

Bottomonium and exotic spectroscopy 22nd Flavor Physics and CP Violation (FPCP)

Renu On the behalf of Belle II Collaboration Supported by US DOE funding 27th May, 2024 - 31st May, 2024

Bottomonium Spectrum

- Below the BB threshold states are well described by potential models.
- ▶ Above BB threshold states exhibit unexpected properties:
 - Method Hadronic transitions to lower bottomonia are strongly enhanced.
 - The η transitions are not suppressed compared to $\pi^+\pi^$ transitions. Strong violation of Heavy Quark Spin Symmetry.
 - $/\!\!\!/ D_b Z_b^+(10610)$ or $Z_b^+(10650)$: observed near the $B^{(*)}\bar{B}^*$ thresholds, properties are consistent with $B^{(*)}\bar{B}^*$ molecules.

Exotic: molecule, compact tetra-quark.

- Conventional bottomonium (pure *bb* state)
- Bottomonium like states (mix of $b\bar{b}$ and $B\bar{B}$)
- Purely exotic states (Z_b)

Belle (II) relevant datasets

Bottomonium below BB threshold

Search for $h_b(2P) \rightarrow \Upsilon(1S)\eta$ and $h_b(1P,2P) \rightarrow \Upsilon(1S)\pi^0$ at Belle

- The properties of spin-singlet $h_b(1P,2P)$ are expected to be similar to spin-triplet partners $\chi_{b1}(1P,2P)$ state.
- Theoretical prediction: the ratio of the annihilation rates for the $h_b(1P)$ and $h_b(2P)$ is the same as the corresponding ratio for $\chi_{b1}(1P)$ and $\chi_{b1}(2P)$, $R_{h_b} = R_{\chi_{b1}}$.
- Based on current results, the $R_{h_b}/R_{\chi_{b1}} = 0.24^{+0.47}_{-0.24}$ with 1.5 σ discrepancy from unity. This discrepancy will increase if the rate of $h_b(2P) \rightarrow \Upsilon(1S)\eta$ is as large as 10%

Search for $h_b(2P) \rightarrow \Upsilon(1S)\eta$ and $h_b(1P,2P) \rightarrow \Upsilon(1S)\pi^0$ at Belle

- Evidence for $h_b(2P) \rightarrow \Upsilon(1S)\eta$ with 3.5 σ significance. $\gg \mathscr{B}(h_b \to \Upsilon(1S)\eta) = (7.1^{+3.5}_{-3.2} \pm 0.8) \times 10^{-3}$
- No significant $h_b(1P, 2P) \rightarrow \Upsilon(1S)\pi^0$ signal is observed.
 - Upper limits at the 90% C.L. are set.
 - $\gg \mathscr{B}(h_b(1P,2P) \to \Upsilon(1S)\pi^0) < 1.8 \times 10^{-3} \text{ at } 90\% \text{ C.L}$

Preliminary results!

Search for $h_b(2P) \rightarrow \gamma \chi_{b,I}(1P)$ at Belle

Search for $h_b(2P) \rightarrow \gamma \chi_{b,I}(1P)$ at Belle

- No significant $h_b(2P) \rightarrow \gamma \chi_{bJ}(1P)$ signal is observed.
- Upper limits at the 90% C.L. are set.

TABLE IV. Observed upper limits at 90% CL for the branching fractions of the investigated transitions.

Channel	\mathcal{B}
$h_b(2P) \to \gamma \chi_{b2}(1P)$	$< 1.2 \times 10^{-2}$
$h_b(2P) \to \gamma \chi_{b1}(1P)$	$< 5.4 \times 10^{-3}$
$h_b(2P) \to \gamma \chi_{b0}(1P)$	$<2.7\times10^{-1}$

Results are consistent with the Relativized Quark Model (RQM)

Preliminary results!

Hidden flavor cross section

Discovery of $\Upsilon(10753)$

- $\Upsilon(10753)$ was observed in energy dependence of $e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-$ (n = 1,2,3)cross sections by Belle.
- The global significance is 5.2σ

	$\Upsilon(5S)$	$\Upsilon(6S)$	New str
$M (MeV/c^2)$	$10885.3 \pm 1.5 {}^{+2.2}_{-0.9}$	$11000.0\substack{+4.0 \\ -4.5 \\ -1.3}$	10752.7
$\Gamma ~({ m MeV})$	$36.6^{+4.5}_{-3.9}{}^{+0.5}_{-1.1}$	$23.8^{+8.0\ +0.7}_{-6.8\ -1.8}$	$35.5^{+17.6}_{-11.5}$

- $e^+e^- \rightarrow b\bar{b}$ cross section in bottomonium energy region based on the Belle and BABAR measurement.
 - A dip near 10.75 GeV likely caused by interference between BW and smooth component. **<u>CPC 44, 8, 083001 (2020)</u>**

$\Upsilon(10753)$: theoretical interpretation

Mass does not match $\Upsilon(3D)$ theoretical predictions, and D-wave states are not seen in e^+e^- collisions.

 $\Upsilon(4S) - \Upsilon(3D)$ mixing can be enhanced due to hadronic loops.

Unique data with energy scan near $\sqrt{s} = 10.75$ GeV

- - Confirm and study the $\Upsilon(10753)$.

The point with the highest statistics (9.8 fb⁻¹) is near the $\Upsilon(10753)$ peak.

Search for $\Upsilon(10753) \rightarrow \pi^+ \pi^- \Upsilon(nS)$ at Belle II

Confirm $\Upsilon(10753)$ existence

Search for $\Upsilon(10753) \rightarrow \pi^+ \pi^- \Upsilon(nS)$ at Belle II

Confirm $\Upsilon(10753)$ existence

New measurement confirms previous Belle result: cross section is peaking near 10.75 GeV.

	Belle + Belle II (MeV)	Belle (MeV
$M_{\Upsilon(10753)}$	$10756.6 \pm 2.7 \pm 0.9$	10752.7 ± 5.9
$\Gamma_{\Upsilon(10753)}$	$29.0 \pm 8.8 \pm 1.2$	35.5 ^{+17.6+3.9} -11.3-3.3

- Results are consistent with the Belle results.
- Uncertainties are improved by a factor of two from previous Belle results.

+0.7-1.1

Resonant structure in $\Upsilon(10753) \rightarrow \pi^+ \pi^- \Upsilon(nS)$

$Z_{h}^{+}(10610)$ or $Z_{h}^{+}(10650)$ intermediate resonances

No signal of intermediate $Z_h^+(10610)$ or $Z_h^+(10650)$ resonances are observed.

Di-pion spectrum

- $\gg \pi^+\pi^-\Upsilon(1S)$: $M(\pi^+\pi^-)$ distribution is consistent with phase space.
- $\gg \pi^+\pi^-\Upsilon(2S)$: larger values of $M(\pi^+\pi^-)$ enhanced (similar to $\Upsilon(2S) \rightarrow \pi^+ \pi^- \Upsilon(1S)$ process)

 $\Delta M_{\pi} = M(\pi^{\pm}\mu^{+}\mu^{-}) - M(\mu^{+}\mu^{-})$

Study of $\Upsilon(10753) \rightarrow (\pi^+ \pi^- \pi^0) \gamma \Upsilon(1S)$ at Belle II

Theory:

Mixed 4*S* − 3*D* model suggests $\Upsilon(10753) \rightarrow \omega \chi_{h,I}(1P)$ could be enhanced. PRD 104. 034036 (2021)

- **Charmonium sector:**
 - Similar to $\Upsilon(10753)$ in $e^+e^- \rightarrow \pi^+\pi^-\Upsilon(nS)$, $\Upsilon(4260)$ was observed in 4)||**|**|| $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ cross section by BESIII.

Solution Expect similar nature of $\Upsilon(10753)$ and $\Upsilon(4260)$.

- Inspired by decay modes of Y(4260) charmonium state, we expect
 - $\Upsilon(10753) \rightarrow \omega \chi_{hI}(1P)$

 $\Upsilon(10753) \rightarrow \gamma X_h$

 X_{h} : bottomonium analogue of X(3872)

Observation of $\Upsilon(10753) \rightarrow \omega \chi_{b,I}(1P)$ at Belle II

The $e^+e^- \rightarrow \omega \chi_{hI}(1P)$ (J = 1,2) cross sections peak at $\Upsilon(10753)$.

$$\ge \frac{\sigma(e^+e^- \to \omega\chi_{bJ})}{\sigma(e^+e^- \to \Upsilon(nS)\pi^+\pi^-)} \sim \begin{cases} 1.5 \text{ at } \Upsilon(10753) \text{ GeV} \\ 0.15 \text{ at } \Upsilon(5S) \text{ GeV} \end{cases}$$

I(10/53) and I(53) have different internal structure?

▶ Measured ratio:

 $\frac{\sigma(\Upsilon(10753) \to \omega \chi_{b1})}{\sigma(\Upsilon(10753) \to \omega \chi_{b2})} = 1.3 \pm 0.6$

Prediction for a pure *D*-wave state: 15 PLB 738, 172 (2014) 41 || / jr

Prediction for a 4S - 3D **mixed state: 0.18 - 0.22**

PRD 104, 034036 (2021)

Disagreement with both pure *D* **wave state** Tension with the 4S - 3D mixed model (1.8 σ)

Solution 1: constructive interference

Solution II: destructive interference

Channel	\sqrt{s} (GeV)	N ^{sig}	σ ^(UL) _{Born} (pl
ωχ _{b1}	10 745	$68.9^{+13.7}_{-13.5}$	$3.6^{+0.7}_{-0.7}\pm0$
ωχ _{b2}	10.745	$27.6^{+11.6}_{-10.0}$	$2.8^{+1.2}_{-1.0}\pm 0$
ωχ _{b1}	10.805	$15.0^{+6.8}_{-6.2}$	1.6 @90%
ωχ _{b2}		$3.3^{+5.3}_{-3.8}$	1.5 @90%

Search for $\Upsilon(10753) \rightarrow \gamma X_b$ at Belle II

The X_h is posited bottomonium counterpart of X(3872).

- No significant signal of X_h signal is observed.
- Upper limits on cross sections are set for $M(X_b) \in (10.45 - 10.65) \text{ GeV}$

\sqrt{s} GeV	$\sigma_B(e^+e^- \to \gamma X_b) \times \mathscr{B}(X_b \to \omega \Upsilon(1S))$
10.653	(0.14-0.55) pb
10.701	(0.25–0.84) pb
10.745	(0.06–0.14) pb
10.805	(0.08–0.37) pb

Search for $\Upsilon(10753) \rightarrow \omega \eta_b(1S)$ at Belle II

Motivation:

- Theoretically, tetra-quark interpretation predicts, a strong enhancement of the decay $\omega \eta_b(1S)$ compared to $\pi^+\pi^-\Upsilon(nS)$ <u>CPC 43 (2019) 12, 123102</u>
- 4S 3D mixed model predicts that decay rate of $\omega \eta_b(1S)$ is smaller than $\pi^+\pi^-\Upsilon(nS)$ by a factor of 0.2-0.4 PRD 109, 014039 (2024)

Strategy

- Partial reconstruction:
 - Reconstructed ω meson in $\pi^+\pi^-\pi^0$ and use the recoil mass of ω as signal variable

$$M_{\text{recoil}}(\pi^{+}\pi^{-}\pi^{0}) = \sqrt{\left(\frac{\sqrt{s} - E^{*}}{c^{2}}\right)^{2} - \left(\frac{p^{*}}{c}\right)^{2}}$$

Search for $\Upsilon(10753) \rightarrow \omega \eta_b(1S)$ at Belle II

- No significant $\omega \eta_b(1S)$ signal is observed.
- Upper limits at the 90% C.L. on the Born cross section are set. $\sim \sigma(e^+e^- \rightarrow \omega\eta_b(1S)) < 2.5 \text{ pb}$

Ratio:

$$\quad \frac{\sigma(\omega\eta_b)}{\sigma(\pi^+\pi^-\Upsilon(nS))} < 1.25$$

Prediction for a tetra quark model: ~ 30 <u>CPC 43 (2019) 12, 123102</u>

Prediction for a 4S - 3D mixed state: 0.2 - 0.4

PRD 109, 014039 (2024)

Evidence against the tetraquark model predictions. Compatible with S - D mixed model

Open flavor cross-section

Energy dependence of $e^+e^- \rightarrow B^{(*)}\bar{B}^{(*)}$ cross section at Belle II

Motivation:

- The open flavor final states $(B^{(*)}\overline{B}^{(*)})$ make dominant contribution to $b\overline{b}$ cross-section.
 - Their measurements are critical for understanding the structure of $b\bar{b}$ states.
- The measured cross sections can be used in the coupled channel analysis of all available scan data to extract the parameters of the Υ states.
 - Belle measured the energy dependencies of $\sigma(e^+e^- \rightarrow B^{(*)}\bar{B}^{(*)})$ and observed an oscillatory behavior.
 - Channels $B^{(*)}\bar{B}^{(*)}$ saturate the cross-section below the $B_s^*\bar{B}_s^*$ threshold.
- To improve the accuracy below Y(5S) and understand the nature of Y(10753), need more data: Belle II

Belle results

Energy dependence of $e^+e^- \rightarrow B^{(*)}\bar{B}^{(*)}$ cross section at Belle II

- The obtained cross sections at four energies are consistent with the Belle results.
- $\triangleright \sigma(e^+e^- \to B^*\bar{B}^*)$ increases rapidly above $B^*\bar{B}^*$ threshold
 - \clubsuit Similar phenomenon was observed near $D^*\bar{D}^*$ threshold.
 - **Possible interpretation:** resonance or bound state ($B^*\bar{B}^*$) or $b\bar{b}$) near $B^*\bar{B}^*$ threshold
 - Inelastic channels $[\pi^+\pi^-\Upsilon(nS) \text{ and } \eta h_b(1P)]$ could also be enhanced. Need more data to study these transitions.

Preliminary results!

Energy dependence of $e^+e^- \rightarrow B^{(*)}\bar{B}^{(*)}$ cross section at Belle II

Comparison of $\sigma_{h\bar{h}}$ **and** $\sigma_{B\bar{B}} + \sigma_{B\bar{B}^*} + \sigma_{B^*\bar{B}^*}$

Saturate the $\sigma_{b\bar{b}}$ cross-section below the $B_s^{(*)}\bar{B}_s^{(*)}$ threshold. Previously observed deviation at high energy is presumably due to $B_s^{(*)}\bar{B}_s^{(*)}$, multi-body $B^{(*)}\bar{B}^{(*)}\pi(\pi)$, etc.

Preliminary results!

Black dots: Belle + BaBar [PRL 102, 012001 (2009), PRD 93, 011101 (2016), CPC 44, 083001 (2020)]

Open blue circles: Belle [JHEP 06, 137 (2021)]

Filled red circles: Belle II [this work]

Production of prompt J/ψ and Υ mesons

Production of prompt J/ψ and Y mesons

	$J/\psi - \Upsilon(1S)$	
σ	$133 \pm 22 \text{ (stat)} \pm 7 \text{ (syst)} \pm 3 (\mathscr{B})$	76 ± 21
$\sigma_{ m eff}$	$26 \pm 5 \text{ (stat)} \pm 2 \text{ (syst)}_{-3}^{+22} \text{ (theo)}$	14 ± 5 (s

Effective cross-sections are compatible with measurements using other particle productions.

pp@13 TeV

LHCb $(J/\psi - J/\psi)$

pp@8 TeV

ATLAS $(J/\psi - Z^0)$

LHCb ($\Upsilon(1S)$ - D^0)

pp@7 TeV

ATLAS $(J/\psi - W^{\pm})$

CMS $(J/\psi - J/\psi)$

LHCb $(J/\psi - D^0)$

LHCb $(D^0 - D^0)$ ATLAS (W^{\pm} -2 jets) CMS (W^{\pm} -2 jets) *pp@*1.96 TeV D0 $(J/\psi - \Upsilon)$ D0 $(J/\psi - J/\psi)$ D0 (γ -3 jets) *pp@*1.8 TeV CDF (4 jets) CDF (γ -3 jets) 80 60 40

 $\sigma_{\rm eff}$ [mb]

Summary

- The understanding of the physics of highly excited heavy bottomonium is very incomplete.
- First energy scan results from Belle II are quite interesting.
- No clear indication on the nature of $\Upsilon(10753)$.
 - Improved results for mass and width of $\Upsilon(10753)$ using $\Upsilon(10753) \rightarrow \Upsilon(nS)\pi^+\pi^-$.
 - S D model compatible with $\Upsilon(10753) \rightarrow \omega \eta_b(1S)$ but not with $\Upsilon(10753) \rightarrow \omega \chi_{b1,2}(1P).$
 - No signal of intermediate $Z_h^+(10610)$ or $Z_h^+(10650)$ resonances are observed.
- Effective cross-sections of $J/\psi \Upsilon$ production are consistent with other particle productions measurements.

Introduction

Quark model:

Classification scheme for hadrons in terms of valance quarks. Hadrons are composed of mesons $(q\bar{q}, qq\bar{q}\bar{q}, ...)$ and baryons $(qqq, qqqq\bar{q}, ...)$.

M. Gell-Mann, Phys.Lett. 8, 214 (1964)

- $q\bar{q}$ spectroscopy with heavy quark (mostly) c or b) are best place to study quark model.
- Simple two body system, non-relativistic and narrow (with OZI suppression).
- Further, one can search for exotics with them.

Baryons (qqq)

Belle II detector

- Asymmetric e^+e^- collider
- **Collected data**
 - ~ 362 fb^{-1} at Y(4S)
 - 42 fb⁻¹ off-resonance, 60 MeV below Y(4S). -
 - 19 fb⁻¹ energy scan between 10.6 to 10.8 GeV for exotic hadron studies.

Features:

- Near-hermetic detector
- Excellent vertexing and tracking
- High-efficiency detection of neutrals (γ , π^0 , η, η', ...)
- Good charged particle reconstruction.

Coupled channel analysis

Bottomonium and exotic spectroscopy / Renu Garg / FPCP 2024

Hüsken, Mitchell, Swanson, PRD 106, 094013 (2022)

All available scan data

K-matrix: scattering via Υ(4S), Υ(10753), $\Upsilon(5S), \Upsilon(6S)$ or non-resonantly.

Results: pole positions, branching fraction, energy dependence of scattering amplitudes.

Accuracy above $\Upsilon(6S)$ and near $\Upsilon(10753)$ is poor.

Energy dependence of $e^+e^- \rightarrow B^{(*)}\bar{B}^{(*)}$ cross section

Decay modes used:

$B^+ \rightarrow$	$B^0 \rightarrow$
$ar{D}^0\pi^+$	$D^{-}\pi^{+}$
$ar{D}^0\pi^+\pi^+\pi^-$	$D^-\pi^+\pi^+\pi^-$
$ar{D}^{*0}\pi^+$	$D^{*-}\pi^+$
$\bar{D}^{*0}\pi^+\pi^+\pi^-$	$D^{*-}\pi^{+}\pi^{+}\pi^{-}$
$D_s^+ ar{D}^0$	$D_s^+ D^-$
$D_s^{*+}ar{D}^0$	$D_s^{*+}D^-$
$D_s^+ \bar{D}^{*0}$	$D_{s}^{+}D^{*-}$
$D_s^{*+}\bar{D}^{*0}$	$D_{s}^{*+}D^{*-}$
$J/\psi K^+$	J/\psiK_S
$J/\psiK_S\pi^+$	$J/\psiK^+\pi^-$
$J/\psi K^+\pi^+\pi^-$	
$D^-\pi^+\pi^+$	$D^{*-}K^+K^-\pi^+$
$D^{*-}\pi^+\pi^+$	

$D^0 \rightarrow$	$D^+ \rightarrow$	$D_s^+ \rightarrow$
$K^-\pi^+$	$K^-\pi^+\pi^+$	$K^+K^-\pi^+$
$K^-\pi^+\pi^0$	$K^-\pi^+\pi^+\pi^0$	K^+K_S
$K^-\pi^+\pi^+\pi^-$	$K_S \pi^+$	$K^+K^-\pi^+\pi^0$
$K_S \pi^+ \pi^-$	$K_S \pi^+ \pi^0$	$K^+K_S \pi^+\pi^-$
$K_S \pi^+ \pi^- \pi^0$	$K_S \pi^+ \pi^+ \pi^-$	$K^-K_S \pi^+\pi^+$
K^+K^-	$K^+K^-\pi^+$	$K^+K^-\pi^+\pi^+\pi^-$
$K^+K^-K_S$		$K^+\pi^+\pi^-$
		$\pi^+\pi^+\pi^-$

Energy dependence of $e^+e^- \rightarrow B^{(*)}\bar{B}^{(*)}$ cross section

Method:

- Reconstruct one B in full hadronic channels.
- Mr Key variables for analysis are

$$M_{\rm bc} = \sqrt{(E_{cm}/2)^2 - p_B^2}$$

 $\Delta E' = \Delta E - M_{\rm bc} + M_B$, where $\Delta E = E_B - E_{\rm cm}/2$

- $\Delta E'$ has improved resolution and allows all desired twobody decays to be selected with a common cut
- Populations of each can be studied by fitting the projections onto the M_{bc} axis for all energies at which data were accumulated
- $\circledast B^* \to B\gamma$ decays are not reconstructed.

$\Delta E'$ vs $M_{\rm bc}$ at $E_{\rm cm}$ = 10.746 GeV

Energy dependence of $e^+e^- \rightarrow B^{(*)}\bar{B}^{(*)}$ cross section

$M_{\rm bc}$ fit at scan energies

- \blacktriangleright $M_{\rm bc}$ fit distribution:
 - \blacktriangleright $\Delta E'$ signal region (upper)
 - \blacktriangleright $\Delta E'$ side-bands (lower)
- Contribution of $\Upsilon(4S) \rightarrow B\overline{B}$ production via ISR is visible well (black dotted histograms)
- At $\sqrt{s} = 10.653$ GeV, the sharp cut of the data at right edge is due to threshold effect

Four ways to access bottomonia:

M Direct production from e⁺e⁻: J^{PC} = 1⁻⁻: Υ(nS)
ISR production: J^{PC} = 1⁻⁻: Υ(nS)
Hadronic transitions from Υ(nS) through η, ππ, ... J^{PC} = 0⁻⁺, 1⁻⁻, 1⁺⁻...: Υ(nS), η_b(nS), h_b(nS), ...
Radiative transitions from Υ(nS)

 $J^{PC} = 0^{-+}, 0^{++}, 1^{++}, 2^{++}: \eta_b(nS), \chi_b(nP)$

