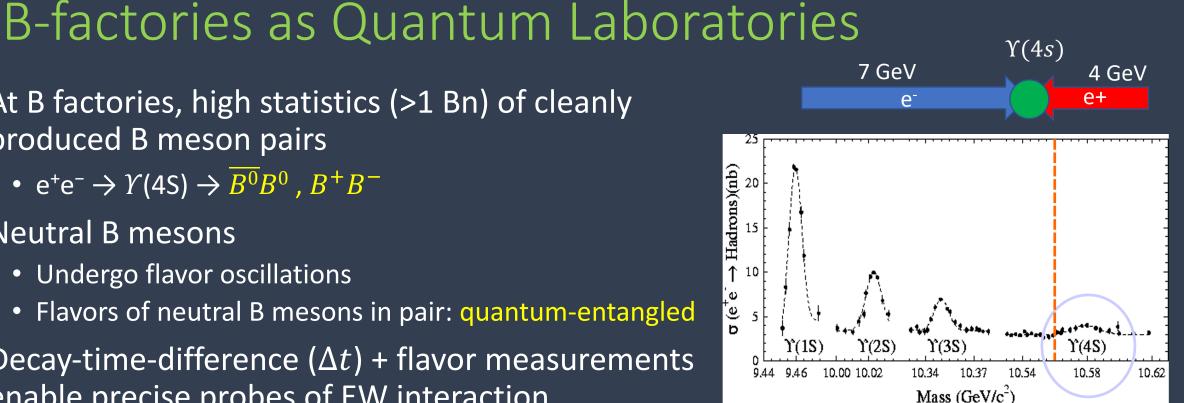


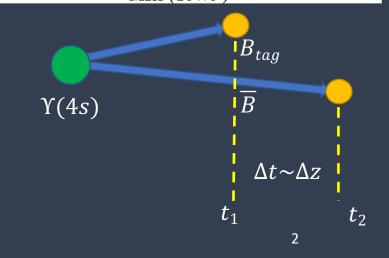
2024 PITT PACE Workshop: Exploring Quantum Mechanics in High Energy Physics Quantum tests with entangled B meson pairs at the Belle and Belle II Experiments

Sven Vahsen, for the Belle and Belle II collaborations

Sven Vahsen

PITT PACC Workshop: Exploring Quantum Mechanics in HEP

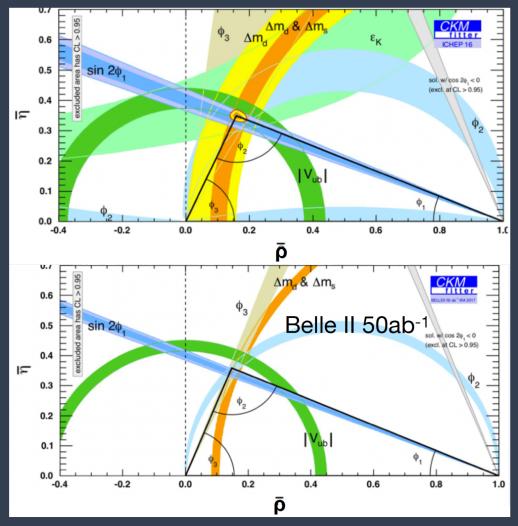




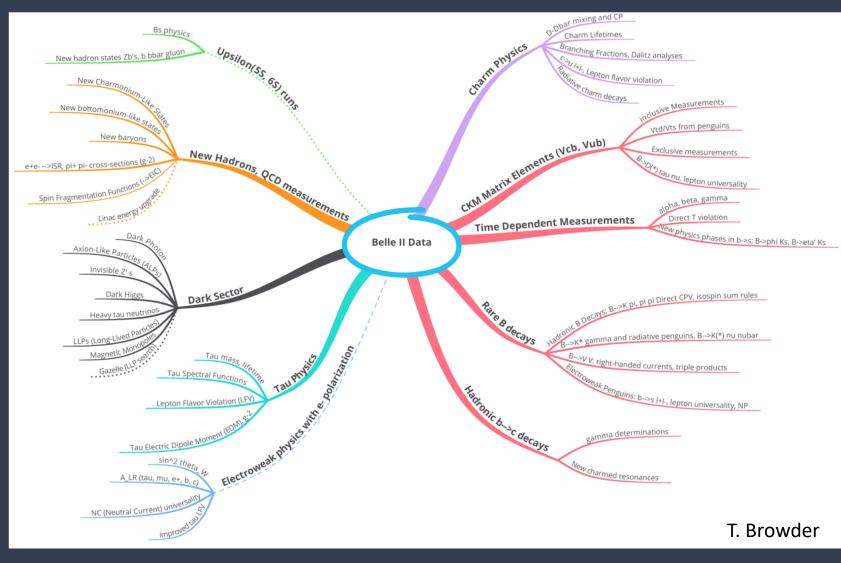
- Decay-time-difference (Δt) + flavor measurements enable precise probes of EW interaction
- Flavors of neutral B mesons in pair: quantum-entangled

• At B factories, high statistics (>1 Bn) of cleanly

- Undergo flavor oscillations
- Neutral B mesons
- produced B meson pairs • $e^+e^- \rightarrow \Upsilon(4S) \rightarrow \overline{B^0}B^0$, B^+B^-



Outline


- B-factory basics
- Belle II @ SuperKEKB
- $\Upsilon(4S) \rightarrow B^0 \overline{B^0}$: a quantum laboratory
- Tests of symmetry violation and entanglement
- Conclusion

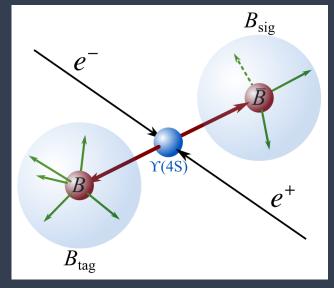
The Original B factory Experiments

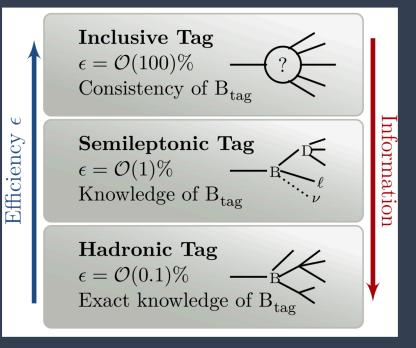
- BaBar @ PEPII (1999-2008): 433 fb⁻¹ (470M BB)
- Belle @ KEKB (1999-2010): 711 fb⁻¹ (771M BB)
- Confirmed the Kobayashi-Maskawa Mechanism
- A single, irreducible, complex CKM phase can explain all CPV observed in the quark sector to date
- This is now a validated part of the SM
- Belle II @ SuperKEKB (2018-): aims to collect 50ab⁻¹ (>50Bn BB) to look for deviations from this picture (BSM physics)

The Belle II physics program

But the Belle II physics scope extends far beyond B physics and CPV: Charm, tau, precision EW, quarkonium physics, dark sector searches, and more See the bell through , arXiv:1808.10567,

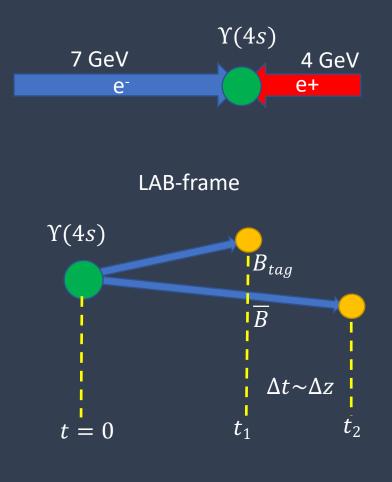
Note: quantum tests with Tau mesons proposed (arXiv:2311.17555), but won't be discussed today.


Process	σ (nb)
bb	1.1
СС	1.3
Light quark qq	~2.1
τ+τ-	0.9
e⁺e⁻	~40

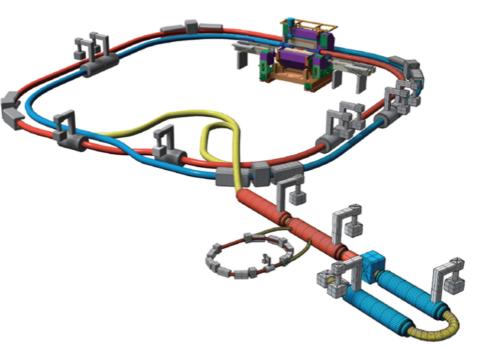

B factory basics

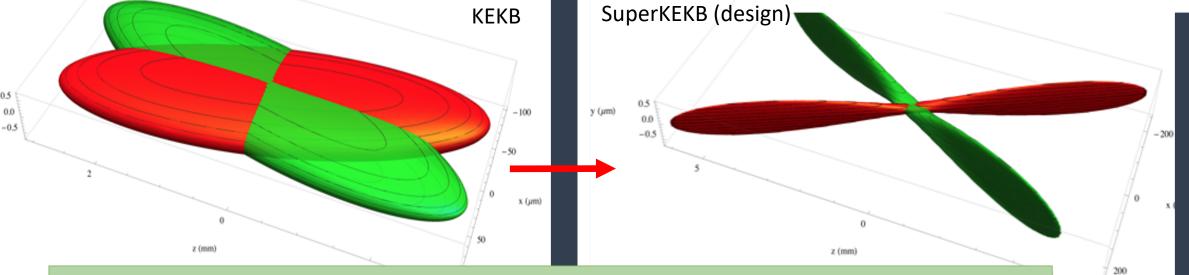
- Unlike hadron colliders
 - Single collision per event
 - e^+e^- are elementary \rightarrow initial state four-vector known and static: $p_{\gamma(4S)} = p_{e^-} + p_{e^+}$
- BB pair produced just above threshold
 - Insufficient energy to produce additional particles
- BB fly back-to-back in COM frame (p_T exaggerated in figure), but B frame is not a priori known
 - Full kinematic reconstruction of a single neutrino is possible on "signal side" by fully reconstructing the "tag side"
- In Belle II, Full Event Interpretation (FEI):
 - Hierarchical reconstruction of ~10,000 decay modes. Extensive use of machine learning

Clean events with tightly constrained kinematics


COM-frame

B factory basics: decay times


- e⁺e⁻ beam energies are asymmetric
- Resulting $\Upsilon(4s)$ boost allows for identification of displaced B vertices
 - B-decay-time-difference $\Delta t \approx \Delta z / \gamma \beta c$
 - $\Delta z \sim 200 \ \mu m$
 - measurable with silicon strip or pixel detectors
- Δz provides decay time *difference*, order ps!
- Absolute decay positions / absolute decays times not accessible at Belle and Babar, due to size of e⁺e⁻ interaction region...



t, z

SuperKEKB

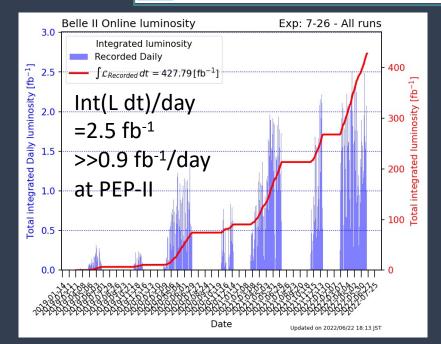
- Upgrade of KEKB
- Asymmetric e^+e^- collider at 10.58 GeV [γ (4S)]
- Increase instantaneous luminosity by factor 30
- Largely accomplished via nanobeam scheme
 - $\sigma_v^*: 940 \rightarrow ~50 \text{ nm}$

Beam focusing key ingredient for increasing luminosity at SuperKEKB. May also benefit searches for quantum decoherence: once interaction region becomes sufficiently small, we should be able to estimate individual B meson decay times; t1, t2 Beam-focusing IRL. The superconducting magnets for final focusing of the beams were moved to the core of the Belle II detector (January 2018)

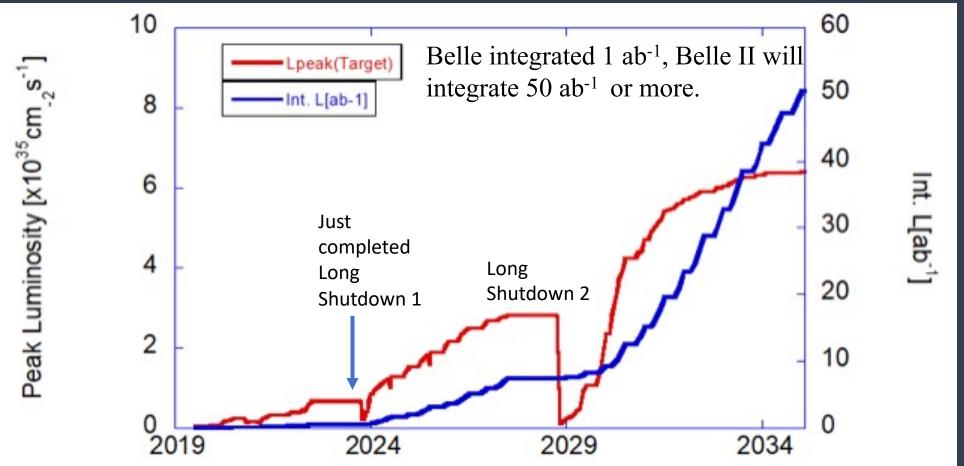
SuperKEKB Luminosity

Ran Belle II and SuperKEKB *through the global pandemic*. Broke many accelerator world records for luminosity.

- Goal: 50ab⁻¹ integrated (>50Bn BB)
- Operating since 2018
- L_{peak}= 4.7 x 10³⁴/cm²/sec
- This is 3.9 x PEP-II at SLAC
- More than 2 x KEKB
- But still a long way to go!


CERNCOURIER

SuperKEKB raises the bar 22 August 2021



Record breaker The SuperKEKB accelerator at the KEK laboratory in Tsukuba, Japan. Credit: S. Takahashi / KEK

On 22 June, the SuperKEKB accelerator at the KEK laboratory in Tsukuba, Japan set a new world record for peak luminosity, reaching 3.1 × 10³⁴ cm⁻² s⁻¹ in the Belle II detector. Until last year, the luminosity record stood at 2.1 × 10³⁴ cm⁻² s⁻¹, shared by the

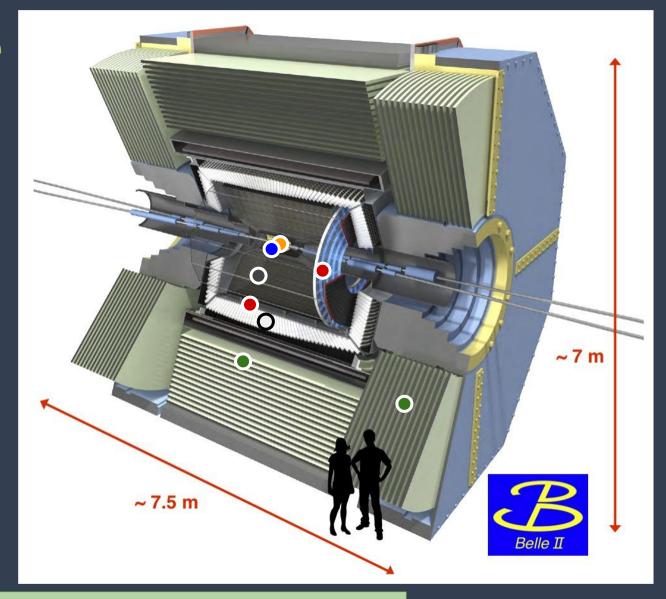
Luminosity Plan

Current beam spot is 200nm high.

- About one order of magnitude from design instantaneous luminosity
- About two orders of magnitude from goal integrated luminosity

Belle \rightarrow Belle II upgrade

Central beam pipe: decreased diameter from 3cm to 2cm (Beryllium)

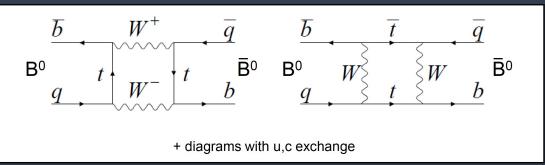

Vertexing: new 2 layers of pixels, upgraded 4 doublesided layers of silicon strips

Tracking: drift chamber with smaller cells, longer lever arm, faster electronics

PID: new time-of-propagation (barrel) and proximity focusing aerogel (endcap) Cherenkov detectors

EM calorimetry: upgrade of electronics and processing with legacy CsI(Tl) crystals

 K_L and μ : scintillators replace RPCs (endcap and inner two layers of barrel)



Upgraded Belle II vertex detector benefits decay-time measurements. Spring 2024 run is first with complete pixel detector.

The $\Upsilon(4S) \rightarrow B^0 \overline{B^0}$ Quantum Laboratory

$$\left|\Psi(t)\right\rangle = \frac{e^{-t/\tau_{B^0}}}{\sqrt{2}} \left[\left|B^0(\vec{p})\overline{B}^0(-\vec{p})\right\rangle - \left|\overline{B}^0(\vec{p})B^0(-\vec{p})\right\rangle\right] \text{(Eq. 1)}$$

- B⁰ and B⁰ are not mass-eigenstates
 → a single B⁰ undergoes flavor oscillations
- Υ(4S) → B⁰B⁰ decays via strong interaction; initial state C=-1 charge conjugation eigen-value must be conserved
- Hence, B^0B^0 pair ends up flavor entangled (Eq. 1)
- If one B decays into a flavor specific final state at time t₁...
 - ...then the other meson collapses into a state of opposite flavor instantaneously
 - ... but it will keep undergoing flavor oscillations until it, too, decays
- "EPR-style" entanglement
 - non-local, quantum super-position state

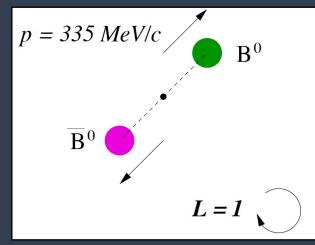
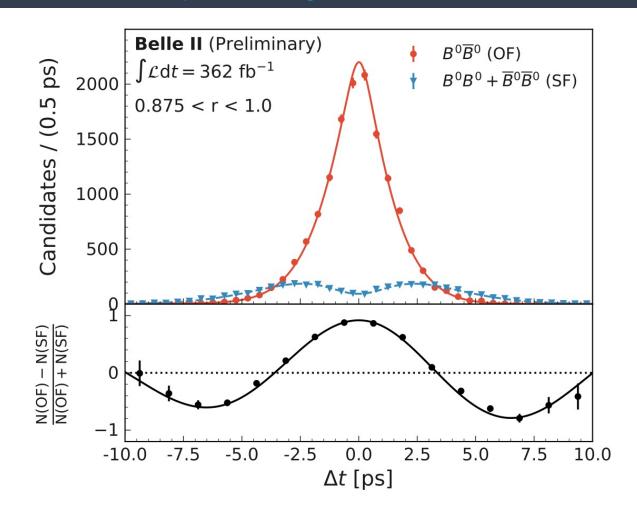



Figure by Bruce Yabsley

$\Upsilon(4S) \rightarrow B^0 \overline{B^0}$: a Quantum Laboratory

- Non-local flavor entanglement is assumed "perfect" in analyses of B-mixing and TDCPV
- Sensitive searches for *deviations* from nominal mixing and perfect entanglement are possible
 - using Δt distributions
 - desirable to also measure individual B meson decay times (t1,t2)
- Belle II better suited than Belle
 - (eventually) higher statistics
 - improved vertex resolution
 - better tagging efficiency
 - smaller luminous region
 → access to t1,t2

https://arxiv.org/abs/2402.17260

What can we probe in this Quantum Laboratory?

Six broad categories

- 1. B meson properties $(\Delta m, \tau_B)$, CPV in the weak interaction (e.g. sin $2Ø_1$)
- 2. BSM Symmetry violations (CPTV, Lorentz symmetry violation)
- 3. Search for evidence of hidden variable theories (alternatives to QM) (p. 16-18)
- 4. Collapse theories (augmentations of QM) (p. 19)
- 5. Quantum Decoherence (p. 20-26)
- 6. Quantify Separability (p.27)

not attempted? (except for spontaneous decoherence, included in 2007 Belle PRL)

Hidden variable theories

- Hidden variable theories are attempts to explain non-intuitive QM effects, such as entanglement, with deterministic and/or local theories
- Bell-test: statistical test that can rule out local deterministic alternative descriptions to QM
- Can Belle (II) perform Bell-tests? This questions has a fraught history!

- Most likely answer: no for $\overline{B^0}B^0$ mixing
- See talk by B. Yabsley for detailed discussion

With hypothetical active flavor measurement, could a Bell test be performed?

- B-meson sample decreases with Δt
- crucial parameter $x_d = \Delta m_d / \Gamma_d$: rate of oscillation relative to decay
- Bell test impossible if x < 2.0:

system	X
$B^0/\overline{B}{}^0$	0.77
K^0/\overline{K}^0	0.95
$D^0/\overline{D}{}^0$	< 0.03
B_s^0/\overline{B}_s^0	~ 26

• May still be possible in Tau-pair events or B *decays*; e.g. arXiv 2305.04982 claims

Bell inequality is violated in $B^0 o J/\psi \, K^\star(892)^0$

If Bell-test impossible, instead fit specific hidden variable models to data

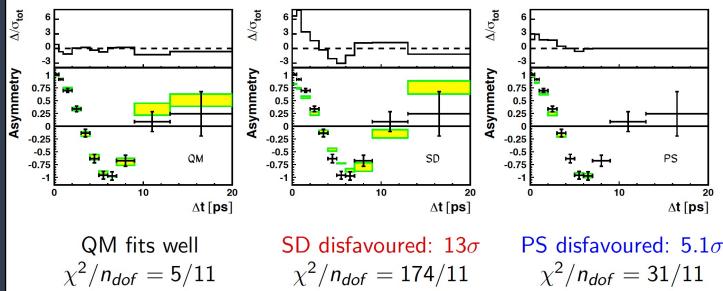
The Belle PRL on EPR

This was the approach of A. Go et al., who excluded

• "Pompili-Selleri" hidden variable model

 $A_{\rm PS}^{\rm max}(t_1, t_2) = 1 - |\{1 - \cos(\Delta m_d \Delta t)\} \cos(\Delta m_d t_{\rm min}) + \sin(\Delta m_d \Delta t) \sin(\Delta m_d t_{\rm min})|, \text{ and } (3)$ $A_{\rm PS}^{\rm min}(t_1, t_2) = 1 - \min(2 + \Psi, 2 - \Psi), \text{ where } (4)$ $\Psi = \{1 + \cos(\Delta m_d \Delta t)\} \cos(\Delta m_d t_{\rm min}) - \sin(\Delta m_d \Delta t) \sin(\Delta m_d t_{\rm min}). \quad (5)$

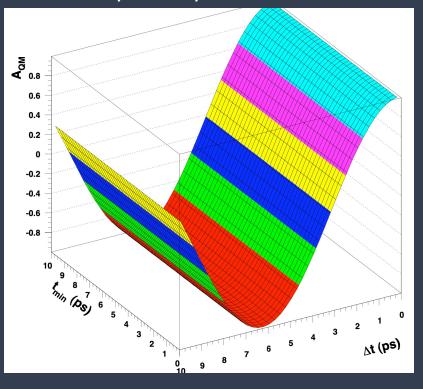
"Spontaneous Disentanglement" of all BB pairs


$$A_{\rm SD}(t_1, t_2) = \cos(\Delta m_d t_1) \cos(\Delta m_d t_2)$$
(2)
= $\frac{1}{2} [\cos(\Delta m_d (t_1 + t_2)) + \cos(\Delta m_d \Delta t)],$

Fractional Spontaneous Disentanglement

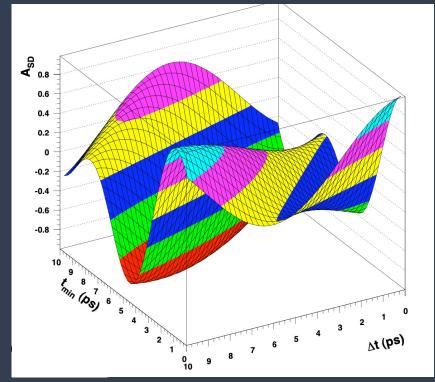
• 3% +/- 6%

Measurement of Einstein-Podolsky-Rosen-Type Flavor Entanglement in $\Upsilon(4S) o B^0 \overline B^0$ Decays

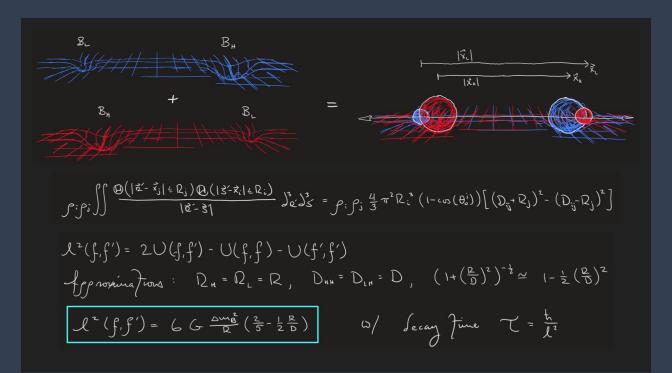

A. Go et al. (Belle Collaboration) Phys. Rev. Lett. **99**, 131802 – Published 26 September 2007

Note: models depend on t1, t2, but these were not measurable in Belle, hence integrated out

Discrimination Power of individual B meson decay times t1, t2


Access to t₁ generally adds a new dimensions and should result higher sensitivity

Asymmetry for QM


Entanglement: depends only on Δt

Asymmetry for Spontaneous Disentanglement

Disentanglement and decoherence: depends on t_1 and Δt

Collapse Theories

- Extensions of QM that predict macroscopic states will spontaneously collapse
- The Diósi–Penrose model was introduced as a possible solution to the measurement problem, where the wave function collapse is related to gravity.

Tim Mahood (Hawaii grad student) performed theory calculation. Suggests a $B\overline{B}$ collapse time of order 10^{23} s — i.e., not measurable

Quantum Decoherence

THE FRONTIERS COLLECTION

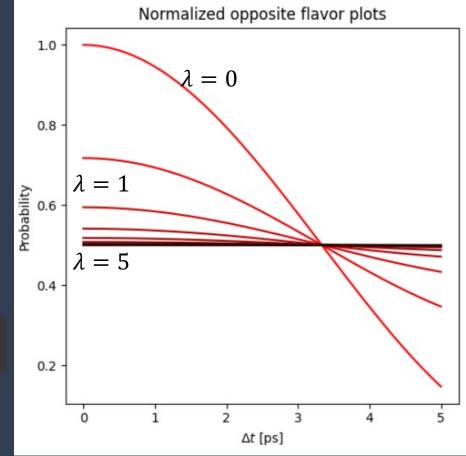
HERENCE AND THE OUNTUN-TO-CL L TRANSITION DECOHERENCE AND T TUM-TO-CLASSICAL TRANSITION DE NCE AND THE QUANTUM-TO-CLASSIC SITION DECOHERENCE AND THE QU TO-CLASSICAL TRANSITION DECOH AND THE QUANTUM-TO-CLASSIC SITION DECOHERENCE AND THE QU TO-CLASSICAL TRANSITION DECOH AND THE QUANTUM-TO-CLASSIC SITION DECOHERENCE AND THE QU TO-CLASSICAL TRANSITION DECOH AND THE QUANTUM-TO-CLASSIC SITION DECOHERENCE AND THE QU TO-CLASSICAL TRANSITION DECOH AND THE QUANTUM-TO-CLASSIC SITION DECOHERENCE AND THE QU TO-CLASSICAL TRANSITION DECOH AND THE QUANTUM-TO-CLASSIC SITION DECOHERENCE AND THE QU

Deringer

Maximilian Schlosshauer DECOHERENCE AND THE QUANTUM-TO-CLASSICAL TRANSITION

- Interaction of entangled states with environment can explain appearance of classical behavior at macroscopic scales
- Not an extension of QM, but rather a consequence of QM that was not previously appreciated
- Entangled states decohere over time
- Limits quantum computers
- SM decoherence
 - Our *BB* system evolves inside the SuperKEKB beam pipe
 - But even such an "isolated" system still interacts with background fields: CMB, cosmological neutrinos, Higgs condensate...

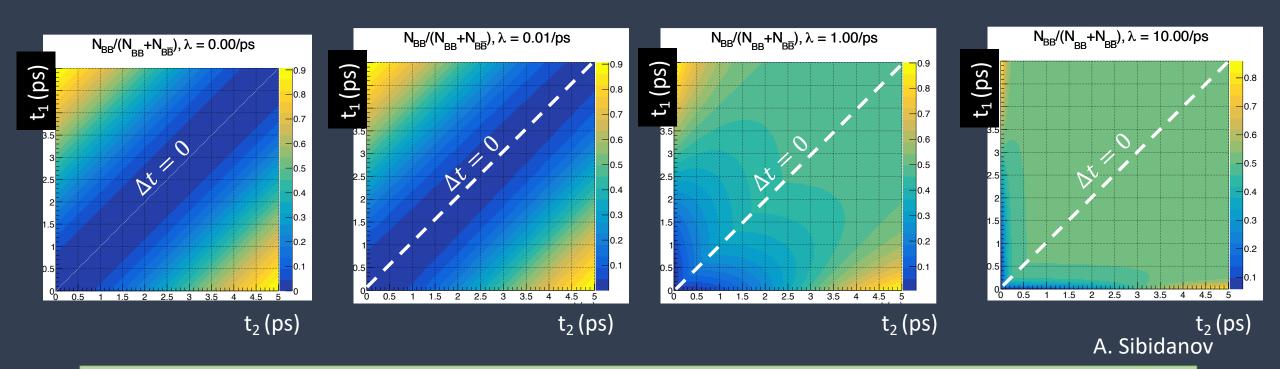
BSM decoherence


• Energy density components that we do not fully understand, yet, may also contribute: dark matter & energy

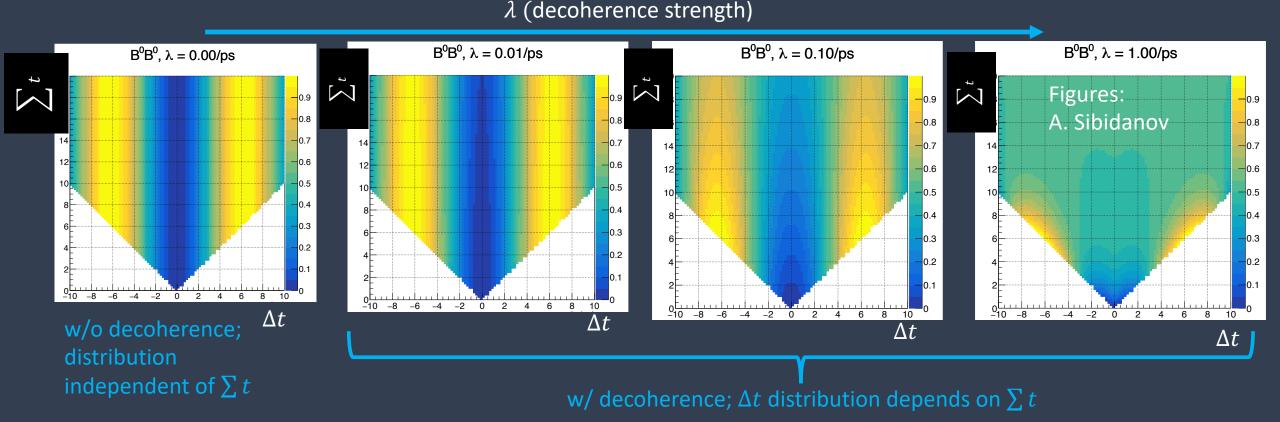
Lindblad Type Decoherence

- Decoherence begins after $\Upsilon(4S)$ decay and ends at first B meson decay
- Parameter λ∈[0, ∞) characterizes how much decoherence is in the system
- Slow acting decoherence
- Hershel Weiner (Hawaii undergrad) confirmed theory predictions for Belle II:

$$N=rac{1}{4}e^{-\Gamma(t_1+t_2)}[\cosh(rac{\Delta\Gamma\Delta t}{2})-\mu e^{-\lambda t_1}\cos(\Delta m\Delta t)]$$


µ=+1: same flavor decays, -1: opposite flavor decays

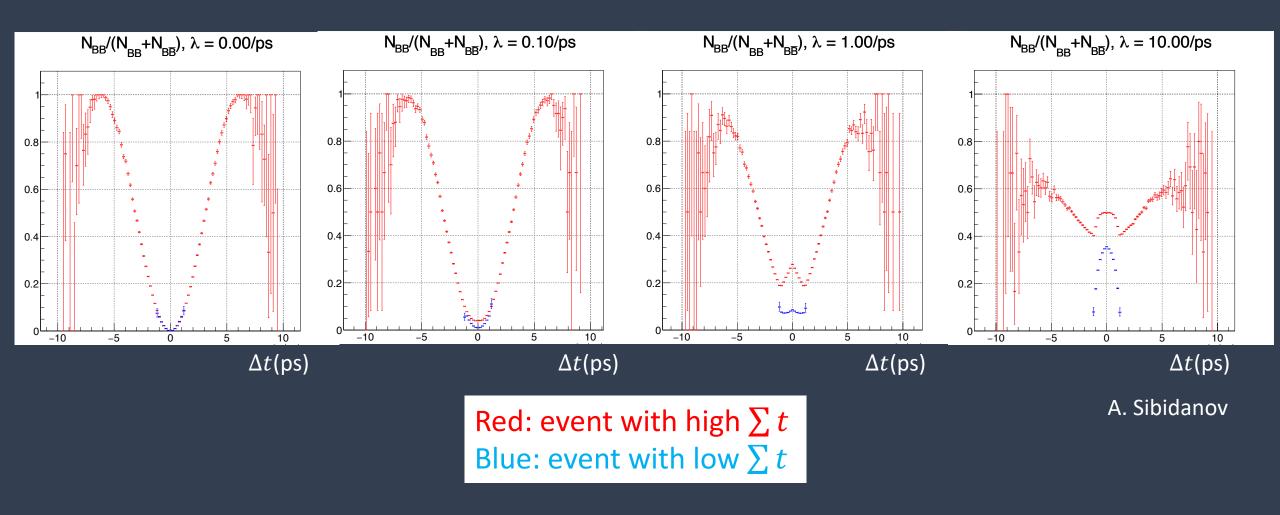
- As decoherence strength parameter λ increases; same-sign B meson pairs at $\Delta t = 0$ become allowed
- model depends on individual t1 and t2, but that has been integrated out in figure $\rightarrow \Delta t$ dependence looks like miss-tagging


BB pair flavor vs t₁, t₂ for Lindblad decoherence

 λ (decoherence strength)

- As decoherence strength parameter λ increases
- Number of same-sign B meson pairs at $\Delta t = 0$ increases
- In this 2d plane, pattern distinct from miss-tagging (assigning wrong b-flavor in reconstruction)

B meson flavor vs $\sum t$, Δt for Lindblad decoherence

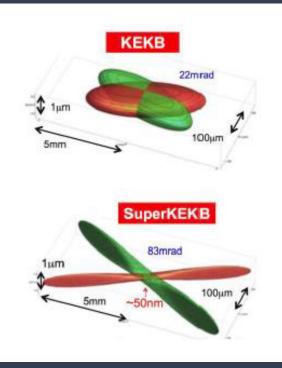


Measuring $\sum t$ (or equivalently; just t₁) in addition to Δt likely enhances sensitivity to decoherence, and the difference between miss-tagging and decoherence

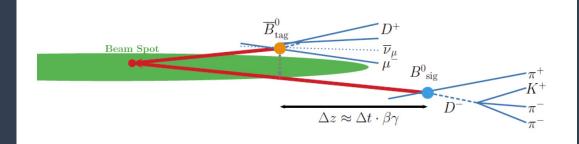
 $\sum t = t_1 + t_2$

 $\Delta t = t_2 - t_1$

Example: weak sensitivity to $\sum t \rightarrow two bins only$

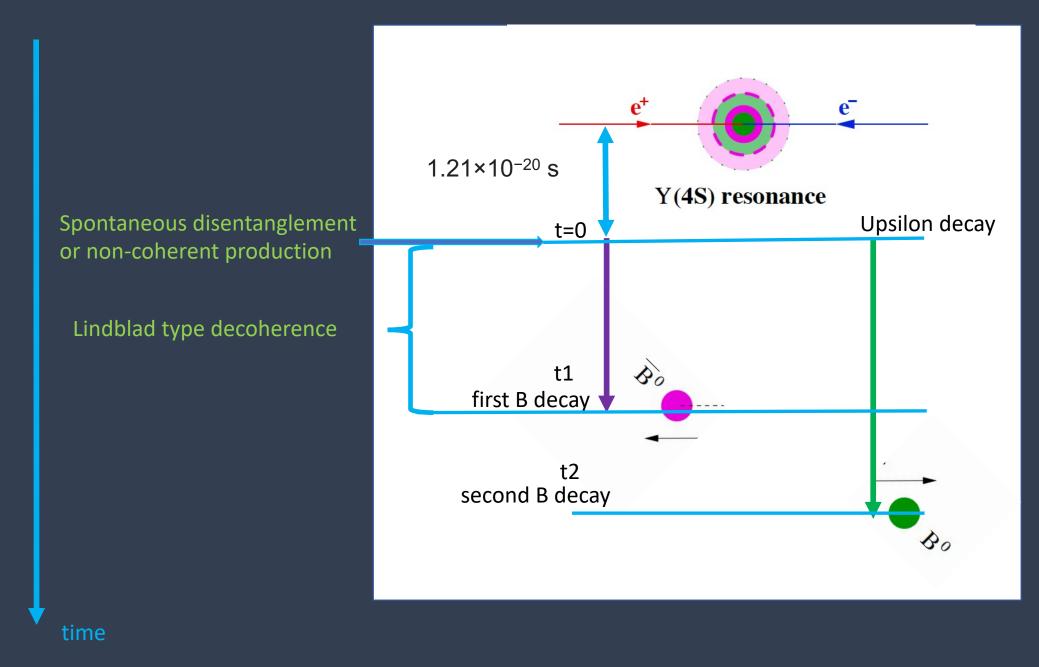


Plans @ Belle II

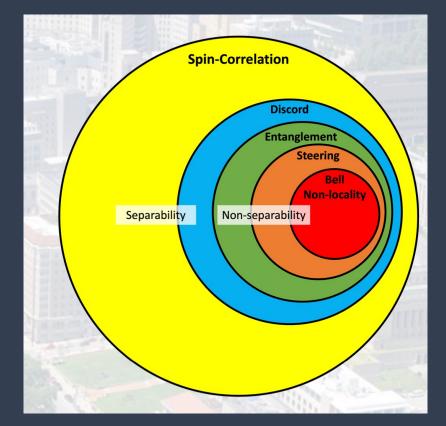

1. Repeat Belle analysis, but with higher statistics, more channels, better resolution

$$B^0 \to D^- \pi^+, D^{*-} \pi^+, D^{*-} \rho^+$$

2. Make use of better vertex resolution, better tagging, and smaller interaction region:



	КЕКВ	SuperKEKB
σ _x	150 µm	10 µm
σγ	940 nm	50 nm
σ _z , eff	7 mm	0.25 mm


 $\gamma\beta\tau c = 0.125 \text{ mm}$ Not ideal, but some sensitivity to t₁ should be achievable Transverse separation ~50 µm Vertex resolution σ_{res} ~20 µm

- 3. Probe more general decoherence models (such as Lindblad)
- 4. Work with theorists to estimate SM and BSM decoherence times
- 5. Understand possible systematics from unconstrained decoherence in other Belle II measurements (see <u>talk by H.G. Moser</u>)

Questions that arose at this workshop

- How would the figure on the right look for timedependent flavor correlations in $\Upsilon(4S) \rightarrow \overline{B^0}B^0$?
- The short B_d meson life-time compared to mixing frequency seems to prevent establishing Bell non-locality.
 - How about Steering, Discord?
- How to best quantify the non-separable properties for $\Upsilon(4S) \rightarrow \overline{B^0}B^0$?
- Does the Belle II sensitivity to time dependence open up any new possibilities, compared to spin correlations?

Yoav Afik (University of Chicago)

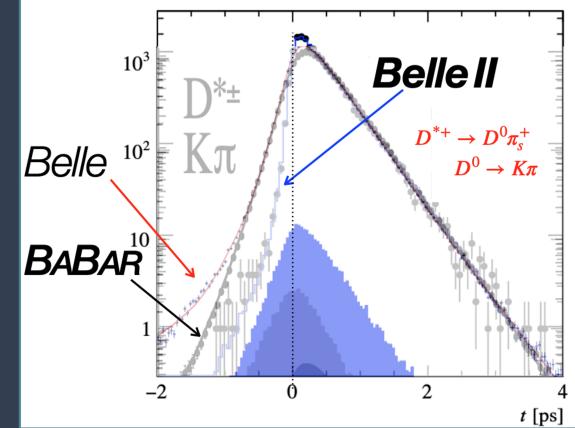
Summary

- $\Upsilon(4S) \rightarrow \overline{B^0}B^0$ system constitutes an interesting Quantum Laboratory
- Many classes of SM and BSM physics can be searched for
- Can probe entanglement versus time
- Studies of quantum decoherence appear particularly attractive
 - SM decoherence is expected at some level
- Setting limits on decoherence (e.g. Lindblad parameter λ , and non-coherent production fraction) would allow us to
 - provide a systematic uncertainty for IDCPV analyses
 - compare against SM theory predictions (
 needed!)
 - set limits on various BSM contributions to decoherence
- SuperKEKB + Belle II appears particularly suitable
- Work has started within Belle II. We welcome your input and suggestions.

With contributions from Hans-G. Moser (MPI) A. Sibidanov, T. Mahood, H. Weiner, A. Paul, L. Stötzer, P. Lewis (Hawaii) Bruce Yabsley (Sidney) Fumiaki Otani, Takeo Higuchi (IPMU)

BACKUP

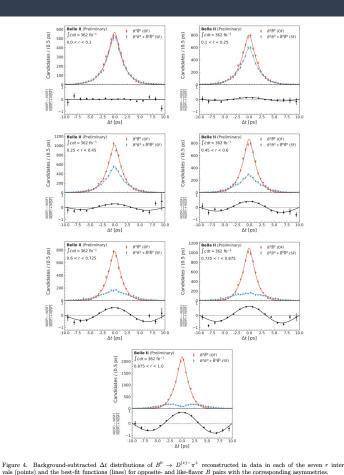
D⁰ and D⁺ lifetimes


Results

Proper time resolution at Belle II is a factor of
 2 better than Belle and BaBar due to better
 vertexing

arXiv: 2108.03216 Precise measurement of the D^0 and D^+ lifetimes at Belle II

F. Abudinén,³¹ I. Adachi,^{21,18} K. Adamczyk,⁶⁶ L. Aggarwal,⁷³ H. Ahmed,⁷⁶ H. Aihara,¹¹² N. Akopov,² A. Aloisio,^{88,25} N. Anh Kv,^{40,13} D. M. Asner,³ H. Atmacan,⁹⁹ V. Aushev,⁸¹ V. Babu,¹¹ S. Bacher,⁶⁶ H. Bae,¹¹²


• resolution improvement visible at t < 0:

arXiv:2402.17260 (hep-ex)

[Submitted on 27 Feb 2024]

A new graph-neural-network flavor tagger for Belle II and measurement of $\sin 2\phi_1$ in $B^0 \rightarrow J/\psi K_S^0$ decays

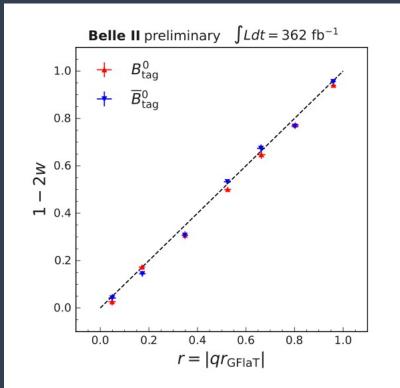


Figure 6. Dilution factors 1 - 2w of $B^0 \to D^{(*)-}\pi^+$ as functions of their GFlaT predictions, r for B^0_{tag} , $1 - 2\bar{w} - \Delta w$, and \bar{B}^0_{tag} , $1 - 2\bar{w} + \Delta w$; the dashed line shows r = 1 - 2w.

data and determine an effective tagging efficiency of

$$\varepsilon_{\text{tag}} = (37.40 \pm 0.43 \pm 0.36)\%,$$
 (8)

where the first uncertainty is statistical and the second is systematic. For comparison, using the same data, we determine $\varepsilon_{\text{tag}} = (31.68 \pm 0.45) \%$ for the Belle II category-based flavor tagger.⁴ The GFlaT algorithm thus has an 18% better effective tagging efficiency.