tau^- \to \ell^- V^0$

- Search for decays $\tau^- \rightarrow \ell^- V^0$, $V^0 = \rho^0, \phi, \omega, K^{*,0}$
- Consider 1-prong and 3-prong decays on tag side
- Multivariate analysis (BDT) to select signal
- Signal region defined by
 - $M_{\ell V^0} = m_{ au}$ due to missing neutrino
 - $\Delta E = E^*_{\ell V^0} \sqrt{s}/2 = 0$ upon radiative effects
- World's best upper limit for 8/10 channels (90% confidence level)

•
$$B(\tau^- \to e^- V^0) < (1.7-2.4) \times 10^-$$

$$\blacktriangleright~~B(au^-
ightarrow \mu^- V^0) < (1.7$$
–4.3) $imes$ 10 $^{-1}$

Lepton-Flavor Violation (LFV) in τ Decays

$au o \mu \mu \mu$

- Untagged: Inclusively use rest of event
- Multivariate selection yields 3× larger efficiency compared to Belle
- Upper limit
 - $B(\tau^- \to \mu^- \mu^- \mu^+) < 1.9 imes 10^{-8}$
- World's most stringent limit

10 / 17

- Dark sector physics
 - ➡ Low multiplicity events
- Well known initial condition and special trigger important for dark sector searches
- Belle II is sensitive to direct production of MeV to GeV mediators

Searches for the $L_{\mu} - L_{\tau}$ Gauge Boson Z'

- ▶ New gauge boson Z' couples only to 2^{nd} and 3^{rd} generation of leptons $(L_{\mu} L_{\tau})$
- Coupling to μ , τ , ν_{μ} , ν_{τ} with strength g'
 - Decays visibly and invisibly
 - Decays to dark matter χ could be dominant

Dark Sector Searches in $Z' \rightarrow$ invisible

- Search for peak in mass of recoil system against $\mu\mu$
- Neural network for background suppression trained on full M_{Z'} range of Z'
- No significant excess observed
- $(g-2)_{\mu}$ favored region excluded for $0.8 < M_{Z'} < 5 \text{ GeV}/c^2$ for a fully invisible Z'

Dark Sector Searches in $Z' \rightarrow$ invisible

- Search for peak in mass of recoil system against $\mu\mu$
- Neural network for background suppression trained on full M_{Z'} range of Z'
- No significant excess observed
- $(g 2)_{\mu}$ favored region excluded for $0.8 < M_{Z'} < 5 \text{ GeV}/c^2$ for a fully invisible Z'

S. Wallner

Dark Sector Searches in $Z' \rightarrow \tau \tau$ and $Z' \rightarrow \mu \mu$

Searches for Inelastic Dark Matter with a Dark Higgs

- 4 final-state tracks
 - 2 forming pointing displaced vertex
 - 2 forming non-pointing displaced vertex
- Missing energy

- Challenging for tracking and trigger
- Almost zero-background analysis

Searches for Inelastic Dark Matter with a Dark Higgs

Ar Agait

- Expected background estimated in data from sidebands to not rely on simulation
- ▶ No significant excess in $m_{h'}(xx)$ spectrum found
 - ➡ 95 % CL upper limits on model parameters

Summary

- Belle and Belle II are leading τ and dark sector searches
 - Precision measurements of τ properties
 - Various studies of Standard Model parameters
 - Searches for Beyond Standard Model physics
- Many frontiers of improvement
 - Data sample size
 - Improved analysis techniques and reduced systematic uncertainties
 - Accurate physics models

Further ana	lysis in	au physics	
-------------	----------	------------	--

- BII Baryon/lepton num. viol. in $\tau^- \rightarrow \overline{A} \pi^-$ [PI
- BII Lepton-flavor violation in $\tau^- \rightarrow \ell^- \phi$
- BII Lepton-flavor violation in $\tau^- \rightarrow \ell^- \alpha$
- B Michell Parameters in $\tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau$
- B Electric Dipole Moment of the au

[PRD 110 (2024) 112003]		
[arXiv:2305.04759]		
[PRL 130 (2023) 181803]		
[PRL 131 (2023) 021801]		
[JHEP 04 (2022) 110]		

В	Heavy neutral lepton in $ u_h o \pi^+ \ell^-$	[PRL 131 (2023) 21180]
В	Leptophilic scalar in association with $\tau^-\tau^+$	[PRD 109 (2024) 032002]
BII	Long-lived spin-0 mediator in $b ightarrow s$	[PRD 108 (2023) L111104]
BII	Dark Photon and Higgs in $\mu^+\mu^-$	[PRL 130 (2023) 071804]
BII	Axionlike particle decaying to $\gamma\gamma$	[PRL 125 (2020) 161806]

Further dark-sector searches

- \blacktriangleright Belle and Belle II are leading τ and dark sector searches
 - Precision measurements of τ properties
 - Various studies of Standard Model parameters
 - Searches for Beyond Standard Model physics
- Many frontiers of improvement
 - Data sample size
 - Improved analysis techniques and reduced systematic uncertainties
 - Accurate physics models

Backup

- 17 Dark Sector Searches in $Z' \rightarrow$ invisible
- **18** Dark Sector Searches in $Z' \rightarrow \tau \tau$
- **19** Dark Sector Searches in $Z' \rightarrow \mu\mu$
- 20 Searches for a Heavy Neutral Lepton (N or ν_h) in τ Decays
- **21** Searches for a Heavy Neutral Lepton (N or ν_h) in τ Decays
- 22 Searches for Inelastic Dark Matter with a Dark Higgs
- 23 Searches for Inelastic Dark Matter with a Dark Higgs

Ratio of leptonic branching fractions

$$R_{\mu} = \frac{\mathcal{B}(\tau^- \to \mu^- \bar{\nu}_{\mu} \nu_{\tau}(\gamma))}{\mathcal{B}(\tau^- \to e^- \bar{\nu}_e \nu_{\tau}(\gamma))} \stackrel{\text{SM}}{=} 0.9726$$

is sensitive to new physics

• Measured in 1×1 prong topology with $\pi^- + n\pi^0$ tag

Event yields extracted via p_l template fit

• Most precise test of μ -e universality in τ decays

• Consistent with Standard Model at 1.4σ

 $R_{\mu} = 0.9675 \pm 0.0007 \, {
m (stat.)} \pm 0.0036 \, {
m (sys.)}$

- Main systematic uncertainty from particle identification and trigger
- Detailed stability tests

Ratio of leptonic branching fractions

$$R_{\mu} = \frac{\mathcal{B}(\tau^- \to \mu^- \bar{\nu}_{\mu} \nu_{\tau}(\gamma))}{\mathcal{B}(\tau^- \to e^- \bar{\nu}_e \nu_{\tau}(\gamma))} \stackrel{\text{SM}}{=} 0.9726$$

is sensitive to new physics

- Measured in 1×1 prong topology with $\pi^- + n\pi^0$ tag
- Event yields extracted via p_l template fit
- Most precise test of μ -e universality in τ decays
 - Consistent with Standard Model at 1.4σ

 $R_{\mu} = 0.9675 \pm 0.0007\,({
m stat.}) \pm 0.0036\,({
m sys.})$

- Main systematic uncertainty from particle identification and trigger
- Detailed stability tests

Ratio of leptonic branching fractions

$$R_{\mu} = \frac{\mathcal{B}(\tau^- \to \mu^- \bar{\nu}_{\mu} \nu_{\tau}(\gamma))}{\mathcal{B}(\tau^- \to e^- \bar{\nu}_e \nu_{\tau}(\gamma))} \stackrel{\text{SM}}{=} 0.9726$$

is sensitive to new physics

- Measured in 1×1 prong topology with $\pi^- + n\pi^0$ tag
- Event yields extracted via p_l template fit
- Most precise test of μ -e universality in τ decays
 - \blacktriangleright Consistent with Standard Model at 1.4σ

 $R_{\mu} = 0.9675 \pm 0.0007\,({
m stat.}) \pm 0.0036\,({
m sys.})$

- Main systematic uncertainty from particle identification and trigger
- Detailed stability tests

Ratio of leptonic branching fractions

$$R_{\mu} = \frac{\mathcal{B}(\tau^- \to \mu^- \bar{\nu}_{\mu} \nu_{\tau}(\gamma))}{\mathcal{B}(\tau^- \to e^- \bar{\nu}_e \nu_{\tau}(\gamma))} \stackrel{\text{SM}}{=} 0.9726$$

is sensitive to new physics

- ▶ Measured in 1×1 prong topology with $\pi^- + n\pi^0$ tag
- Event yields extracted via p_l template fit
- Most precise test of μ -e universality in τ decays
 - Consistent with Standard Model at 1.4 σ

 $R_{\mu} = 0.9675 \pm 0.0007 \, ({
m stat.}) \pm 0.0036 \, ({
m sys.})$

- Main systematic uncertainty from particle identification and trigger
- Detailed stability tests

Ratio of leptonic branching fractions

$$R_{\mu} = \frac{\mathcal{B}(\tau^- \to \mu^- \bar{\nu}_{\mu} \nu_{\tau}(\gamma))}{\mathcal{B}(\tau^- \to e^- \bar{\nu}_e \nu_{\tau}(\gamma))} \stackrel{\text{SM}}{=} 0.9726$$

is sensitive to new physics

- ▶ Measured in 1×1 prong topology with $\pi^- + n\pi^0$ tag
- Event yields extracted via p_l template fit
- Most precise test of μ -e universality in τ decays
 - Consistent with Standard Model at 1.4 σ

 $R_{\mu} = 0.9675 \pm 0.0007 \, ({
m stat.}) \pm 0.0036 \, ({
m sys.})$

- Main systematic uncertainty from particle identification and trigger
- Detailed stability tests

Ratio of leptonic branching fractions

$$R_{\mu} = \frac{\mathcal{B}(\tau^- \to \mu^- \bar{\nu}_{\mu} \nu_{\tau}(\gamma))}{\mathcal{B}(\tau^- \to e^- \bar{\nu}_e \nu_{\tau}(\gamma))} \stackrel{\text{SM}}{=} 0.9726$$

is sensitive to new physics

- Measured in 1×1 prong topology with $\pi^- + n\pi^0$ tag
- Event yields extracted via p_l template fit
- Most precise test of μ -e universality in τ decays
 - Consistent with Standard Model at 1.4 σ

 $R_{\mu} = 0.9675 \pm 0.0007 \, ({
m stat.}) \pm 0.0036 \, ({
m sys.})$

- Main systematic uncertainty from particle identification and trigger
- Detailed stability tests

• $\pi^-\pi^-\pi^+$ system forms meson resonances

- Dominated by $a_1(1260)^- o
 ho^0 \pi^-$ decay
 - Parameters of $a_1(1260)$ poorly known
 - \blacktriangleright CLEO II measured twice larger width in τ decays compared to other experiments
 - Also other contributions possible
 - $a_1(1420)$ resonance observed only by COMPASS
- Perform amplitude analysis to separate contributions of partial waves with well-defined quantum numbers
 - Fit partial-wave model to 7-dimensional angular and mass distribution
- CLEO-II performed the only amplitude analysis [PRD 61 (1999) 012002]

> $\pi^-\pi^-\pi^+$ system forms meson resonances

- Dominated by $a_1(1260)^- \rightarrow
 ho^0 \pi^-$ decay
 - Parameters of $a_1(1260)$ poorly known
 - CLEO II measured twice larger width in τ decays compared to other experiments
 - Also other contributions possible
 - $a_1(1420)$ resonance observed only by COMPASS
- Perform amplitude analysis to separate contributions of partial waves with well-defined quantum numbers
 - Fit partial-wave model to 7-dimensional angular and mass distribution
- CLEO-II performed the only amplitude analysis [PRD 61 (1999) 012002]

> $\pi^-\pi^-\pi^+$ system forms meson resonances

- Dominated by $a_1(1260)^- \rightarrow \rho^0 \pi^-$ decay
 - Parameters of $a_1(1260)$ poorly known
 - CLEO II measured twice larger width in τ decays compared to other experiments
 - Also other contributions possible
 - $a_1(1420)$ resonance observed only by COMPASS
- Perform amplitude analysis to separate contributions of partial waves with well-defined quantum numbers
 - Fit partial-wave model to 7-dimensional angular and mass distribution
- CLEO-II performed the only amplitude analysis [PRD 61 (1999) 012002]

Simulated $m_{3\pi}$ spectrum

- 1-prong decays on tag side
- ► Achieve high efficiency: 32 %
- ▶ Maintain low impurity: 18%
 - Main background from $\tau^- \rightarrow \pi^- \pi^- \pi^+ \pi^0 \nu_{\tau}$

$$J_{\mu} = \sum_{a} c_{a} J^{\mu}_{a}$$

- Fit 17 partial waves to the data
- ▶ 10 waves representing $J^P = 1^+$
 - ▶ Various ρ , f_0 , f_2 , and ω decay modes
- ▶ 4 waves representing $J^P = 0^-$
 - ρ(770), f₀ and f₂(1270) decay modes
- ▶ 3 waves representing $J^P = 1^-$
 - $\rho(770), f_2(1270), \omega(782)$ decay modes
- CLEO used only 7 waves representing only $J^P = 1^+$

▶ Dominant $a_1(1260)$ signal in $1^{++}[\rho(770)\pi]_S$ wave

- Narrow $a_1(1420)$ signal in intensity of $1^{++}[f_0(980)\pi]_P$ wave
 - ➡ First confirmation of COMPASS measurement
- Novel "freed-isobar" method not requiring knowledge of isobar resonance
 - Allows to measure also amplitude of $\pi\pi$ subsystem
 - Elear ho(770) signal
 - Precision measurement of $\rho(770)$ in clean environment

- Dominant $a_1(1260)$ signal in $1^{++}[\rho(770)\pi]_S$ wave
- Narrow $a_1(1420)$ signal in intensity of $1^{++}[f_0(980)\pi]_P$ wave
 - ► First confirmation of COMPASS measurement
- Novel "freed-isobar" method not requiring knowledge of isobar resonance
 - Allows to measure also amplitude of $\pi\pi$ subsystem
 - Elear ho(770) signal
 - Precision measurement of $\rho(770)$ in clean environment

- Dominant $a_1(1260)$ signal in $1^{++}[\rho(770)\pi]_S$ wave
- Narrow a₁(1420) signal in intensity and phase of 1⁺⁺[f₀(980)π]_P wave
 - ► First confirmation of COMPASS measurement
- Novel "freed-isobar" method not requiring knowledge of isobar resonance
 - Allows to measure also amplitude of $\pi\pi$ subsystem
 - Elear $\rho(770)$ signal
 - Precision measurement of ρ(770) in clean environment

- Dominant $a_1(1260)$ signal in $1^{++}[\rho(770)\pi]_S$ wave
- Narrow a₁(1420) signal in intensity and phase of 1⁺⁺[f₀(980)π]_P wave
 - ► First confirmation of COMPASS measurement
- <u>Novel "freed-isobar" method</u> not requiring knowledge of isobar resonance
 - Allows to measure also amplitude of $\pi\pi$ subsystem
 - Elear $\rho(770)$ signal
 - ⇒ Precision measurement of $\rho(770)$ in clean environment

- Dominant $a_1(1260)$ signal in $1^{++}[\rho(770)\pi]_S$ wave
- Narrow a₁(1420) signal in intensity and phase of 1⁺⁺[f₀(980)π]_P wave
 - ► First confirmation of COMPASS measurement
- <u>Novel "freed-isobar" method</u> not requiring knowledge of isobar resonance
 - ▶ Allows to measure also amplitude of $\pi\pi$ subsystem
 - Clear $\rho(770)$ signal
 - → Precision measurement of $\rho(770)$ in clean environment

$[\pi\pi]_P$ amplitudes from $J^P=1^+$ partial wave $_{\Xi}^3$

- $G_{\pi\pi} = + \Rightarrow \rho$ -like state
- Clear peak from $\rho(770)$ resonance
- Accompanied by rising phase

Partial-Wave Analysis of $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_{\tau}$ Decays Results: Freed-Isobar

$[\pi\pi]_P$ amplitudes from $J^P=1^+$ partial wave

- $G_{\pi\pi} = + \Rightarrow \rho$ -like state
- Clear peak from $\rho(770)$ resonance
- Accompanied by rising phase

Partial-Wave Analysis of $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_{\tau}$ Decays Results: Freed-Isobar

Results: Freed-Isobar

• Different signals when changing parity of $\pi^-\pi^-\pi^+$ system

▶ Verifies observation of G violation $\omega(782) \rightarrow \pi^{-}\pi^{+}$ decay

$$M_{
m min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{ au}$$

▶ Pseudomass method in $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_\tau$

- M_{\min} distribution ends at $m_{ au}$
- Smeared by resolution and initial and final state radiation
- Accuracy determined by
 - Beam energy $\sqrt{s}/2$
 - Calibrated using BB events
 - Final-state particle momentum
 - ullet Calibrated using $D^0 o K\pi$ standard candle
- Fit to M_{\min} distribution
- Belle II provides World's most precise result

$$M_{
m min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{ au}$$

- ▶ Pseudomass method in $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_\tau$
 - $M_{
 m min}$ distribution ends at $m_{ au}$
 - Smeared by resolution and initial and final state radiation
- Accuracy determined by
 - Beam energy $\sqrt{s}/2$
 - Calibrated using BB events
 - Final-state particle momentum
 - ullet Calibrated using $D^0 o K\pi$ standard candle
- Fit to M_{\min} distribution
- Belle II provides World's most precise result

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{ au}$$

- ▶ Pseudomass method in $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_\tau$
 - $M_{
 m min}$ distribution ends at $m_{ au}$
 - Smeared by resolution and initial and final state radiation
- Accuracy determined by
 - Beam energy $\sqrt{s/2}$
 - Calibrated using BB
 events
 - Final-state particle momentum
 - Calibrated using $D^0 o K\pi$ standard candle
- Fit to M_{\min} distribution
- Belle II provides World's most precise result

$$M_{
m min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{ au}$$

- ▶ Pseudomass method in $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_\tau$
 - $M_{
 m min}$ distribution ends at $m_{ au}$
 - Smeared by resolution and initial and final state radiation
- Accuracy determined by
 - Beam energy $\sqrt{s}/2$
 - Calibrated using BB
 events
 - Final-state particle momentum
 - Calibrated using $D^0 o K\pi$ standard candle
- Fit to M_{\min} distribution
- Belle II provides World's most precise result

$$M_{
m min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{ au}$$

- ▶ Pseudomass method in $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_\tau$
 - $M_{
 m min}$ distribution ends at $m_{ au}$
 - Smeared by resolution and initial and final state radiation
- Accuracy determined by
 - Beam energy $\sqrt{s}/2$
 - Calibrated using BB
 events
 - Final-state particle momentum
 - Calibrated using $D^0 \to K\pi$ standard candle
- Fit to M_{\min} distribution
- Belle II provides World's most precise result

$$M_{
m min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{ au}$$

- ▶ Pseudomass method in $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_\tau$
 - $M_{
 m min}$ distribution ends at $m_{ au}$
 - Smeared by resolution and initial and final state radiation
- Accuracy determined by
 - Beam energy $\sqrt{s}/2$
 - Calibrated using BB
 events
 - Final-state particle momentum
 - ▶ Calibrated using $D^0 \to K\pi$ standard candle
- Fit to M_{\min} distribution
- Belle II provides World's most precise result

- Ar Agast
- Lepton Flavor Violation (LVF) is negligibly small in Standard Model + ν mixing (below 10⁻⁵⁰)
- > Various new-physics models predict branching fractions in the range $10^{-7} 10^{-10}$
 - Search for lepton flavor violating decay channels

Lepton-Flavor Violation (LFV) in au Decays $\tau^{-} \rightarrow \ell^{-} V^{0}$

Lepton-Flavor Violation (LFV) in au Decays $_{ au ightarrow \ell\phi}$

$\tau \to \ell \phi$

- $\blacktriangleright\,$ Similar strategy as $\tau^- \to \ell \, V^0$ measurement at Belle
- First application of untagged approach
 - Fully inclusive on tag side
- Upper limits
 - $\blacktriangleright B(\tau^- \to e^- \phi) < 23 \times 10^{-8}$
 - $B(\tau^- \to \mu^- \phi) < 9.7 imes 10^{-8}$

Lepton-Flavor Violation (LFV) in τ Decays

 $au
ightarrow \ell lpha$, where lpha is an invisible particle

[PRL 130 (2023) 181803]

$\tau \to \ell \alpha$, where α is an invisible particle

- Fixed kinematic of two-body decay for given m_α characteristic for signal
- ▶ Normalized lepton energy X_{ℓ} in τ^- rest frame
 - ▶ $\tau^- \to \ell^- \alpha$ yields fixed X_ℓ
 - Broadened by approximation of \(\tau^-\) rest frame from hadronic tag system
 - $au^-
 ightarrow \ell^- ar
 u_\ell
 u_ au$ yields broad peak

2–14 times more stringent limit than ARGUS

Lepton-Flavor Violation (LFV) in τ Decays

 $\tau \rightarrow \ell \alpha$, where α is an invisible particle

$\tau \to \ell \alpha$, where α is an invisible particle

- Fixed kinematic of two-body decay for given m_α characteristic for signal
- ▶ Normalized lepton energy X_{ℓ} in τ^- rest frame
 - ▶ $\tau^- \to \ell^- \alpha$ yields fixed X_ℓ
 - \blacktriangleright Broadened by approximation of τ^- rest frame from hadronic tag system
 - $\tau^-
 ightarrow \ell^- \bar{
 u}_\ell
 u_{ au}$ yields broad peak
- ▶ 2–14 times more stringent limit than ARGUS

[PRL 130 (2023) 181803

Lepton-Flavor Violation (LFV) in τ Decays

 $\tau \rightarrow \ell \alpha$, where α is an invisible particle

$au ightarrow \ell lpha$, where lpha is an invisible particle

- Fixed kinematic of two-body decay for given m_α characteristic for signal
- ▶ Normalized lepton energy X_{ℓ} in τ^- rest frame
 - ▶ $\tau^- \to \ell^- \alpha$ yields fixed X_ℓ
 - \blacktriangleright Broadened by approximation of τ^- rest frame from hadronic tag system
 - $\tau^-
 ightarrow \ell^- \bar{
 u}_\ell
 u_{ au}$ yields broad peak
- ▶ 2–14 times more stringent limit than ARGUS

Lepton-Flavor Violation (LFV) in au Decays

 $\tau \rightarrow \ell \alpha$, where α is an invisible particle

$au ightarrow \ell lpha$, where lpha is an invisible particle

- Fixed kinematic of two-body decay for given m_α characteristic for signal
- ▶ Normalized lepton energy X_{ℓ} in τ^- rest frame
 - ▶ $\tau^- \to \ell^- \alpha$ yields fixed X_ℓ
 - \blacktriangleright Broadened by approximation of τ^- rest frame from hadronic tag system
 - $\tau^-
 ightarrow \ell^- \bar{
 u}_\ell
 u_{ au}$ yields broad peak
- ▶ 2–14 times more stringent limit than ARGUS

[PRL 130 (2023) 181803]

15 / 26

Dark Sector Searches in $Z' \rightarrow$ invisible

- Search for peak in mass of recoil system against $\mu\mu$
- Neural network for background suppression trained on Z' signal and background
- No significant excess observed
- ► (g 2)_µ favored region excluded for 0.8 < M_{Z'} < 5 GeV/c² for a fully invisible Z'

Dark Sector Searches in $Z' \rightarrow$ invisible

- Search for peak in mass of recoil system against $\mu\mu$
- Neural network for background suppression trained on Z' signal and background
- No significant excess observed
- $(g 2)_{\mu}$ favored region excluded for $0.8 < M_{Z'} < 5 \text{ GeV}/c^2$ for a fully invisible Z'

Dark Sector Searches in $Z' \rightarrow$ invisible

- Search for peak in mass of recoil system against $\mu\mu$
- Neural network for background suppression trained on Z' signal and background
- No significant excess observed
- $(g 2)_{\mu}$ favored region excluded for $0.8 < M_{Z'} < 5 \text{ GeV}/c^2$ for a fully invisible Z'

Dark Sector Searches in $Z' \rightarrow \tau \tau$

- $\blacktriangleright \ \tau$ decays to single charged particle + neutrals
 - Suppress background using characteristic kinematics
- Exclusion limits on couplings for three models: Z', Axion-like particle (ALP), and leptophilic scalar (S)
 - m_s probed for the first time above 0.5 GeV/c
 - World-leading limits for ALPs

Dark Sector Searches in $Z' \rightarrow \tau \tau$

- Search for peak in mass of recoil system against $\mu\mu$
- au decays to single charged particle + neutrals
 - Suppress background using characteristic kinematics
- Exclusion limits on couplings for three models: Z', Axion-like particle (ALP), and leptophilic scalar (S)
 - m_5 probed for the first time above $6.5 \,\text{GeV}/c^2$
 - World-leading limits for ALPs

Dark Sector Searches in $Z' \rightarrow \tau \tau$

- Search for peak in mass of recoil system against $\mu\mu$
- τ decays to single charged particle + neutrals
 - Suppress background using characteristic kinematics
- Exclusion limits on couplings for three models: Z', Axion-like particle (ALP), and leptophilic scalar (S)
 - m_5 probed for the first time above $6.5 \,\text{GeV}/c^2$
 - World-leading limits for ALPs

Dark Sector Searches in $Z' \rightarrow \mu \mu$

- First upper limit for muonic scalar model from a explicit search
- Upper limits on Z' already competitive
 - Due to improved background suppression
- Exclude Z' and scalar explanations for (g 2)_µ over wide mass range

Dark Sector Searches in $Z' \rightarrow \mu \mu$

- Search for peak in opposite-charge di-muon mass
- First upper limit for muonic scalar model from a explicit search
- ► Upper limits on Z' already competitive
 - Due to improved background suppression
- Exclude Z' and scalar explanations for $(g 2)_{\mu}$ over wide mass range

Dark Sector Searches in $Z' \rightarrow \mu \mu$

- Search for peak in opposite-charge di-muon mass
- First upper limit for muonic scalar model from a explicit search
- ▶ Upper limits on Z' already competitive
 - Due to improved background suppression
- ► Exclude Z' and scalar explanations for (g − 2)_µ over wide mass range

Searches for heavy neutral letpons (N or ν_h)

- Can interact with $\nu_{\rm SM}$ via $N \leftrightarrow \nu_{\rm SM}$ mixing
- Long lifetime
- ▶ Probe $m_N < m_{ au}$ in $au^- o \pi^- N$ decays

Heavy lepton in $N o \mu^+ \mu^- u_ au$ decays

- Signature: prompt π^- and displaced $\mu^+\mu^-$ vertex
 - Allows direct measurement of m_N
- Observation in agreement with background expectation
- Set 95 % C.L. upper limits on mixing parameter

[PRD 109 (2024) L111102]

Searches for heavy neutral letpons (N or ν_h)

- Can interact with $\nu_{\rm SM}$ via $N \leftrightarrow \nu_{\rm SM}$ mixing
- Long lifetime
- ▶ Probe $m_N < m_{\tau}$ in $\tau^- \rightarrow \pi^- N$ decays

Heavy lepton in $N o \mu^+ \mu^- u_ au$ decays

- ▶ Signature: prompt π^- and displaced $\mu^+\mu^-$ vertex
 - Allows direct measurement of m_N
- Observation in agreement with background expectation
- Set 95 % C.L. upper limits on mixing parameter

[PRD 109 (2024) L111102]

IP = Interaction Point

[PRD 109 (2024) L111102] 74+ Ag > it

Searches for heavy neutral letpons (N or ν_h)

- Can interact with $\nu_{\rm SM}$ via $N \leftrightarrow \nu_{\rm SM}$ mixing
- Long lifetime
- ▶ Probe $m_N < m_{ au}$ in $au^- o \pi^- N$ decays

Heavy lepton in $N o \mu^+ \mu^- u_ au$ decays

- Signature: prompt π^- and displaced $\mu^+\mu^-$ vertex
 - Allows direct measurement of m_N
- Observation in agreement with background expectation
- Set 95 % C.L. upper limits on mixing parameter

Heavy neutrino in $\nu_h \rightarrow \pi^+ \ell^-$ decays

- Signature: prompt π^- and displaced $\pi^+\ell^-$ vertex
- Final state fully reconstructed
- ▶ Set 95 % C.L. upper limits on

IP = Interaction Point

[PRL 131 (2023) 211802] 74+ Ag > it

Heavy neutrino in $\nu_h \rightarrow \pi^+ \ell^-$ decays

- ▶ Signature: prompt π^- and displaced $\pi^+\ell^-$ vertex
- Final state fully reconstructed
- No significant excess observed
- Set 95 % C.L. upper limits on $|U|^2 = |U_e|^2 + |U_\mu|^2 + |U_\tau|^2$

988 fb⁻¹

Searches for heavy neutral letpons (N or ν_h)

- Can interact with $\nu_{\rm SM}$ via $N \leftrightarrow \nu_{\rm SM}$ mixing
- Long lifetime
- ▶ Probe $m_N < m_{ au}$ in $au^- o \pi^- N$ decays

Heavy lepton in $N o \mu^+ \mu^- u_ au$ decays

- Signature: prompt π^- and displaced $\mu^+\mu^-$ vertex
 - Allows direct measurement of m_N
- Observation in agreement with background expectation
- Set 95 % C.L. upper limits on mixing parameter

Searches for heavy neutral letpons (N or ν_h)

- Can interact with $\nu_{\rm SM}$ via $N \leftrightarrow \nu_{\rm SM}$ mixing
- Long lifetime
- ▶ Probe $m_N < m_{ au}$ in $au^- o \pi^- N$ decays

Heavy lepton in $N ightarrow \mu^+ \mu^- u_ au$ decays

- ▶ Signature: prompt π^- and displaced $\mu^+\mu^-$ vertex
 - Allows direct measurement of m_N
- Observation in agreement with background expectation
- Set 95 % C.L. upper limits on mixing parameter

IP = Interaction Point

Searches for heavy neutral letpons (N or ν_h)

- Can interact with $\nu_{\rm SM}$ via $N \leftrightarrow \nu_{\rm SM}$ mixing
- Long lifetime
- ▶ Probe $m_N < m_{ au}$ in $au^- o \pi^- N$ decays

Heavy lepton in $N o \mu^+ \mu^- u_ au$ decays

- Signature: prompt π^- and displaced $\mu^+\mu^-$ vertex
 - Allows direct measurement of m_N
- Observation in agreement with background expectation
- Set 95 % C.L. upper limits on mixing parameter

Heavy neutrino in $\nu_h \rightarrow \pi^+ \ell^-$ decays Signature: prompt π^- and displaced $\pi^+\ell^-$ vertex Final state fully reconstructed **Central Drift** DV No significant excess observed Chamber Promp Set 95 % C.L. upper limits on Silicon Vertex $|U|^2 = |U_e|^2 + |U_{\mu}|^2 + |U_{\tau}|^2$ Detector 1-Prong DV = Displaced Vertex $988 \, {\rm fb}^{-1}$ **IP = Interaction Point** RELLE [PRL 131 (2023) 21180]

- 4 final-state tracks
 - 2 forming pointing displaced vertex
 - 2 forming non-pointing displaced vertex
- Missing energy

- Challenging for tracking and trigger
- Almost zero-background analysis

Ar Agait

- Expected background estimated in data from sidebands to not rely on simulation
- ▶ No significant excess in m_{xx} spectrum found
 - ➡ 95 % CL upper limits on model parameters

- Stable dark matter χ_1 (relict candidate)
- Long-lived dark matter χ_2
- Dark photon A'
 - Focused on $m_{A'} > m_{\chi_1} + m_{\chi_2}$
 - $A' \rightarrow \chi_1 \chi_2$ favored with α_D
 - Mixes with SM γ with ε
- ▶ Dark Higgs *h*′
 - Mixing with SM Higgs θ
 - Provides mass to A'

$$\blacktriangleright$$
 7 parameters: $arepsilon$, $heta$, $lpha_D$, $m_{A'}$, $m_{h'}$, m_{χ_1} , Δm_χ

