

Charm Physics at Belle and Belle II

Yang Li (Fudan University) on behalf of the Belle and Belle II collaborations

Lake Louise Winter Institute 2025 Mar. 02~08, 2025

Outline

□ Belle and Belle II experiments

□ Charmed mesons

- Search for *CP* violation in $D^+_{(s)} \to K^0_S K^- \pi^+ \pi^-$ decays
- Time-integrated *CP* asymmetry in $D^0 \rightarrow K_S^0 K_S^0$ decays
- $D^0 \overline{D}^0$ mixing parameters in $D^0 \to K^0_S \pi^+ \pi^-$ decays
- □ Charmed baryons
- Two-body decays of Ξ_c^0
- Two-body decays of Ξ_c^+

□ Summary

Belle + Belle II [arXiv: 2409.15777]

Belle + Belle II [PRD 111, 012015 (2025)]

Belle + Belle II [arXiv: 2410.22961]

Belle + Belle II [JHEP 10 045 (2024)]

Belle + Belle II [arXiv: 2412.10677; PRELIMINARY]

KEKB and Super-KEKB colliders

Belle and Belle II detectors

>Belle and Belle II operate at asymmetric e^+e^- colliders

- Belle @ KEKB (1999-2010): $L_{int} \sim 1 \text{ ab}^{-1}$.
- Belle II @ Super-KEKB (2019-current): Run 1(2019-2022): $L_{int} \sim 428 \text{fb}^{-1}$; Run 2(2024~): $L_{int} \sim 150 \text{ fb}^{-1}$.
- ≻Belle and Belle II are now **synergic** experiments.
- ✓ Belle data can be analyzed within the Belle II software framework.
- ✓ Common review procedures since summer of 2023.
- ✓ Especially important for charm analyses, where large statistics is crucial to improve the precision.

Streamlines combined analyses

BELLE II @SuperKEKB

Charm physics at Belle (II)

- Belle and Belle II are primarily B-meson factories, but not only.
- ✓ Per ab⁻¹(events × 10⁹): 1.1 B \overline{B} , 1.3 $c\bar{c}$, 2.1 $q\bar{q}$, 0.9 $\tau\bar{\tau}$
- > Two ways to produce the charm hadrons at B-factories:
- Two charmed hadrons produced from continuum, along with fragmentation particles: $\sigma(e^+e^- \rightarrow c\bar{c}) \sim 1.3 \text{ nb}$ @ $\sqrt{s} = 10.58 \text{ GeV}.$
- One or more charmed hadrons produced in B decays: $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B} \rightarrow X_c$
- ≻ Full topics for charm physics:
- *CP* violation
- Lifetimes of charm hadrons
- Charmed baryons

- $D^0 \overline{D}^0$ mixing
- Rare decay

Search for *CP* violation in $D^+_{(s)} \to K^0_S K^- \pi^+ \pi^-$ decays

- ≻ First search for *CP* violation in $D_{(s)}^+ \to K_S^0 K^- \pi^+ \pi^+$ decays using six observables (*X*) based on the triple product and quadruple product of the momenta of final-state particles, and the particles' helicity angles.
- 1. Triple-product (TP) $C_{TP} = \vec{p}_{K^-} \cdot (\vec{p}_{K_S^0} \times \vec{p}_{\pi_l^+})$
- 2. Quadruple-product (QP) $C_{QP} = (\vec{p}_{K^-} \times \vec{p}_{\pi_h^+}) \cdot (\vec{p}_{K_S^0} \times \vec{p}_{\pi_l^+})$
- 3. $C_{TP}C_{QP}$
- 4. $\cos \theta_{K_S^0} \cos \theta_{K^-}$
- 5. $\cos \theta_{K_S^0} \cos \theta_{K^-} C_{TP}$
- 6. $\cos \theta_{K_S^0} \cos \theta_{K^-} C_{QP}$

The direction of $(K\pi)$ system's momentum in the $D_{(s)}^+$ rest frame

Belle + Belle II~1.4/ab arXiv: 2409.15777

- ✓ The asymmetries about zero:
 - $A_{X}(D_{(s)}^{+}) = \frac{N(X > 0) N(X < 0)}{N(X > 0) + N(X < 0)}$ $\overline{A}_{\overline{X}}(D_{(s)}^{-}) = \frac{\overline{N}(\overline{X} > 0) \overline{N}(\overline{X} < 0)}{\overline{N}(\overline{X} > 0) + \overline{N}(\overline{X} < 0)}$

 A_X and $\overline{A}_{\overline{X}}$ are *CP*-conjugate quantities.

CP-violating parameter:

$$A_{CP}^{X} = \frac{A_{X}(D_{(s)}^{+}) - \overline{A}_{\overline{X}}(D_{(s)}^{-})}{2}$$
$$A_{CP}^{X} \neq 0 \text{ indicates } CP \text{ violation}$$

Search for *CP* violation in $D^+_{(s)} \to K^0_S K^- \pi^+ \pi^-$ decays

- The A^X_{CP} is extracted by performing a simultaneous fit to the M(D_(s)) distributions of four subsamples as determined by the charge of D_(s) and the sign of X.
 No evidence for CPV is found. The last column indicates the
 - significance of the combined result from $A_{CP}^X = 0$.

	X	\mathcal{A}_{CP}^X Belle	\mathcal{A}_{CP}^X Belle II	Combined \mathcal{A}_{CP}^X	Significance
D^+	C_{TP}	$-4.0 \pm 5.9 \pm 3.0$	$-0.2 \pm 7.0 \pm 1.8$	$-2.3 \pm 4.5 \pm 1.5$	0.5σ
	$C_{\rm QP}$	$-1.0 \pm 5.9 \pm 2.5$	$-0.4 \pm 7.0 \pm 2.4$	$-0.7 \pm 4.5 \pm 1.7$	0.2σ
	$C_{\mathrm{TP}} C_{\mathrm{QP}}$	$+6.4 \pm 5.9 \pm 2.2$	$+0.6 \pm 7.0 \pm 1.3$	$+3.9 \pm 4.5 \pm 1.1$	0.8σ
	$\cos heta_{K_S^0} \cos heta_{K^-}$	$-4.7 \pm 5.9 \pm 3.0$	$-0.6 \pm 6.9 \pm 3.0$	$-2.9 \pm 4.5 \pm 2.1$	0.6σ
	$C_{\rm TP} \cos \theta_{K_S^0} \cos \theta_{K^-}$	$+1.9 \pm 5.9 \pm 2.0$	$-0.2 \pm 7.0 \pm 1.9$	$+1.0 \pm 4.5 \pm 1.4$	0.2σ
	$C_{ m QP}\cos heta_{K^0_S}\cos heta_{K^-}$	$+14.9 \pm 5.9 \pm 1.4$	$+7.0 \pm 7.0 \pm 1.6$	$+11.6 \pm 4.5 \pm 1.1$	2.5σ
D_s^+	C_{TP}	$-0.3 \pm 3.1 \pm 1.3$	$+1.0 \pm 3.9 \pm 1.1$	$+0.2 \pm 2.4 \pm 0.8$	0.1σ
	$C_{\rm QP}$	$+0.6 \pm 3.1 \pm 1.2$	$+2.0 \pm 3.9 \pm 1.4$	$+1.1 \pm 2.4 \pm 0.9$	0.4σ
	$C_{\mathrm{TP}} C_{\mathrm{QP}}$	$+1.5 \pm 3.2 \pm 1.4$	$-2.7 \pm 3.9 \pm 1.7$	$-0.2 \pm 2.5 \pm 1.1$	0.1σ
	$\cos heta_{K^0_S} \cos heta_{K^-}$	$-3.7 \pm 3.1 \pm 1.1$	$-6.3 \pm 3.9 \pm 1.2$	$-4.7 \pm 2.4 \pm 0.8$	1.8σ
	$C_{\rm TP} \cos \theta_{K_s^0} \cos \theta_{K^-}$	$-4.4 \pm 3.2 \pm 1.4$	$+0.8 \pm 3.9 \pm 1.4$	$-2.2 \pm 2.5 \pm 1.0$	0.8σ
	$C_{\rm QP}\cos heta_{K^0_S}\cos heta_{K^-}$	$-1.6 \pm 3.1 \pm 1.3$	$-0.0 \pm 3.9 \pm 1.7$	$-1.0 \pm 2.4 \pm 1.0$	0.4σ

- ✓ Most precise measurements of triple-product asymmetry for D_s⁺decays and for SCS D⁺ decays.
- ✓ The first use of the other A_{CP}^{X} asymmetries to search for *CP* violation in the charm sector.

Time-integrated *CP* asymmetry in $D^0 \rightarrow K_S^0 K_S^0$

- The D⁰ → K⁰_SK⁰_S is a singly Cabibbo-suppressed decay, which involves the interference between c → uss and c → udd amplitudes.
 Belle + Belle II~1.4/ab PRD 111 012015 (2025)
- \succ Such interference can generate *CP* asymmetries at the 1% level.
- The world-average value of the *CP* asymmetry, $A_{CP}(D^0 \rightarrow K^0_S K^0_S): (-1.9 \pm 1.0)\%$, is limited by statistical.

$$A_{CP} \equiv \frac{\Gamma(D^0 \to K^0_S K^0_S) - \Gamma(\overline{D}^0 \to K^0_S K^0_S)}{\Gamma(D^0 \to K^0_S K^0_S) + \Gamma(\overline{D}^0 \to K^0_S K^0_S)}$$

 $A_{CP}(D^{0} \to K_{S}^{0}K_{S}^{0}) = -0.02 \pm 1.53(\text{stat.}) \pm 0.02(\text{syst.}) \pm 0.17 \text{ (cont. mode)} \quad \text{Belle [PRL 119, 171801 (2017)]}$ $A_{CP}(D^{0} \to K_{S}^{0}K_{S}^{0}) = -3.1 \pm 1.2(\text{stat.}) \pm 0.4(\text{syst.}) \pm 0.2 \text{ (cont. mode)} \quad \text{LHCb [PRD 104, L031102 (2021)]}$

There are nuisance asymmetries induced by production and detection mechanisms: taking $D^0 \rightarrow K^+K^-$ as a control channel to calibrate A_{CP} .

Time-integrated *CP* asymmetry in $D^0 \rightarrow K_S^0 K_S^0$

- \succ K⁰_S flight distance used to separate the signal \succ Signal extracted from a fit to m(D⁰π⁺) and from D⁰ → K⁰_Sπ⁺π⁻ decay. $S_{\min}(K^0_S)$. Belle + Belle II~1.4/ab PRD 111 012015 (2025)
- Define the separation variable:

$D^0-\overline{D}^0$ mixing parameters in $D^0 \to K_s^0\pi^+\pi^-$ decays

$$D^{0}-\overline{D}^{0} \text{ mixing parameters: } |D_{1,2} > = p|D^{0} > +q|\overline{D}^{0} >$$

$$x = \frac{m_{1} - m_{2}}{\Gamma} \qquad y = \frac{\Gamma_{1} - \Gamma_{2}}{2\Gamma}$$
Mass of the $D_{1/2}$ state Width of the $D_{1/2}$ state
Mass of the $D_{1/2}$ state Width of the $D_{1/2}$ state
$$PRD 107 052008 (2023)$$

$$x = (4.07 \pm 0.44) \times 10^{-3} \qquad |q/p| = 0.994^{+0.016}_{-0.015}$$

$$y = (6.45^{+0.24}_{-0.23}) \times 10^{-3} \qquad arg(q/p) = (-2.6^{+1.1}_{-1.2})^{\circ}$$
Belle + Belle II~1.3/ab arXiv: 24

- \geq By splitting the Dalitz plot into bins, the need for an explicit amplitude model is avoided.
- → Using combined Belle and Belle II datasets, we perform a model-independent measurement of the $D^0-\overline{D}^0$ mixing parameters using D^{*+} -tagged $D^0 \rightarrow K_s^0 \pi^+ \pi^-$ decays.

0.52.5 1.5 2 3 $m_{+}^{2} \, [\text{GeV}^{2}/c^{4}]$ $m_{\pm}^{2} = \begin{cases} m^{2} (K_{S}^{0} \pi^{\pm}) \text{ for initially produced } D^{0} \\ m^{2} (K_{S}^{0} \pi^{\mp}) \text{ for initially produced } \overline{D}^{0} \end{cases}$

0.5

arXiv: 2410.22961

Absolute bin index

10

3

$D^0-\overline{D}^0$ mixing parameters in $D^0 \to K_s^0\pi^+\pi^-$ decays

Study of two-body decays of Ξ_c^0 and Ξ_c^+

□ In hadronic weak decays of charmed baryons, nonfactorizable contributions play a crucial role and pose significant challenges for theoretical predictions.

In 2019, Belle measured the absolute branching fractions of Ξ⁰_c → Ξ⁻π⁺[1] and Ξ⁺_c → Ξ⁻π⁺π⁺[2], sparking renewed interest in the study of Ξ⁰_c and Ξ⁺_c decays.
 Theoretical calculations for the two-body hadronic weak decays of Ξ⁰_c and Ξ⁺_c have been performed based on dynamical model calculations and SU(3) flavor symmetry methods [3-9].
 Using the combined data from Belle and Belle II to search for new decay modes of Ξ⁰_c and Ξ⁺_c, and to validate different theoretical models.

[1] <u>PRL 122 (2019) 082001;</u> [2] <u>PRD 100 (2019) 031101;</u> [3] <u>PLB 794 (2019) 19;</u> [4] <u>PRD 101 (2020) 014011;</u> [5] <u>JHEP 02</u> (2020) 165; [6] <u>JHEP 09 (2022) 035;</u> [7] <u>JHEP 03 (2022) 143;</u> [8] <u>PRD 108 (2023) 053004;</u> [9] <u>JHEP 02 (2023) 235</u>...

Observations of $\Xi_c^0 \rightarrow \Xi^0 h^0$, $h^0 = \pi^0 / \eta / \eta'$

□ The Cabibbo-favored decays Ξ⁰_c → Ξ⁰π⁰, Ξ⁰η, and Ξ⁰η' are observed for the first time.
 □ Taking the Ξ⁰_c → Ξ⁻π⁺ as the normalization mode, the ratios of branching fractions are measured to be:

$$\frac{\mathcal{B}(\Xi_{c}^{0} \to \Xi^{0} \pi^{0})}{\mathcal{B}(\Xi_{c}^{0} \to \Xi^{-} \pi^{+})} = (0.48 \pm 0.02 \pm 0.03)$$
$$\frac{\mathcal{B}(\Xi_{c}^{0} \to \Xi^{-} \pi^{+})}{\mathcal{B}(\Xi_{c}^{0} \to \Xi^{-} \pi^{+})} = (0.11 \pm 0.01 \pm 0.01)$$
$$\frac{\mathcal{B}(\Xi_{c}^{0} \to \Xi^{-} \pi^{+})}{\mathcal{B}(\Xi_{c}^{0} \to \Xi^{-} \pi^{+})} = (0.08 \pm 0.02 \pm 0.01)$$

 \square Taking $\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) = (1.43 \pm 0.32)\%$, we obtain

 $\begin{aligned} \mathcal{B}(\Xi_{c}^{0} \to \Xi^{0} \pi^{0}) &= (6.9 \pm 0.3 \pm 0.5 \pm 1.5) \times 10^{-3} \\ \mathcal{B}(\Xi_{c}^{0} \to \Xi^{0} \eta) &= (1.6 \pm 0.2 \pm 0.2 \pm 0.4) \times 10^{-3} \\ \mathcal{B}(\Xi_{c}^{0} \to \Xi^{0} \eta') &= (1.2 \pm 0.3 \pm 0.1 \pm 0.3) \times 10^{-3} \end{aligned}$

The first and second uncertainties above are statistical and systematic, respectively, while the third ones arise from the uncertainty in $\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)^{\overline{\Xi}}$.

Measurement of α asymmetry of $\Xi_c^0\to \Xi^0\pi^0$

> The interference between the parity-violating and parity-conserving amplitudes leads to an asymmetry in the angular decay distribution, quantified by the parameter α :

 $\frac{\mathrm{dN}}{\mathrm{dcos}\theta_{\Xi^0}} \propto 1 + \alpha(\Xi_c^0 \to \Xi^0 \pi^0) \alpha(\Xi^0 \to \Lambda \pi^0) \mathrm{cos}\theta_{\Xi^0}$

- $\alpha(\Xi^0 \to \Lambda \pi^0) = -0.349 \pm 0.009$
- θ_{Ξ^0} is the angle between the Λ momentum vector and the direction opposite to the Ξ_c^0 momentum vector in the Ξ^0 rest frame.
- By performing a simultaneous fit to Belle and Belle II data, we obtain

 $\alpha(\Xi_c^0 \to \Xi^0 \pi^0) = -0.90 \pm 0.15 (\text{stat.}) \pm 0.23 (\text{syst.})$

14

Measurements of branching fractions of Ξ_c^+ decays

- The singly Cabibbo-suppressed decays $\Xi_c^+ \to p K_S^0$, $\Lambda \pi^+$, $\Sigma^0 \pi^+$, and $\Xi^0 K^+$, as well as Cabibbo-favored decay $\Xi_c^+ \to \Sigma^+ K_S^0$ are observed for the first time.
- □ Taking the $\Xi_c^+ \rightarrow \Xi^- \pi^+ \pi^+$ as the normalization mode, the absolute branching fractions are measured to be: Belle + Belle II~1.4/ab arXiv: 2412.10677; PRELIMINARY

 $\begin{aligned} &\mathcal{B}\big(\Xi_c^+ \to pK_S^0\big) = (7.16 \pm 0.46 \pm 0.20 \pm 3.21) \times 10^{-4} \\ &\mathcal{B}(\Xi_c^+ \to \Lambda \pi^+) = (4.52 \pm 0.41 \pm 0.26 \pm 2.03) \times 10^{-4} \\ &\mathcal{B}(\Xi_c^+ \to \Sigma^0 \pi^+) = (1.20 \pm 0.08 \pm 0.07 \pm 0.54) \times 10^{-3} \end{aligned}$

 $\begin{aligned} &\mathcal{B}\big(\Xi_{\rm c}^+ \to \Sigma^+ {\rm K}_{\rm S}^0\big) = (1.86 \pm 0.20 \pm 0.08 \pm 0.83) \times 10^{-3} \\ &\mathcal{B}(\Xi_{\rm c}^+ \to \Xi^0 {\rm K}^+) = (0.46 \pm 0.07 \pm 0.02 \pm 0.21) \times 10^{-3} \\ &\mathcal{B}(\Xi_{\rm c}^+ \to \Xi^0 {\pi}^+) = (6.77 \pm 0.24 \pm 0.30 \pm 3.03) \times 10^{-3} \end{aligned}$

Summary

- Belle and Belle II offer a unique environment and sensitivity for SM measurements, as well as for the search for *CP* violation in the charm sector.
- □ In the past year, some fascinating results have been achieved in the search for *CP* violation of D mesons, measurement of $D^0 \overline{D}^0$ mixing, and the $\Xi_c^{+/0}$ decays using the combined data from Belle and Belle II.
- ■Belle II has started data taking for Run 2, and more precise and improved results are on the way. Stay tuned!

Backup

Zou et.al [12] Geng et.al [13] Geng et.al [14] Huang et.al [15] Zhong et.al (I) [16] Zhong et.al (II) [16] Xing et.al [17] Geng et.al [17] Geng et.al [18] Liu [19] Zhong et.al (I) [20] Zhong et.al (II) [20] Zhao et.al [21] Hsiao et.al (I) [22] Hsiao et.al (II) [22]

Belle and Belle II combined measurement

