The Belle II Upgrade Program

Belle

Katsuro Nakamura (KEK) on behalf of the Belle II Collaboration

42nd International Conference on High Energy Physics (ICHEP 2024)

Belle II Experiment

Mt. Tsukuba

Super SuperKEKB KEKB • Asymmetric e⁺ (4GeV) e⁻(7GeV)

Asymmetric e⁺ (4GeV) e⁻(7GeV) collider w/ world luminosity record
Generate a large number of B and D mesons, and tau leptons

Belle II

Belle II detector

- Hermetic detector: full event reconstruction to exploit kinematic constraint
- Excellent tracking, PID, and vertex performance

at KEK (Tsukuba, Japan)

Belle II detector

New physics search via precision measurement of particle decays
 Target integrated luminosity: 50 ab⁻¹

Belle II Detector

SuperKEKB luminosity status and prospect

- Achievements as of July 2024
 - World record luminosity: 4.7×10³⁴ cm⁻²s⁻¹
 - Integrated luminosity: ~530 fb⁻¹ (recorded)
- Targets
 - ~10-fold in luminosity: 6×10^{35} cm⁻²s⁻¹
 - ~100-fold in integrated luminosity: 50 ab⁻¹

- Additional long shutdown(s) under discussion to improve the SuperKEKB luminosity.
 - LS2 in <u>2028 or later</u>
 - Possible SuperKEKB upgrade: Redesign of Interaction Region (IR), emmittance reduction in injector, etc...

Beam-induced Background

Severe beam-induced background at high luminosity

- Secondary particles from beam-halo and radiative photon scattering in the IR material
- Very low-momentum particles from beam collisions through two-photon process ($e^+e^- \rightarrow eeee$)
- In future operation, background rates getting closer or reaching system limits.
 - Tracking system (Strip Si + drift chamber CDC) and central PID (TOP) are main concerns.
- Also, pixel Si detector is damaged due to sudden beam loss. Resulting in ~2% dead area.
 - The cause and the measures are being understood, such that frequency could be reduced in future.

Extrapolated beam background rate at target luminosity (6×10^{35} cm⁻²s⁻¹)

Belle II detector upgrade

Motivations for the detector upgrade

- Improve detector robustness and tolerance against beam-induced backgrounds
 - for stable operation with sufficient performance at higher luminosity operation
- Improve physics performance
 - get more physics per luminosity \rightarrow effectively increase luminosity

• Framework Conceptual Design Report (FCDR) is published. [arXiv:2406.19421]

- Summarizes various possible detector upgrade plans

The upgrade plans are categorized into two different timescales, based on the progress of each R&D and its urgency.

- Middle-term upgrade → during LS2 (2028 or later)
- Longer-term upgrade → beyond LS2 (~mid-2030s)

7

Possible Belle II detector upgrade in LS2

talk at 15:57 on Jul 18 by A. Kumar

Upgraded vertex detector: VTX

ICHEP 2024

Fully-pixelated CMOS MAPS detector with simple design and light support

- Cope with more significant background rates
- Improve low-momentum tracking and impact parameter resolution

5 layers with straight ladders

- inner 2 layers: self-supported, cooling method under study
- outer 3 layers: CF structure, water cooling

OBELIX sensor: DMAPS for Belle II vertex detector

- Design based on TJ-Monopix2 (prototype for HL-LHC ATLAS), implementing new digital periphery and trigger logic
- 1st prototype submission will be in late 2024.

Design/Target

Sective biology and a section of the	SEIISOI	Pixel pitch	33 µm		
OBELIX-1 2x2 pitch	2x2 pixels pitch 33x33 µm ²	Sens. area	~30x16 mm ²		
overall size 30.2x18.8 mm ²		Sens. thickness	< 50 μm (sensitive layer < 30um)		
billing analogue periphery		ТоТ	7-bit		
digital periphery		Integration	50 to 100 ns		
		Power	< 200 mW/cm ²		
		Radiation tolerance	1 MGy 5×10 ¹⁴ n _{ec} /cm ²		

2024/07/18

Improvement in Tracking Performance with VTX

- Recover the tracking efficiency degradation under a high background environment
- $\blacksquare \sim 70\%$ improvement in efficiency for low-momentum pions
 - Slow-pion is essential for D* reconstruction required in many "bread-and-butter" modes of Belle II (e.g $B \rightarrow D^* lv, D^* \tau v$)

• ~35% better B decay-vertex resolution in $B \rightarrow J/\psi K_S$

-0.005

0.005

0.01

 $B_{sig} \sigma_{z} [cm]$

0

-0.01

Central Drift Chamber (CDC)

New front-end board with better cross-talk tolerance, power consumption, and radiation hardness

- New 8-channel 65nm front-end ASIC (TDC+flash-ADC)
 - 6 ASICs per board
- Rad-hard optical module QSFP (for data transmission to trigger/DAQ)
 - Total dose: ~1kGy, total neutron fluence: 1.0×10^{12} n/cm²
 - Candidates of QSFP are selected through γ and n radiation hardness tests

Performance characterization with 3-GeV electron beam

- Observed comparable performance to the existing front-end.
- But, slightly worse time resolution.
 Further investigations are ongoing.

Electron beam test at KEK

Prototype new front-end module

Hit time residual distribution

Central PID: Time of Propagation counter (TOP)

- Complete replacement of MCP-PMTs with lifetime-extended ALD type
 - Better accumulated-charge tolerance, necessary to survive until the end of Belle II
 - At the moment, ~50% of PMTs are still ALD type with a shorter lifetime.
- New compact front-end boards
 - Waveform Digitizer ASoC: No need for high-end FPGA w/ complex process
 - \rightarrow Less power consumption (lower T for smaller QE degradation of PMT) and fewer SEU

Level-1 Trigger

Next-generation Universal Trigger (UT) board: UT5

	UT3	UT4	LITE .	UT generation	UT3	UT4	UT5
	Xilinx Virtex-6	Xilinx UltraScale	015	Main FPGA (Xilinx)	Virtex6	Virtex Ultrascale	Versal
					XC6VHX380-565	XCVU080-190	
	GIX, GIH	GIH, GIY	Xilinx Versal	Sub FPGA (Xilinx)		Artex7	Artex7, Zynq
		Ν		# Logic gate	500k	2000k	8000k
			(SoC FPGA)	Optical transmission rate	8 Gbps	25 Gbps	58 Gbps
				RAM		DDR4	DDR4, UltraRAM
		······································	GTY, GTIVI	# UT boards	30	30	10
		V		Cost per a board (k\$)	15	30	50
				Time schedule	2014-	2019-2026	2024-2032
C R R C I							

Offers improved background rejection with more sophisticated trigger algorithms

- Large DSP and AI engine: machine-learning-based trigger logic
- High data-rate bandwidth: broader hit information from detectors available
 - Central-drift-chamber trigger: More TDC and ADC information from all wires
 - EM calorimeter trigger: Higher granularity hit information for cluster shape reconstruction and mitigation of pile-up
- New vertex-detector trigger: Additional background suppression in track trigger.
 Also, offers possible detection of long-lived particles.

Possible longer-term upgrade (~mid-2030)

New superconductive final-focus quad. magnets (QCS) to improve luminosity

- Nb₃Sn wire for compact magnet with sufficient field strength
 - Current density: ~3000A/mm²
 - Filament size: < 5um (c.f. LHC filament ~ 50um)
 - R&D ongoing
- -Vertex detector has to be also replaced with a modified design.

Longer-term upgrade ideas in detector

- New tracking chamber w/ pixel Si and/or gas
- PID counters: photosensor upgrade
- EM calorimeter: replace CsI(Tl) crystals with pure CsI, APD readout, add pre-shower detector

Move the magnets close to the IP and make the orbits in IR straight.

Chiral Belle proposal

talk at 16:00 on Jul 18 by M. Roney ("Quark and Lepton Flavour" session)

Chiral Belle:

SuperKEKB e^-e^+ collisions with polarized e^- beam

Open new and unique precision physics programs:

- Precision measurement in EW neutral current coupling sensitive to new physics e.g. light Z_{dark}
- Tau g-2 (precision at ~10⁻⁵ level)

biole Solenoid Solenoid Skew-Quad

- Required upgrades
 - Low-emittance polarized electron source
 - Spin rotator magnets
 - to rotate the spin before and after IP
 - Compton polarimeter
 - for online beam polarization measurement
- Tests for the polarized e⁻ source and polarization measurement are investigated.

Summary

Belle II detector upgrades are essential for the future high luminosity operation

- Improve the detector robustness and tolerance against beam-induced backgrounds
- Improve the physics performance
- The framework of the Belle II detector upgrade in middle-term and long-term are summarized in Framework Conceptual Design Report (FCDR), which is now published. [arXiv:2406.19421]
 - Candidates of upgrades during LS2:

Vertex detector, drift chamber (electronics), Time-of-Projection counter (PMT, electronics), Resistive Plate Chamber, and Level-1 trigger electronics

- Longer-term plan: new QCS and larger-scale detector upgrade
- Chiral Belle: extends the Belle II physics reach

 Detailed LS2 plan is under discussion and will be decided soon for maximizing the physics production.

K_L/μ detector: Resistive Plate Chamber (RPC)

Option-1: Replace RPCs with scintillator+SiPM

- Better hit rate capability
- Fast timing (~100ps) gives K_L momentum resolution via TOF (13% p resolution at 1.5 GeV)
 - Physics impact still under study
- 6x6mm² SiPM combined with a high-speed and low-noise preamplifier
- Cosmic-ray test confirmed 90ps resolution of the test module with 1m long scintillator.

Option-2: Change RPC operation from streamer to proportional mode

- Avoid blinding from localized discharge by streamer to mitigate possible efficiency drop due to high background neutron flux in future.
- Require new in-line preamplifiers at the detector-panel faces to cope with smaller charge.

– R&D tasks

- Find a suitable gas mixture and operating point for HV for high efficiency and low streamer probability. Introduction of SF6 is being studied.
- Amplification front-end R&D. Using a method similar to one applied for ATLAS RPC using a new SiGe preamp, we expect a rate capability of approximately 10Hz/cm2, which is adequate for the expected future background rate.

Sudden Beam Loss

What is "Sudden Beam Loss"

- Significant beam charge loss (> a few %) that occurs suddenly within only a few turns without any precursory phenomena.
- Such large beam loss damages the pixel detector and the collimator, and causes the quench of the superconductive magnets.
- The cause of SBL is being understood.
 - From the observations of the vacuum burst, the study of beam-pipe knocking and the measurement of bunch-by-bunch orbit, a strong suspect is that disturbance of the beam started in specific beam pipes with electrodes for the electron cloud mitigation. Dust or discharge in the beam pipe.
 - Measures for the SBL will be applied during the summer shutdown.

Machine upgrade option: Interaction Region

Gain in luminosity is to be estimated.

2024/07/18

ICHEP 2024

Aging effect in drift chamber (CDC)

 ~6% gain drop with an accumulated charge in a wire of 1 C/cm is expected from extrapolation of test chamber measurement for Belle CDC.

- The study was done up to 0.16 C/cm and observed ~1% gain drop.
- Accumulated charge in wires of drift chamber during Run 1
 - Inner layer: ~0.1 C/cm
 - Outer layer: ~0.02 mC/cm
- No siginificant gain drop is seen yet in Belle II.

