Charged Lepton Flavor Violation at e+e- experiments

Swagato Banerjee

LOUISVILLE.

May 13-17, 2024 University of Pittsburgh / Carnegie Mellon University Pittsburgh, PA, USA indico.cern.ch/e/dpfpheno24

Charged Lepton Flavor Violation (cLFV)

cLFV does not mean LFV via ν mixing, which is too small to be seen

Defining total lepton number $L \equiv L_e + L_\mu + L_\tau$, the global symmetry $U(1)_B \times U(1)_{L_e} \times U(1)_{L_\mu} \times U(1)_{L_\tau} = U(1)_{B+L} \times U(1)_{B-L} \times U(1)_{L_\mu-L_\tau} \times U(1)_{L_\mu+L_\tau-2L_e}$ cLFV conserves L and B but violates $U(1)_{L_\mu-L_\tau} \times U(1)_{L_\mu+L_\tau-2L_e}$ \Rightarrow nice classification of all cLFV processes Leven 25, 015022 (2017)

LFV in τ vs μ sector

LFV in tau sector is complementary to muon sector in NP parameter space: current limit on $\mathscr{B}(\mu \to e\gamma) \sim 10^{-13}$ does not forbid $\mathscr{B}(\tau \to \ell \gamma) \sim 10^{-8}$

Vincenzo Cirigliano, Benjamin Grinstein, Gino Isidori, Mark B. Wise: <u>hep-ph/0507001 [hep-ph]</u>, <u>hep-ph/0608123 [hep-ph]</u> R. Barbieri, L. Hall, A. Strumia: <u>hep-ph/9501334 [hep-ph]</u>

Mass dependent couplings enhance tau LFV w.r.t. lighter leptons

cLFV at e⁺e⁻ experiments

Swagato Banerjee

UofL

Some of LFV processes probed in e^+e^- experiments

experiments

About 50 τ decay modes & many transitions with τ in final state

- Lepton flavor violation (charge conjugate modes implied)
 - $\tau \rightarrow e/\mu \gamma$ (BaBar, Belle (II), STCF, FCC-ee)
 - $\tau \rightarrow e/\mu$ (scalar/pseudoscalar/vector mesons) (BaBar, Belle II)
 - $\tau \rightarrow e \ e \ e \ (BaBar, Belle \ II)$
 - $\tau \rightarrow \mu \mu \mu$ (BaBar, Belle II, STCF, FCC-ee)
 - $\tau \rightarrow e \mu \mu, \mu e e$ (BaBar, Belle II)
 - $\tau \rightarrow e/\mu h h$ (non-resonant states with h= π/K) (BaBar, Belle (II), STCF)
 - $\tau \rightarrow e/\mu$ invisible (α) (Belle II)
 - $B/D/\Upsilon(nS) \rightarrow e \tau, \mu \tau$ (BaBar, Belle (II), LEP, FCC-ee)
 - $B/D \rightarrow e \tau h$, $\mu \tau h$ (where $h=\pi/K$)(BaBar, Belle II)
 - $H/Z/Z' \rightarrow e \tau, \mu \tau$ (FCC-ee)
- Lepton number violation
 - $\tau^- \rightarrow e^+ h^- h^-$ (non-resonant final states with h= π/K) (BaBar, Belle (II))
 - $\tau^- \rightarrow \mu^+ h^- h^-$ (non-resonant final states with h= π/K) (BaBar, Belle (II))
- Baryon number violation
 - $\tau^- \rightarrow \Lambda \pi^-, \overline{\Lambda} \pi^-$ (Belle II)
 - $\tau^- \rightarrow \overline{p} \ \mu^+ \ \mu^-, \ p \ \mu^- \ \mu^-$ (Belle)
 - $D^0 \rightarrow e^{-/\mu} p$ (Belle)
 - $B^- \rightarrow e^-/\mu^- \Lambda$ (BaBar)

cLFV at e⁺e⁻ experiments

New Physics illustrations for LFV in τ decays

• Expected rates from New Physics are slightly less than current experimental bounds.

Illustrative Scenarios for LFV in decays b mesons

• Suppressed Standard Model contributions

• New Physics scenarios

• Expected rates from New Physics are slightly less than current experimental bounds.

cLFV at e⁺e⁻ experiments

Salient features of LFV in τ decays from e^+e^- colliders

Known initial conditions (beam energy constraint)
Clean environment (fewer backgrounds)

Higher signal efficiency is foreseen at Belle II than at Belle or BaBar

- improved vertex tracking / calorimetry / muon detectors
- momentum dependent particle identification optimizations
- inclusive tagging for tau-pair reconstruction, Boosted Decision Trees

cLFV at e⁺e⁻ experiments

 $e^+e^- \rightarrow \tau^+\tau^-$

$\tau \rightarrow \mu \mu \mu$ at B-Factories

$\tau \rightarrow \mu \mu \mu$ at B-Factories

$\tau \rightarrow \ell \alpha$ at Belle II

• LFV decay: $\tau \rightarrow \ell \alpha$ (where $\ell = e$ or μ , and α is an invisible boson) • α can enter from new physics models, eg. light axion like particles (ALP), Z', etc.

cLFV at e⁺e⁻ experiments

$\tau ightarrow \ell \alpha$ at Belle II

95% C.L. upper limits from Belle II [arXiv:2212.03634, PRL 130, 181803 (2023)]

Comparison with previous limits from ARGUS (0.472 fb⁻¹) [Z. Phys. C68 (1995) 25]

cLFV at e⁺e⁻ experiments

12

UofL

Swagato Banerjee

Estimates of experimental sensitivity in LFV searches

$$B_{\mathrm{UL}}^{90} = N_{\mathrm{UL}}^{90} / (N_{\tau} \times \varepsilon)$$

 \bullet <u> ε </u>: high statistics signal MC simulated for different Data-taking periods

$\epsilon = \text{Trigger}$. Reco . Topology . PID . Cuts . Signal–Box						
	90%	70%	70%	50%	50%	50%
Cumulative:						
	90%	63%	44%	22%	11%	~5%

	\sqrt{s}	Luminosity (L)	$N_{\tau} = 2L\sigma$
BaBar	10.58 GeV	0.5 ab ⁻¹	9 x10 ⁸
Belle	10.58 GeV	1 ab-1	2 x10 ⁹
Belle II	10.58 GeV	50 ab-1	9 x10 ¹⁰
STCF	2-7 GeV	1 ab-1	7 x10 ⁹
FCC-ee	91.2 GeV	150 ab-1	3 x 10 ¹¹

Current status of LFV τ decays

Projected limits at Belle II

Belle II to probe LFV in several channels $\simeq \mathcal{O}(10^{-10})$ to $\mathcal{O}(10^{-9})$ with 50 ab⁻¹

cLFV at e⁺e⁻ experiments

Super Tau-Charm Facility

FCC-ee

□ Expect this search to have *very low* background, even with FCC-ee like statistics □ Should be able to have sensitivity down to BRs of $\mathscr{B}(\tau \to \mu\mu\mu) \simeq 10^{-10}$

Mogens Dam, arXiv: 1811.09408 [hep-ex]

cLFV at e⁺e⁻ experiments

Summary of experimental prospects of τ decays

cLFV at e⁺e⁻ experiments

Summary of transitions with τ in the final state

Channel	Upper limit at 90% C.L.	Experiment [Reference]	
$D^0 ightarrow e^{\pm} \mu^{\mp}$	$3.3 imes10^{-7}$	BABAR [Phys.Rev.D 86 (2012) 032001]	
$D^0 ightarrow pe^-$	$5.5 imes 10^{-7}$	Belle [Phys.Rev.D 109 (2024) 3, L031101]	
$\bar{D}^0 \rightarrow p e^-$	$6.9 imes10^{-7}$	Belle [Phys.Rev.D 109 (2024) 3, L031101]	
$D^0 \rightarrow \bar{p}e^+$	$7.2 imes 10^{-7}$	Belle [Phys.Rev.D 109 (2024) 3, L031101]	1
$\bar{D}^0 \rightarrow \bar{p}e^+$	$7.6 imes10^{-7}$	Belle [Phys.Rev.D 109 (2024) 3, L031101]	
$D^0 ightarrow p \mu^-$	$5.1 imes 10^{-7}$	Belle [Phys.Rev.D 109 (2024) 3, L031101]	
$\bar{D}^0 ightarrow p \mu^-$	$6.5 imes10^{-7}$	Belle [Phys.Rev.D 109 (2024) 3, L031101]	
$D^0 ightarrow ar{p} \mu^+$	$6.3 imes10^{-7}$	Belle [Phys.Rev.D 109 (2024) 3, L031101]	
$\bar{D}^0 \to \bar{p}\mu^+$	$6.5 imes 10^{-7}$	Belle [Phys.Rev.D 109 (2024) 3, L031101]	
$D^0 ightarrow \pi^0 e^\pm \mu^\mp$	$8.0 imes10^{-7}$	BABAR [Phys.Rev.D 101 (2020) 11, 112003]	
$D^0 o ho^0 e^\pm \mu^\mp$	$5.0 imes 10^{-7}$	BABAR [Phys.Rev.D 101 (2020) 11, 112003]	
$D^0 o \phi e^{\pm} \mu^{\mp}$	5.1×10^{-7}	BABAR [Phys.Rev.D 101 (2020) 11, 112003]	
$D^0 ightarrow K^0_S e^\pm \mu^\mp$	$8.6 imes10^{-7}$	BABAR [Phys.Rev.D 101 (2020) 11, 112003]	
$D^+ ightarrow \pi^+ e^+ \mu^-$	$2.9 imes10^{-6}$	BABAR [Phys.Rev.D 84 (2011) 072006]	
$D^+ \to \pi^+ e^- \mu^+$	$3.6 imes 10^{-6}$	BABAR [Phys.Rev.D 84 (2011) 072006]	
$D^+ \rightarrow \pi^- e^+ \mu^+$	$2.0 imes 10^{-6}$	BABAR [Phys.Rev.D 84 (2011) 072006]	
$D^+ \rightarrow K^+ e^+ \mu^-$	$1.2 imes 10^{-6}$	BABAR [Phys.Rev.D 84 (2011) 072006]	
$D^+ \to K^+ e^- \mu^+$	$2.8 imes10^{-6}$	BABAR [Phys.Rev.D 84 (2011) 072006]	
$D^+ \to K^- e^+ \mu^+$	$1.9 imes10^{-6}$	BABAR [Phys.Rev.D 84 (2011) 072006]	
$B^0 ightarrow e^{\pm} au^{\mp}$	$1.6 imes 10^{-5}$	Belle [Phys.Rev.D 104 (2021) 9, L091105]	
$B^0 o \mu^\pm \tau^\mp$	$1.5 imes 10^{-5}$	Belle [Phys.Rev.D 104 (2021) 9, L091105]	
$B^0 \to \pi^0 e^{\pm} \mu^{\mp}$	$1.4 imes 10^{-7}$	BABAR [Phys.Rev.Lett. 99 (2007) 051801]	
$B^0 \to K^0 e^{\pm} \mu^{\mp}$	$2.7 imes10^{-7}$	BABAR [Phys.Rev.D 73 (2006) 092001]	
$B_s^0 \to e^{\pm} \tau^{\mp}$	$14 imes 10^{-4}$	Belle [JHEP 08 (2023) 178]	K
$B_s^{0} \to \mu^{\pm} \tau^{\mp}$	$7.3 imes10^{-4}$	Belle [JHEP 08 (2023) 178]	
$\Upsilon(1S) \to e^{\pm}\mu^{\pm}$	$3.9 imes10^{-7}$	Belle [JHEP 05 (2022) 095]	
$\Upsilon(1S) \rightarrow e^{\pm} \tau^{\pm}$	$2.7 imes 10^{-6}$	Belle [JHEP 05 (2022) 095]	
$\Upsilon(1S) \to \mu^{\pm} \tau^{\pm}$	$2.7 imes 10^{-6}$	Belle [JHEP 05 (2022) 095]	
$\Upsilon(2S) \rightarrow e^{\pm} \tau^{\pm}$	$1.1 imes 10^{-6}$	Belle [JHEP 02 2024, 187 (2024)]	
$\Upsilon(2S) \rightarrow \mu^{\pm} \tau^{\pm}$	$2.3 imes10^{-7}$	Belle [JHEP 02 2024, 187 (2024)]	k
$\Upsilon(3S) \rightarrow e^{\pm} \mu^{\pm}$	$3.6 imes 10^{-7}$	BABAR [Phys.Rev.Lett. 128 (2022) 9, 091804]	
$\Upsilon(3S) \to e^{\pm} \tau^{\pm}$	$4.2 imes 10^{-6}$	BABAR [Phys.Rev.Lett. 104 (2010) 151802]	
$\Upsilon(3S) \to \mu^\pm \tau^\pm$	$3.1 imes10^{-6}$	BABAR [Phys.Rev.Lett. 104 (2010) 151802]	

cLFV at e⁺e⁻ experiments

Global analysis of all LFV data

SMEFT for CLFV

τ and B CLFV decays

 \checkmark = tree \checkmark = loop

V.Cirigliano, K.Fuyuto, C.Lee, E.Mereghetti, B.Yan, JHEP03, 256 (2021) arXiv:2102.06176 [hep-ph]

cLFV at e⁺e⁻ experiments

Global fit: $\tau \rightarrow e$ decays and transitions with τ in the final state

Model-independent probes of new physics at scale (Λ) encoded as Wilson coefficients (C_n) via EFT approach.
For certain operators, Higgs decay and LFV Drell-Yan compete, which are assumed to scale by factor of 4 at HL-LHC.

For all other operators, sensitivity dominated by τ and B-decays *a* Belle II

experiments

Global fit: $\tau \rightarrow \mu$ decays and transitions with τ in the final state

Model-independent probes of new physics at scale (Λ) encoded as Wilson coefficients (C_n) via EFT approach.
For certain operators, Higgs decay and LFV Drell-Yan compete, which are assumed to scale by factor of 4 at HL-LHC.
For all other operators, sensitivity dominated by τ and B-decays @ Belle II

Summary & Outlook

	Observed Limits	Projected Limits				
	Experiment	Luminosity	UL (obs)	Experiment	Luminosity	UL (exp)
$\tau^- \rightarrow e^- \gamma$	Belle [JHEP 10 (2021) 19]	$988 ~{\rm fb}^{-1}$	$5.6{ imes}10^{-8}$	Belle II [2207.06307]	$50 \ {\rm ab}^{-1}$	9.0×10^{-9}
	BaBar [Phys.Rev.Lett. 104 (2010) 021802]	$516 \ {\rm fb}^{-1}$	$3.3{ imes}10^{-8}$			
$\tau^- \rightarrow \mu^- \gamma$	Belle [JHEP 10 (2021) 19]	$988 \ {\rm fb}^{-1}$	4.2×10^{-8}	Belle II [2207.06307]	$50 {\rm ab}^{-1}$	6.9×10^{-9}
	BaBar [Phys.Rev.Lett. 104 (2010) 021802]	$516 {\rm fb^{-1}}$	4.4×10^{-8}			
				STCF [Eur.Phys.J.C 83 (2023) 10, 908]	$10 {\rm ab}^{-1}$	8.8×10^{-9}
				FCC-ee [1811.09408]	$150 \ {\rm ab}^{-1}$	$O(10^{-9})$
$\tau^- \rightarrow \mu^- \mu^+ \mu^-$	Belle II [Tau2023]	424 fb^{-1}	1.9×10^{-8}	Belle II [2207.06307]	$50 {\rm ab}^{-1}$	3.6×10^{-10}
	Belle [Phys.Lett.B 687 (2010) 139]	$782 \ {\rm fb}^{-1}$	2.1×10^{-8}			
	BaBar [Phys.Rev.D 81 (2010) 111101]	$468 \ {\rm fb}^{-1}$	3.3×10^{-8}			
	LHCb [JHEP 02 (2015) 121]	$3 {\rm fb}^{-1}$	4.6×10^{-8}	LHCb [1808.08865]	$300 {\rm ~fb^{-1}}$	$O(10^{-9})$
	CMS [Phys. Lett. B 853 (2024) 138633]	$131 \ {\rm fb}^{-1}$	2.9×10^{-8}	CMS [CMS-TDR-016]	3 ab^{-1}	3.7×10^{-9}
	ATLAS [Eur.Phys.J.C 76 (2016) 5, 232]	$20 {\rm ~fb^{-1}}$	$3.8{ imes}10^{-7}$	ATLAS [ATL-PHYS-PUB-2018-032]	3 ab^{-1}	1.0×10^{-9}
				STCF [Eur.Phys.J.C 83 (2023) 10, 908]	$1 {\rm ab}^{-1}$	1.4×10^{-9}
				FCC-ee [1811.09408]	150 ab^{-1}	$\mathcal{O}(10^{-10})$

- Observation of LFV in the charged lepton sector would completely change our understanding of physics and herald a new period of discoveries in particle physics. Synergies between different experiments compliment discovery potential/confirmation.
- Now is a very interesting era in the searches for LFV in decays of the τ lepton, as the current limits will improve by an order of magnitude down to a few parts in 10⁻¹⁰ to 10⁻⁹ at the Belle II and other experiments.
- Similar sensitivities will be probed at ATLAS, CMS & LHCb with high luminosity upgrade.
- Proposed experiments at STCF, EIC & FCC-ee will continue searches for LFV in tau sector.