

MEASUREMENTS OF ELECTROWEAK PENGUIN AND RADIATIVE *B* DECAYS AT BELLE AND BELLE II

Noah Brenny (Iowa State University) On behalf of Belle and Belle II collaborations

IOWA STATE UNIVERSITY

Lake Louise Winter Institute 2025

March 5th, 2025

Introduction

- FCNC processes $b \rightarrow s(d)$ are forbidden in SM at tree level
- Low branching fractions due to CKM and GIM suppression

Introduction

- FCNC processes $b \rightarrow s(d)$ are forbidden in SM at tree level
- Low branching fractions due to CKM and GIM suppression
- Look for enhancements in FCNC due to NP contributions
 - Weaker GIM cancellations due to new particles in loop corrections
 - New interactions at tree level
 - Channels with 3^{rd} generation are particularly interesting due to connections to anomalies in semitauonic decays ($R(D^{(*)})$)

Belle and Belle II environment

- Threshold $B\overline{B}$ production at $\Upsilon(4S)$ resonance
 - Relatively clean environment
- Near 4π detector coverage
 - Full event reconstruction
- Well-equipped to measure decays with missing energy, neutrals in the final state, inclusive measurements

B-factory experimental techniques

- Kinematics constrained from knowledge of initial state
- Suppress $e^+e^- \rightarrow q\bar{q}$ events (q = u, d, s, c) with event shape variables

B-factory experimental techniques

- B-meson tagging using hadronic or semileptonic B-meson decays
- Full Event Interpretation algorithm
 [Comput. Software Big Sci. 2, 9 (2018)]
- A useful variable is the residual energy in the calorimeter after fully reconstructing the event, *E*_{extra}

All results are new since LLWI 2024 and are from the datasets:

	Luminosity @ $\Upsilon(4S)$ [fb ⁻¹]	
Belle	711	
Belle II	365	6

Measurement of $B \rightarrow K^* \gamma$ with Belle II

- $K^{*0} \to K^{+}\pi^{-}, K^{*0} \to K_{S}^{0}\pi^{0}, K^{*+} \to K^{+}\pi^{0}, K^{*+} \to K_{S}^{0}\pi^{+} \text{ modes}$
- Dominant background from continuum with $\pi^0/\eta \rightarrow \gamma\gamma$ faking hard photon
- Dedicated MVAs to suppress π^0/η and continuum backgrounds
- 2D unbinned fit in $M_{\rm bc}$ and ΔE
- Precision measurement with ~4000 signals

Candidates / (30 MeV)

Measurement of $B \rightarrow K^* \gamma$ with Belle II

- Comparable statistical and systematic uncertainties for the branching fractions
- Dominant systematic from π^0 reconstruction efficiency (3.9%)
- *CP* and isospin asymmetries: statistical uncertainty dominates
- Isospin asymmetry consistent with SM expectation and previous Belle [PRL 89 231801 (2002)] and BaBar [PRD 70 091105 (2004)] measurements

Channel	\mathcal{B} (10^{-5})	\mathcal{A}_{CP} (%)
$B^0 \to K^{*0}[K^+\pi^-]\gamma$	$4.14 \pm 0.10 \pm 0.11$	$-3.3 \pm 2.3 \pm 0.4$
$B^0 \to K^{*0} [K^0_S \pi^0] \gamma$	$4.07 \pm 0.33 \pm 0.23$	_
$B^0 \to K^{*0} \gamma$	$4.14 \pm 0.10 \pm 0.10$	$-3.3 \pm 2.3 \pm 0.4$
$B^+ \to K^{*+} [K^+ \pi^0] \gamma$	$3.97 \pm 0.17 \pm 0.20$	$+1.7 \pm 4.0 \pm 0.9$
$B^+ \to K^{*+} [K^0_S \pi^+] \gamma$	$4.06 \pm 0.18 \pm 0.13$	$-3.5 \pm 4.3 \pm 0.7$
$B^+ \to K^{*+} \gamma$	$4.02 \pm 0.13 \pm 0.13$	$-0.7 \pm 2.9 \pm 0.6$
	Δ_{0+} (%)	ΔA_{CP} (%)
$B \to K^* \gamma$	$+5.0 \pm 2.0 \pm 1.0 \pm 1.1$	$+2.6 \pm 3.8 \pm 0.7$

Search for $B^0 \to K^{*0}\tau\tau$ with Belle II

Br ×

- Branching fraction in SM of 1×10^{-7}
- NP models describing $R(D^{(*)})$ predict $\times 10^4$ branching fraction enhancement
- Experimentally very challenging
 - Low efficiency
 - Large missing energy
 - Low K^{*0} momentum
 - No signal peaking kinematic observable due to 2 + v final state
- Most recent limit from Belle (711 fb⁻¹) BR < 3.1×10⁻³ @ 90% CL [PRD 108] 011102 (2023)]

Search for $B^0 \to K^{*0} \tau \tau$ with Belle II

- Hadronic tag companion *B*
- $\tau\tau$ reconstructed in $ll, l\pi, \pi\pi, \rho X$ categories
- BDT trained using missing energy, residual energy in calorimeter, M(K^{*0}, τ track), dilepton mass, etc.
- Fit BDT score simultaneously across categories

 $BF(B^0 \to K^{*0}\tau\tau) < 1.8 \times 10^{-3}$ at 90% CL

Better tagging + more categories + BDT \rightarrow Twice better limit than Belle with half the statistics Most stringent limit on $b \rightarrow s\tau\tau$ transition

Search for $B^0 \to K_S^0 \tau^{\pm} l^{\mp}$ with Belle + Belle II

- $R(D^{(*)})$ anomalies and $B(B^+ \to K^+ \nu \bar{\nu})$ excess can be explained by a new heavy particle coupling differently to 3rd generation leptons
- BSM extensions predict $b \rightarrow s\tau l$ branching fractions near current experimental limits ~ 10⁻⁵ [1,2]

Search for $B^0 \to K_s^0 \tau^{\pm} l^{\mp}$ with Belle + Belle II

- Challenges:
 - Missing energy
 - Large backgrounds
- Hadronic tag companion B_{tag}
- Four channels: $l \in \{e^+, e^-, \mu^+, \mu^-\}$
- Reconstruct one-prong τ decays into μ , e, π , ρ : >70% of τ decays
- One τ in final state $\rightarrow M_{\rm recoil}^2 = m_{\tau}^2 =$ $(p_{e^+e^-} - p_{K^0_{S}} - p_l - p_{B_{tag}})^2$
- Dedicated veto for semileptonic decays and BDT for other backgrounds

Comparable to best existing limits First search for $B^0 \rightarrow K_S^0 \tau^{\pm} l^{\mp}$ decays

 $B^0 \rightarrow K^0_S \tau^+ e^-$

- Data

Measurement of $B^0 \rightarrow J/\psi\omega$ with Belle II

- Color-suppressed tree diagrams with $b \rightarrow c \bar{c} d$ transitions
- Time-dependent CPV mode to measure C and S, control mode for $b \rightarrow dll$ decays at B-factories
- Reconstruct $\omega \to \pi^+ \pi^- \pi^0$ decay mode: 89% of ω decays
- BDT to reject dominant $B^0 \to J/\psi X$ backgrounds

First observation (6.5 σ) and

consistent with world average

 $BF(B^0 \rightarrow J/\psi\omega) = (2.16 \pm 0.30 \pm 0.14) \times 10^{-5}$

PRD 111 032012 (2025)

Summary

- Belle and Belle II provide unique opportunities for studies of $b \rightarrow s$ transitions, including channels with third generation couplings
- $B \rightarrow K^* \gamma$ branching fraction and A_{CP} precision measurements
- First search for $B^0 \to K_S^0 \tau^{\pm} l^{\mp}$ with sensitivity similar to adjacent LFV channels
- Best limits for $B^0 \to K^{*0} \tau \tau$
- First observation of $B^0 \rightarrow J/\psi\omega$
- More results to come!

Backup

Search for $B^0 \to K^{*0} \tau \tau$ with Belle II

Source	Impact on $\mathcal{B} \times 10^{-3}$
$B \to D^{**} \ell / \tau \nu$ branching fractions	0.29
Simulated sample size	0.27
$qar{q}$ normalization	0.18
ROE cluster multiplicity	0.17
$\pi { m and} K { m ID}$	0.14
B decay branching fraction	0.11
Combinatorial $B\overline{B}$ normalization	0.09
Signal and peaking $B^0\overline{B}^0$ normalization	0.07
Lepton ID	0.04
π^0 efficiency	0.03
$f_{ m OO}$	0.01
$N_{\Upsilon(4S)}$	0.01
$D \to K_L$ decays	0.01
Signal form factors	0.01
Luminosity	< 0.01
Total systematics	0.52
Statistics	0.86

Measurement of inclusive $B \rightarrow J/\psi X$ with Belle II

- Useful for (semi) inclusive $B \rightarrow Xll$ and $B \rightarrow X\nu\nu$ measurements
- Differential measurement of the J/ψ momentum and polarization
- Hadronic tag companion B
- Fit yields with $M(l^+l^-)$
- First separate branching fraction measurement of B⁰ and B⁺

$$BF(B^0 \to J/\psi X) = (0.95 \pm 0.03 \pm 0.04)$$

$$BF(B^+ \to J/\psi X) = (1.19 \pm 0.03 \pm 0.05)$$

Search for $B^0 \to K_S^0 \tau^{\pm} l^{\mp}$ with Belle + Belle II

• One
$$\tau$$
 in final state $\rightarrow M_{\text{recoil}}^2 = m_{\tau}^2 = \left(p_{e^+e^-} - p_{K_S^0} - p_l - p_{B_{\text{tag}}}\right)^2$

Search for $B^0 \to K_S^0 \tau^{\pm} l^{\mp}$ with Belle + Belle II

19