

Lepton Flavor Physics & EDM

Toru lijima Kobayashi-Maskawa Institute (KMI) Nagoya University

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

ERNEMBLERENCE HGH ENERGY PHYS

Talk Outline

• Summary

Apology; My talk cannot cover or is very brief for EDM measurements and cannot cover LFV in meson decays.

Special thanks to; L. Bernhard, R. Bernstein, S. Kawasaki, T. Mibe, S. Miscetti, H. Nishiguchi, W. Ootani, A. Schöning, Y. Seiya, P. Winter & many Belle II collaborators for very useful inputs to prepare this talk

and also to speakers in parallel sessions

Sorry, if I miss any ...

Flavor Anomalies

"Muon g-2 anomaly"

Leptons are key probes to search for BSM Physics!

There is still no indication of physics Beyond the Standard Model (BSM) at LHC. Flavor physics experiments play important roles.

Role of Lepton Flavor Physics & EDM

- **cLFV**: (almost) background free from the SM \rightarrow clear signature of BSM
- **EDM**: $\mathcal{O}P$ observable \rightarrow new source of $\mathcal{O}P$ at high-energy scale relevant to BAU

Both have sensitivities to the very high energy scale; 10³⁻⁷ TeV!

Flavor-diagonal observable \rightarrow mass-scale of unknown particles.

Mass (energy) reach of flavor observables (Physics Briefing Book, arXiv:1910.11775)

Baryon Asymmetry of the Universe

Long history in step-by-step improvement to test the quantum corrections by QED, Hadronic, Electroweak, ...

Long history in step-by-step improvement to test the quantum corrections by QED, Hadronic, Electroweak, ... (9.4 ppm)

(10 ppm)

(13 ppm)

(5 ppm)

(1.3 ppm

Long history in step-by-step improvement to test the quantum corrections by QED, Hadronic, Electroweak, ... CERN (9.4 ppm)

Experiments in this decade

E989 (Fermilab)

E34 (J-PARC)

116 591 000 🕂 🧃	116 592 000 • • •	E821 (World 000 E65 911	116 594 000 日 116 594 000 日 日 日 日 日 日 日	116 595 000	X 10 ⁻¹¹	

E821 (99)

E821 (97) µ⁺

Beam

Polarization

Magnet

B-field

B-field gradients

E-field

Current sensitivity

	E989 @ Fermilab	E34 @ J-PARC
	Magic-momentum (p = 3.094 GeV/C)	Ultra-cold muon beam (p = 300 M
	P ≈ 97%	P _{max} = 50%
	Storage ring (7m radius)	MRI-like solenoid (r _{storage} = 33
	1.45 Tesla	3 Tesla
	Try to eliminate	Small gradients for focusing
	Electrostatic quadrupole	None
/ goal	140 ppb	~400 ppb (possibly 100 ppb

Muon g-2 at Fermilab

Design Goals;

- Statistical uncertainty of 100 ppb by using Fermilab accelerator to get muons 21 times more than Brookhaven.
- Total systematic uncertainty of 100 ppb by reducing systematic uncertainty for both ωa and B to 70 ppb with improved hardware.
- Measure a_u with four-fold improved precision of 140 ppb

g-2 ring moved from Brookhaven to Fermilab

Magnetic field weighted by muon distribution

Accurate field mapping & field tracking

muon distribution extracted by trackers

Kim Siang Khaw Lorenzo Cotrozzi Alberto Luisiani

Muon g-2 at Fermilab

Design Goals;

- Statistical uncertainty of 100 ppb by using Fermilab accelerator to get muons 21 times more than Brookhaven.
- Total systematic uncertainty of 100 ppb by reducing systematic uncertainty for both ωa and B to 70 ppb with improved hardware.
- Measure a_u with four-fold improved precision of 140 ppb

g-2 ring moved from Brookhaven to Fermilab

Magnetic field weighted by muon distribution

Accurate field mapping & field tracking

muon distribution extracted by trackers

Design Goals;

- Statistical uncertainty of 100 ppb by using Fermilab accelerator to get muons 21 times more than Brookhaven.
- Total systematic uncertainty of 100 ppb by reducing systematic uncertainty for both ωa and B to 70 ppb with improved hardware.
- Measure a_µ with four-fold improved precision of 140 ppb

g-2 ring moved from Brookhaven to Fermilab

Magnetic field weighted by muon distribution

Accurate field mapping & field tracking

Muon g-2 /EDM at J-PARC

$$\vec{\omega_a} + \vec{\omega_\eta} = -\frac{e}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \left(\frac{\vec{E}}{c} \right) \right) \right]_{\mathbf{0}}$$

https://g-2.kek.jp

World-first Acceleration of Positive Muon!

Test of muon cooling + re-acceleration at MLF S2 beam line

World's first cooling and acceleration of muon - The first muon accelerator finally coming to a reality. -

Time of flight

Beam profiles

after cooling & accel.

Reference SM Predictions

- Hadronic Vacuum Polarization (HVP) is the dominant error source.
- Tension between two approaches; Dispersive and Lattice

- Hadronic Vacuum Polarization (HVP) is the dominant error source.
- Tension between two approaches; Dispersive and Lattice

- Hadronic Vacuum Polarization (HVP) is the dominant error source.
- Tension between two approaches; Dispersive and Lattice

Dispersive approach (data-dr, iven)

Im∏_{had}(q²)

Lattice approach

prediction closer to exp.

- Hadronic Vacuum Polarization (HVP) is the dominant error source.
- Tension between two approaches; Dispersive and Lattice

Another approach by MUonE A new independent evaluation of a_{μ}^{HLO} by

 $\mu e \rightarrow \mu e$ differential cross section

Test runs in 2023-2024 → Technical proposal for 4-week run in 2025

Dispersive approach (data-dr, iven)

 $Im\Pi_{had}(q^2)$

Lattice approach

prediction closer to exp.

Eugenia Spedicato

0.016

0.014

0.0

_ຊ 0.008

⁶ 0.006

0.004

0.002

٣

CMD-3 at VEPP-2000 e⁺e⁻ collider

- Scanning $E_{CM} = 0.32-2 \text{ GeV}$
- Better detector performance
- Larger statistics (x30 CMD-2)

Forward-backward charge asymmetry 0.018

- \rightarrow Better fiducial volume determination
- →Better radiative correction modeling [≤] 0.012

Phys. Rev. D109, 112002 (2024)

Recent $e^+e^- \rightarrow \pi^+\pi^-$ Results

using sQED

10

0.016

0.014

0.012

_{ଷ୍} 0.008

0.004

0.002

້≥[ຼ] 0.006

CMD-3 at VEPP-2000 e⁺e⁻ collider

- Scanning $E_{CM} = 0.32-2 \text{ GeV}$
- Better detector performance
- Larger statistics (x30 CMD-2)

Forward-backward charge asymmetry 0.018

- \rightarrow Better fiducial volume determination
- \rightarrow Better radiative correction modeling \leq

Phys. Rev. D109, 112002 (2024)

Recent $e^+e^- \rightarrow \pi^+\pi^-$ Results

BaBar: measurement of additional radiation in e⁺e⁻ $\rightarrow \mu^+\mu^-\gamma$ and e⁺e⁻ $\rightarrow \pi^+\pi^-\gamma$

Bogdan Malaescu

Higher-order radiative processes

- NLO: $e^+e^- \rightarrow \mu^+\mu^-\gamma\gamma$ and $e^+e^- \rightarrow \pi^+\pi^-\gamma\gamma$
- NNLO: $e^+e^- \rightarrow \mu^+\mu^-\gamma\gamma\gamma$ and $e^+e^- \rightarrow \pi^+\pi^-\gamma\gamma\gamma$

affect ISR measurements if MC generator does not correctly account these contributions.

using sQED

√s, GeV

- e⁺e⁻ cross-section measurement w/ ISR method in progress at Belle II.
 - Good trigger efficiency confirmed
- Released the first result for $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ with 2.2% error
 - The largest uncertainty arises from the MC generator (1.2%)
- The results are about 2.5σ higher than BaBar and global fit.

	a _µ (3π)×10 ¹⁰	Difference×10 ¹⁰
BABAR alone [PRD104 11 (2021)]	45.86 ± 0.14 ± 0.58	3.2±1.3 (6.9%)
Global fit [JHEP08 208 (2023)]	45.91 ± 0.37 ± 0.38	3.0±1.2 (6.5%)

• Next: $e^+e^- \rightarrow \pi^+\pi^-$ w/ target precision: 0.5% of $a_{\mu}(2\pi)$

Belle II has joined this important community-wide activity Stay Tuned!

New Result by BMW (+ e⁺e⁻ data)

- 40% Reduction of uncertainties w.r.t. BMW20 by
 - Finer lattices \rightarrow more accurate continuum extrapolation
- Also include a small, long-distance contribution obtained using input from e⁺e⁻ data where they all agree
- Difference from measurement of a_{μ} by only 0.9 σ .

- 40% Reduction of uncertainties w.r.t. BMW20 by
 - Finer lattices \rightarrow more accurate continuum extrapolation
- Also include a small, long-distance contribution obtained using input from e⁺e⁻ data where they all agree
- Difference from measurement of a_{μ} by only 0.9 σ .

Need more studies & discussions

- Other lattice results ?
- Difference between e+eexperiments (+ tau data) ?
- MC generators ?
- HLbL ?
- MUonE ?

g-2 Theory Initiative

- 7th Plenary Workshop of the muon
- September 9-13, 2024 at KEK
- https://conference-indico.kek.jp/event/257
- Registration deadline extended to July 31.

CLFV in Muon Decays

$\mu^+ \rightarrow e^+ \gamma$

Signals

- Mono-energetic
- Angle
- Time coincidence

Backgrounds

MEG(2009-2013) set UL<4.2x10⁻¹³ (90%CL) MEGII sensitivity: 6x10-14

Alessandro Bravar

CLFV in Muon Decays

$\mu^+ \rightarrow e^+ \gamma$

Signals

- Mono-energetic
- Angle
- Time coincidence

Backgrounds

$\mu^+ \rightarrow e^+e^-e^+$

Signals

• 3-body kiematics

Backgrounds

- Accidental coincidences of tracks from Michel decays + Bhabha scattering
- Radiative decays with internal conversion: $\mu^+ \to e^+ \nu \bar{\nu} \gamma (\to e^+ e^-)$

DC beam at PSI has advantage to suppress accidental backgrounds in these searches

 $m_e = m_\gamma = m_\mu/2 = 52.8 MeV$ $\theta_{e\gamma} = 180^{\circ}$ 180° $\Delta t_{e\gamma}$ $\mu_{at rest}^{+}$

- physics background $\mu^+ \rightarrow e^+ \nu \bar{\nu} \gamma$ accidental background $\mu^+ \rightarrow e^+ \nu \bar{\nu}, + \gamma$

MEGII sensitivity: 6x10-14

Current limit <10⁻¹² (SINDRUM 1986)

Mu3e sensitivity < 5×10^{-15} (phase I at PiE5) $\rightarrow 10^{-16}$ (phase II at HiMB)

MEG II First Results & Outlook

MEG II is running since 2021

No excess of events over the expected background observed. Upper limit (90%C.L): $\mathcal{B}(\mu^+ \to e^+\gamma) < 7.5 \times 10^{-13}$ Combined (MEG II 2021 + MEG): $\mathcal{B}(\mu^+ \to e^+\gamma) < 3.1 \times 10^{-13}$ (90%C.L.) The most stringent limit to date.

Euro. Phys. J.C(2024)84:216

MEG II First Results & Outlook

Status of μ -N \rightarrow e-N Conversion Hajime Nishiguchi

COMET at J-PARC Phase-I

- Construct up to 90° bend and place detector.
- Engineering run in 2025/2026
- Intermediate sensitivity: $O(10^{-15})$

Phase-II (>2030)

- Complete all transport.
- Full sensitivity: O(10-17)

Mu₂e at Fermilab

Runl

- expect to start in 2027 and continue the beginning of PIP-II/LBNF long shutdown
- ~10³ improvement over SINDRUM-II

• Full data set by mid-2030s

DeeMe at J-PARC MLF

- S.E.S ~ 10⁻¹³ (carbon, 1 year)
- μ produced and stopped in C target
- Detector commissioning started
- Start physics run after fixing the fake track issue

COMET at J-PARC Phase-I

- Construct up to 90° bend and place detector.
- Engineering run in 2025/2026
- Intermediate sensitivity: $O(10^{-15})$

Phase-II (>2030)

- Complete all transport.
- Full sensitivity: $O(10^{-17})$

Mu₂e at Fermilab

Runl

- expect to start in 2027 and continue the beginning of PIP-II/LBNF long shutdown
- ~10³ improvement over SINDRUM-II

RunII

- Full data set by mid-2030s
- → < 8×10⁻¹⁷ @ 90%CL

Calorimete Tracker Stopping target 1.0T 2.0T

A schematic view of the Mu2e experiment (not including the Cosmic Ray Veto)

Tau Physics at Belle II/SuperKEKB

Plans to collect 50 ab⁻¹ of e⁺e⁻ collision data at and near Y(4S);

- 7 GeV e⁻ (HER) x 4 GeV e⁺ (LER)
- "Nano beam scheme"
- \rightarrow x30 higher luminosity than KEKB

K. Shibata

 $\sigma(e^+e^- \to \Upsilon(4S)) = 1.05 [\text{nb}] \qquad \text{Super B factory} \\ \sigma(e^+e^- \to \tau^+\tau^-) = 0.92 [\text{nb}] \qquad = \text{``Super T factory''}$

Tau is the heaviest charged lepton

- Sensitive to BSM physics
 - Lepton Flavor Violation

Complementary to muon cLFV

BSM
mass matrix
$$\left(m_{\tilde{l}}^2\right)_{ij} = \begin{pmatrix}m_{\tilde{l}}\\m_{\tilde{l}}\\m_{\tilde{l}}\end{pmatrix}_{ij}$$

- CP violation, EDM, Lepton Universality
- Also provide precise SM test

Tau Physics at Belle II/SuperKEKB

Plans to collect 50 ab⁻¹ of e⁺e⁻ collision data at and near Y(4S);

- 7 GeV e⁻ (HER) x 4 GeV e⁺ (LER)
- "Nano beam scheme"
- \rightarrow x30 higher luminosity than KEKB

K. Shibata

 $\sigma(e^+e^- \to \Upsilon(4S)) = 1.05 [\text{nb}] \qquad \text{Super B factory} \\ \sigma(e^+e^- \to \tau^+\tau^-) = 0.92 [\text{nb}] \qquad = \text{``Super T factory''}$

Tau is the heaviest charged lepton

- Sensitive to BSM physics
 - Lepton Flavor Violation

Complementary to muon cLFV

BSM
mass matrix
$$\left(m_{\tilde{l}}^2\right)_{ij} = \begin{pmatrix}m_{\tilde{l}}\\m_{\tilde{l}}\\m_{\tilde{l}}\end{pmatrix}_{ij}$$

- CP violation, EDM, Lepton Universality
- Also provide precise SM test

Technical challenge

- Low-multiplicity trigger in high luminosity environment
- Improved vertex resolution, particle ID, neutral clusters detection, ...
- Analysis techniques based on machine learning.

The coupling of leptons to W boson is flavor-independent in SM \rightarrow Identical lepton interaction rates involving e, μ or T \rightarrow Test of μ -e universality in τ decays

$$R_{\mu} = \frac{B(\tau^- \to \mu^- \bar{\nu}_{\mu} \nu_{\tau})}{B(\tau^- \to e^- \bar{\nu}_e \nu_{\tau})} \stackrel{\text{SM}}{=} 0.9726$$

The most precise test of e- μ universality in τ decays from a single measurement Consistent with the SM prediction at the level of 1.4 σ

Search for $\tau \rightarrow \mu \mu \mu$

- Previous results from Belle: 2.1 x 10-8 at 90% CL with 782 fb-1
- Tag side: I-track τ decays
- Belle II analysis explores

- Inclusion of I x 3 and 3 x 3 topologies
- Selection and background rejection using BDT

arXiv:2405.07386

> Signal: efficiency: 20.4% ($2.7 \times$ Belle efficiency);

- \blacktriangleright Number of expected BG: 0.5;
- \triangleright 1 event observed inside the SR;

 $\gg \mathcal{B}(\tau \to 3\mu) < 1.9 \times 10^{-8}$ at 90% C.L.;

CL_s median		UL at 90% C.L. on $\mathcal{B}(\tau \rightarrow 3\mu)$	Chiara R
$CL_s \pm 2\sigma$ $CL_s \pm 1\sigma$ CL_s	ATLAS	$3.8 \times 10^{-7} (\mathcal{L} = 20.3 \text{ fb}^{-1})$	Recent result
	LHCb	$4.6 \times 10^{-8} (\mathcal{L} = 3.0 \text{ fb}^{-1})$	(2024) 13863
	CMS	$2.9 \times 10^{-8} (\mathcal{L} = 131 \text{fb}^{-1})$	
	Belle	$2.1 \times 10^{-8} \ (\mathcal{L} = 782 \ \text{fb}^{-1})$	
	BaBar	$3.3 \times 10^{-8} \ (\mathcal{L} = 486 \ \text{fb}^{-1})$	
4 5	Belle II	$1.9 \times 10^{-8} (\mathcal{L} = 424 \text{ fb}^{-1})$	
$\times 10^{-8}$			

The world best limit!

Search for $\tau \rightarrow IV^{0}$ at Belle/Belle II

Update w/ full Bele data set of 980 fb⁻¹

- More decay modes in the tag side
- $V^0 = \rho, \omega, \phi, K^{*0}$ and K^{*0}
- Further suppress $\tau \rightarrow 3\pi v$ and $ee \rightarrow qq$ with BDT

World leading results

JHEP 2023, 118 (2023)

- Belle II explores also untagged inclusive reconstruction
- higher signal efficiency (16% higher)
- Background rejection with preselection and BDT

Mode	ε (%)	$N_{ m BG}$	$\sigma_{ m syst}$ (%)	$N_{ m obs}$	\mathcal{B}_{obs} (×10
$\tau^\pm \to \mu^\pm \rho^0$	7.78	$0.95 \pm 0.20 (stat.) \pm 0.15 (syst.)$	4.6	0	< 1.7
$\tau^\pm \to e^\pm \rho^0$	8.49	$0.80 \pm 0.27 (stat.) \pm 0.04 (syst.)$	4.4	1	< 2.2
$\tau^\pm \to \mu^\pm \phi$	5.59	$0.47 \pm 0.15 (stat.) \pm 0.05 (syst.)$	4.8	0	< 2.3
$\tau^{\pm} \rightarrow e^{\pm} \phi$	6.45	$0.38 \pm 0.21 (stat.) \pm 0.00 (syst.)$	4.5	0	< 2.0
$\tau^\pm \to \mu^\pm \omega$	3.27	0.32 ± 0.23 (stat.) ± 0.19 (syst.)	4.8	0	< 3.9
$\tau^{\pm} \rightarrow e^{\pm} \omega$	5.41	0.74 ± 0.43 (stat.) ± 0.06 (syst.)	4.5	0	< 2.4
$\tau^{\pm} ightarrow \mu^{\pm} K^{*0}$	4.52	$0.84 \pm 0.25 (stat.) \pm 0.31 (syst.)$	4.3	0	< 2.9
$\tau^{\pm} \rightarrow e^{\pm} K^{*0}$	6.94	0.54 ± 0.21 (stat.) ± 0.16 (syst.)	4.1	0	< 1.9
$\tau^{\pm} \rightarrow \mu^{\pm} \overline{K}^{*0}$	4.58	$0.58 \pm 0.17 (stat.) \pm 0.12 (syst.)$	4.3	1	< 4.3
$\tau^{\pm} \to e^{\pm} \overline{K}^{*0}$	7.45	$0.25 \pm 0.11 (stat.) \pm 0.02 (syst.)$	4.1	0	< 1.7

 $\mathcal{B}(\tau \to e\phi) < 23 \times 10^{-8}$ 190 fb⁻¹ ${\cal B}(au o \mu \phi) < 9.7 imes 10^{-8}$ 90% CL

Tau Physics Prospects

Tau LFV decays

Tau Physics Prospects

Belle II will push the sensitivity down to $O(10^{-9 \rightarrow 10})$ at $5 \rightarrow 50 \text{ ab}^{-1}$

Belle II will push the sensitivity down to $O(10^{-9 \rightarrow 10})$ at $5 \rightarrow 50 \text{ ab}^{-1}$

Belle II will push the sensitivity down to $O(10^{-9 \rightarrow 10})$ at $5 \rightarrow 50$ ab⁻¹

Opportunities also at LHC \rightarrow HL-LHC (LHCb, ATLAS, CMS) proposed future facilities; Super T-c factory, FCC-ee, CEPC

Worldwide Efforts for EDM

Electron

• New bound by the HfF⁺ molecule at JILA (Colorado, NIST)

 $d_e = (-1.3 \pm 2.0_{\text{stat}} \pm 0.6_{\text{syst}}) \times 10^{-30} e \,\text{cm}$ $d_e < 4.1 \times 10^{-30} e \,\mathrm{cm}(90\%\,\mathrm{CL})$

ThO by ACME (Havard, Northwestern, Yale)

Muon

• MuEDM at PSI

Francesco Renga

• Spin-frozen method to achieve O(10⁻²³) e cm

Neutron

• PSI, ILL, SNS, LANL, TRIUMF $\sim O(10^{-27})$ e cm

& More (ongoing, planned and proposed)

- Diamagnetic atoms (Hg, Ra, Xe)
- Molecules
- Proton (strorage ring)

Alex Keshavarzi

Searches for EDMs

See more info: EDMs world wide https://www.psi.ch/en/nedm/edms-world-wide

Various searches for EDMs are ongoing and planned.

Worldwide Efforts for EDM

Electron

• New bound by the HfF⁺ molecule at JILA (Colorado, NIST)

 $d_e = (-1.3 \pm 2.0_{\text{stat}} \pm 0.6_{\text{syst}}) \times 10^{-30} e \,\text{cm}$ $d_e < 4.1 \times 10^{-30} e \,\mathrm{cm}(90\%\,\mathrm{CL})$

• ThO by ACME (Havard, Northwestern, Yale)

Muon

• MuEDM at PSI

Francesco Renga

• Spin-frozen method to achieve O(10⁻²³) e cm

Neutron

• PSI, ILL, SNS, LANL, TRIUMF $\sim O(10^{-27})$ e cm

& More (ongoing, planned and proposed)

- Diamagnetic atoms (Hg, Ra, Xe)
- Molecules
- Proton (strorage ring)

Alex Keshavarzi

See Science 381 (2023) 6653

mass scale for new CPV source

 $M/g \ge 40 \,\mathrm{TeV}/\alpha^{1/2}$

Searches for EDMs

See more info: EDMs world wide https://www.psi.ch/en/nedm/edms-world-wide

Various searches for EDMs are ongoing and planned.

Summary

- Lepton flavor physics and EDM are important to find BSM physics at high energy scale.
- "Anomaly" found in the muon anomalous magnetic moment could be clue to BSM, but EDM and also clarification of the SM prediction
- Rich muon LFV programs in progress at J-PARC (COMET, DeeMe), PSI (MEG II, Mu3e) and Fermilab (Mu2e).
- There are various ongoing, planned and proposed EDM experiments. Recent electron EDM results are intriguing.

requires verification by other experiments based on different technique, i.e.; J-PARC muon g-2/

• Belle II at SuperKEKB provides rich programs w/ large sample of tau decays, complementary to muon projects and also provides inputs to the muon g-2 anomaly from on-going experiment.

Summary

- Lepton flavor physics and EDM are important to find BSM physics at high energy scale.
- "Anomaly" found in the muon anomalous magnetic moment could be clue to BSM, but EDM and also clarification of the SM prediction
- Rich muon LFV programs in progress at J-PARC (COMET, DeeMe), PSI (MEG II, Mu3e) and Fermilab (Mu2e).
- There are various ongoing, planned and proposed EDM experiments. Recent electron EDM results are intriguing.

Many challenges are in progress and interesting results will come in 2025~ and 2030's! Gambaro (がんばろう) !! & Stay Tuned!!! Thank you!

requires verification by other experiments based on different technique, i.e.; J-PARC muon g-2/

• Belle II at SuperKEKB provides rich programs w/ large sample of tau decays, complementary to muon projects and also provides inputs to the muon g-2 anomaly from on-going experiment.

Backup

Search for μ -N \rightarrow e-N

"Muon-to-Electron Conversion in Munic Atom (μ -N \rightarrow e⁻N)"

• One of the most prominent process of muon LFV

$$\mu^- + (A, Z) \to e^- + (A, Z)$$

Signals:

a mono-energetic electron

$$E_e \approx m_\mu - E_{bound\,\mu} - E_{recoil} \approx 1$$

Backgrounds:

- Physics backgrounds
- Beam-related backgrounds
- Cosmic-ray induced

Extinction is essential

Extinction =

of leaked protons in between bunches

of filled protons in main bunches

