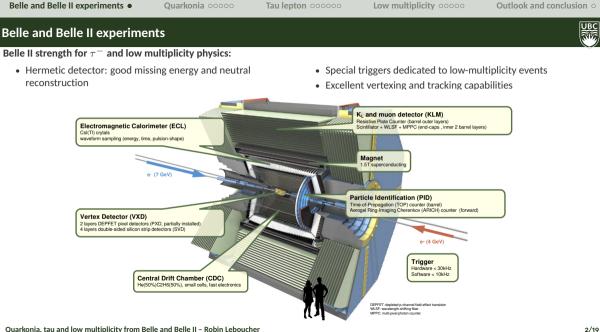
RECENT QUARKONIA, TAU AND LOW MULTIPLICITY MEASUREMENTS FROM BELLE AND BELLE II

La Thuile 2024 - Les Rencontres de Physique de la Vallée d'Aoste La Thuile (Aosta) Italy

Tuesday 5th March, 2024

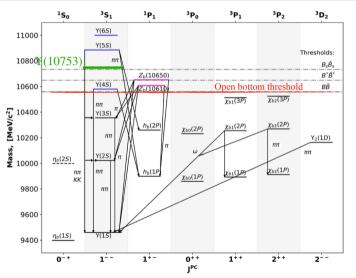
Robin Leboucher on behalf of the Belle and Belle II collaborations



THE UNIVERSITY OF BRITISH COLUMBIA

BELLE

Belle II



Tau lepton 000000

UBC

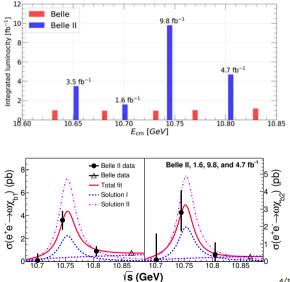
Hadron spectroscopy at Belle and Belle II

- Below *BB* threshold: well described by potential models
- Above the $B\bar{B}$ threshold ($\Upsilon(4S)$, $\Upsilon(5S)$ and $\Upsilon(6S)$): show unexpected properties
 - Hadronic transitions to lower bottomonia are strongly enhanced
 - Strong violation of Heavy Quark Spin Symmetry
 - \Rightarrow **Exotic admixtures**: molecule, compact tetraquark, hybrid

Progress of Theoretical and Experimental Physics. 2020 (2020) p. 083C01

Low multiplicity 00000

Hadron spectroscopy at Belle and Belle II

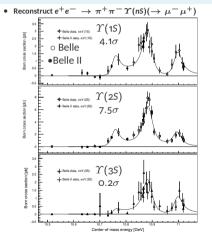

New Belle II energy scan

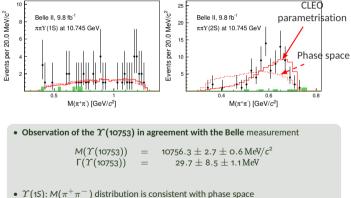
To study the Υ (10753), a new energy scan data taking was performed by Belle II:

- Fill Belle energy gaps
- Total integrated luminosity of 19 fb^{-1} with 9.8 fb^{-1} at the Υ (10753) energy

Already proves its efficiency by the rediscovery of $\Upsilon(10753)$ in a new decay $e^+e^- \rightarrow \omega (\rightarrow \pi^+\pi^-\pi^0)\chi_{bl}(\rightarrow \gamma \Upsilon(1S))$

Phys. Rev. Lett. 130 (2023) p. 091902


arXiv:2401.12021


UBC

Belle II - Study of $e^+e^- ightarrow \Upsilon(nS)\pi^-\pi^+$

Confirm the existence of $\Upsilon(10753)$ in its discovery mode

- Measure the di-pion spectrum
- Looks for any Z_b contributions

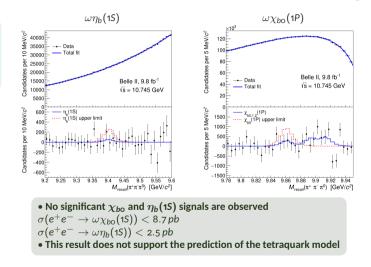
- $\Upsilon(2S): M(\pi^+\pi^-)$ large values are enhanced (similarly to $\Upsilon(2S) \to \Upsilon(1S)\pi^+\pi^-)$
- No signals of intermediate Z⁺_b (10610/10650) resonances are observed

Quarkonia, tau and low multiplicity from Belle and Belle II - Robin Leboucher

arXiv:2312.13043

Belle II – Search for Υ (10753) $o \omega \eta_b$ (1S) $/\chi_{bo}$ (1P)

Test the tetraquark interpretation for the Υ (10753):


• Predicts a strong transition of $\omega\eta_b({\rm 1S})$ compared to $\Upsilon\pi^+\pi^-$

- There is no convenient way to reconstruct η_b
- Only reconstruct $\omega o \pi^+\pi^-\pi^{
 m o}$
- Search for a signal bump in the recoil mass $M_{\text{recoil}}(\pi^+\pi^-\pi^0)$ distribution

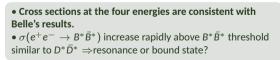
$$M_{\text{recoil}}(\pi^{+}\pi^{-}\pi^{0}) = \sqrt{\left(\frac{E_{\text{c.m.}}-E^{*}}{c^{2}}\right)^{2} - \left(\frac{p^{*}}{c}\right)^{2}}$$

where $E_{\rm c.m.}$: total energy of the e^+e^- in the centre of mass

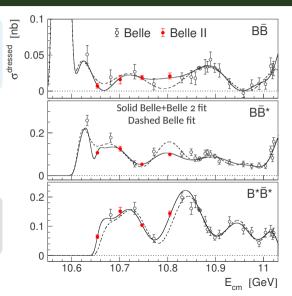
 E^*, p^* : energy and momentum of $\pi^+\pi^-\pi^0$ in the centre of mass

Tau lepton 000000

Low multiplicity 00000


Belle II – Energy dependence of $e^+e^- \rightarrow B^{(*)}\bar{B}^{(*)}$

Preliminary



The open flavour final states $B^{(*)}\overline{B}^{(*)}$ make dominant contribution to $b\overline{b}$ cross-section

- Their measurements are critical for understanding the structure of $b\overline{b}$ states
- Can be used to extract \varUpsilon states parameters

17.4%

9.3%

e[±]νν

others

 $3\pi \pm \pi^0 v$

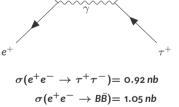
17.8%

5.3%

 $3\pi \pm v$

4.6%

9.3%


 $\pi^{\pm} 2\pi^{0} \nu$

 $\pi^{\pm}\nu$

 $\pi^{\pm}\pi^{0}\nu$

10.8%

25.5%

• cross section equivalent to $B\overline{B}$ process

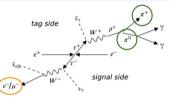
Quarkonia 00000

Tau lepton 000000

Events / (0.167 GeV/c)

app

Low multiplicity 00000

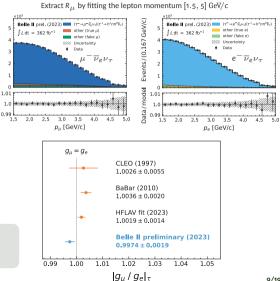

Outlook and conclusion o

UBC

Belle II - Lepton Flavour Universality measurement

• Test if the W gauge bosons have the same couplings g as the three generations of leptons $g_e = g_\mu = g_\tau$ as predicted in the SM

$$\left(rac{g_{\mu}}{g_{e}}
ight)_{ au}^{2}\sim R_{\mu}=rac{\mathcal{B}(au^{-}
ightarrow \mu^{-}\overline{
u}_{\mu}
u_{ au})}{\mathcal{B}(au^{-}
ightarrow e^{-}\overline{
u}_{e}
u_{ au})}$$



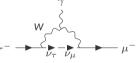
- Event selection is performed with rectangular cuts and neural network •
- 94% purity with 9.6% signal efficiency for the combined sample •
- Mains systematics coming from PID (0.32%) and trigger (0.1%)

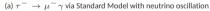
• Most precise e/μ universality from τ^- decays in a single measurement with $362 \,{\rm fb}^{-1}$

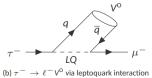
 $R_{\mu} = 0.9675 \pm 0.0007(stat) \pm 0.0036(sys)$

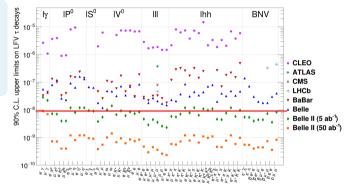
ooeooo Low n

Lepton Flavour Violation (LFV) searches




The lepton flavour is accidentally conserved in the SM Lepton flavour violation is only allowed by: • Neutrino oscillations $\mathcal{O}(10^{-55})$


far beyond current experimental sensitivities


• New Physics models $\mathcal{O}(10^{-8})$

e.g. Leptoquarks for $\tau^- \rightarrow \ell^- V^0$ deals with $R(K^{*0})$ anomalies

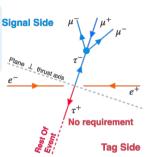
Progress of Theoretical and Experimental Physics. 2019 (2019) p. 123C01; arXiv:2203.14919 Observation of such decays will be a clear signature of New Physics

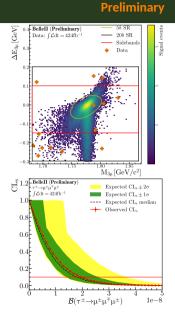
Tau lepton 000000

Low multiplicity 00000

Outlook and conclusion \circ

Belle II – au ightarrow 3 μ Lepton Flavour Violation decay


- Accessible:
 - good reconstruction of τ^- mass and energy
 - low SM background
- Also probed by LHC experiments


Signal efficiency challenge:

- BDT classifier: reject main backgrounds $e^+e^- o q \overline{q}$ using signal, "Rest of Event" and kinematic features
- $\epsilon_{sig}\simeq$ 20.41% (3 imes Belle Physics Letters B. 687 (2010) pp. 139–143)
- Observed 1 event in $424 \, \text{fb}^{-1}$ of data
- Set 90% CL upper-limit on the BF

 ${\cal B}(au o \mu \mu \mu) ~~<$ 1.9 imes 10 $^{-8}$

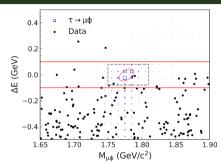
- \bullet New most stringent results compared to Belle 2.1 and CMS 2.9 \times 10 $^{-8}$
- \bullet Performances confirmed by a conventional 3 \times 1 tagging approach

Quarkonia 00000

Tau lepton 000000

Low multiplicity 00000

UBC


Belle – $au ightarrow \ell V^{o}$ Lepton Flavour Violation decay

New mediators (vector leptoquark) may enhance such decay, up to $\mathcal{O}(10^{-10})$ and accommodate for flavour anomalies in LFU tests **Phys. Rev. D**, 104 (2021) p. 055017

Signal efficiency challenge:

- Use more tag τ^+ final state channels
- BDT classifier: reject main backgrounds $e^+e^-
 ightarrow q\overline{q}$

Signal Side V_{nd} LFU e^{-} V_{0} e^{-} V_{0} τ^{-} τ^{-} e^{+} e^{+} e^{+} $\pi^{+}\pi^{-}\pi^{+}(\pi^{0})$ V_{T} Tag Side

J. High Energ. Phys. 2023 (2023) p. 118

Belle has no significant excess in 980 fb⁻¹

• The limit is improved by 30% wrt the previous Belle results

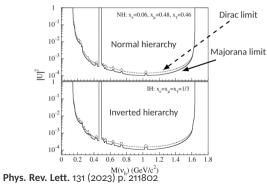
Belle II results on $\tau^- \to \ell^- \phi$ channel using an untagged approach with 189 fb^{-1} $\,$ (2023):

 $egin{array}{lll} {\cal B}(au o e \phi) & <$ 23 imes 10 $^{-8}$ ${\cal B}(au o \mu \phi) & <$ 9.7 imes 10 $^{-8}$

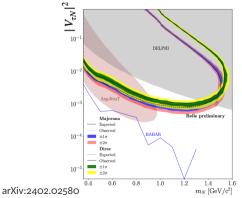
Quarkonia, tau and low multiplicity from Belle and Belle II - Robin Leboucher

Mode	$\varepsilon(\%)$	N _{BG}	$\sigma_{\rm syst}$ (%)	Nobs	\mathcal{B}_{obs} (×10 ⁻⁸)
$\tau^{\pm} \rightarrow \mu^{\pm} \rho^{\rm o}$	7.78	0.95 \pm 0.20 (stat.) \pm 0.15 (syst.)	4.6	0	< 1.7
$\tau^{\pm} \rightarrow e^{\pm} \rho^{o}$	8.49	0.80 \pm 0.27 (stat.) \pm 0.04 (syst.)	4.4	1	< 2.2
$\tau^{\pm} \rightarrow \mu^{\pm} \phi$	5.59	0.47 \pm 0.15 (stat.) \pm 0.05 (syst.)	4.8	0	< 2.3
$\tau^{\pm} \rightarrow e^{\pm} \phi$	6.45	0.38 \pm 0.21 (stat.) \pm 0.00 (syst.)	4.5	0	< 2.0
$\tau^{\pm} \rightarrow \mu^{\pm} \omega$	3.27	0.32 \pm 0.23 (stat.) \pm 0.19 (syst.)	4.8	0	< 3.9
$\tau^{\pm} \rightarrow e^{\pm} \omega$	5.41	0.74 \pm 0.43 (stat.) \pm 0.06(syst.)	4.5	0	< 2.4
$\tau^{\pm} \rightarrow \mu^{\pm} K^{*o}$	4.52	0.84 \pm 0.25 (stat.) \pm 0.31 (syst.)	4.3	0	< 2.9
$ au^{\pm} ightarrow e^{\pm} K^{* \circ}$	6.94	0.54 \pm 0.21 (stat.) \pm 0.16 (syst.)	4.1	0	< 1.9
$\tau^{\pm} \rightarrow \mu^{\pm} \bar{K}^{*o}$	4.58	0.58 \pm 0.17 (stat.) \pm 0.12 (syst.)	4.3	1	< 4.3
$ au^{\pm} ightarrow e^{\pm} ar{K}^{* o}$	7.45	0.25 \pm 0.11 (stat.) \pm 0.02 (syst.)	4.1	0	< 1.7

New world-leading results


Belle - BSM heavy neutrino searches

Experimental neutrino oscillation evidence has demonstrated that neutrinos are massive \rightarrow can be introduced by several candidates like heavy, right-handed or sterile neutrinos

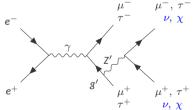

Search for a heavy neutrino in $au^- o \pi^-
u_h (o \pi^\pm \ell^\mp)$ with 988 fb $^{-1}$

- No narrow peak found in the 0.2 < M($\nu_h)$ < 1.6 GeV/ c^2 while excluding the $K^{\rm S}_{\rm S}$ region
- Establish 95% CL on the heavy neutrino mixing

Search for a sterile neutrino in $au^- o \pi^-$ N $(o \mu^+\mu^u_ au)$ with 915 fb $^{_-1}$

- No significant observed signal found while excluding the K_S^o
- Establish a limit on the mixing coefficient $|V_{\tau N}|^2$ between $u_{ au}$ and N

B factories at e^+e^- collider can access the mass range favoured by light-dark sectors

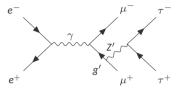


Light dark sector weakly couples to SM through various light mediators

Belle II – Search for **Z'** boson

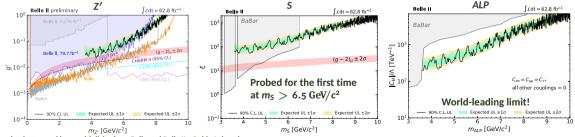
New gauge boson Z' coupling only to the 2nd and 3rd generation of leptons $(L_{\mu} - L_{\tau})$ via g':

- dark matter puzzle
- long-standing $(g 2)_{\mu}$ anomaly


Depending on the Z' candidate mass the final state can be:

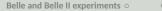
- $\nu\nu$ • χ, χ } Fully invisible Phys. Rev. Lett. 130 (2023) p. 231801
- $\mu^-\mu^+$
- $\tau^- \tau^+$

Belle II - Search for $\tau^+\tau^-$ resonance in $e^+e^- \rightarrow \mu^+\mu^-\tau^+\tau^-$ Phys. Rev. Lett. 131 (2023) p. 121802


No significant excess was observed in 62.8 fb^{-1}

• 90% CL upper limits on the cross-section

 σ ($e^+e^- \rightarrow X\mu^+\mu^-$) B ($X \rightarrow \tau^+\tau^-$), with X = Z', S, ALP and on the coupling constant


• Search for $\tau^+\tau^-$ resonance in recoil mass (against dimuons)

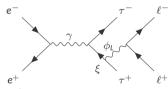
 \Rightarrow also sensitive to leptophilic scalar S and ALPs

Quarkonia, tau and low multiplicity from Belle and Belle II - Robin Leboucher

UBC

Preliminary

UBC


Belle II - Search for $\mu^+\mu^-$ resonance in $e^+e^- \rightarrow \mu^-\mu^+\mu^-\mu^+$ e^{-} μ μ No significant excess was observed in 178 fb⁻¹ • 90% CL upper limits on the cross-section σ ($e^+e^- \rightarrow X\mu^+\mu^-$) B ($X \rightarrow \mu^+\mu^-$), with X = S, Z' and on the coupling constant P μ^{-} u⁻ • Search for $\mu^+\mu^-$ resonance in the reduced dimuon mass $M_R \equiv \sqrt{M^2(\mu\mu) - 4m_\mu^2}$ \Rightarrow also sensitive to leptophilic scalar S L dt = 178 fb L dt = 178 fb⁻¹ Belle II preliminary Belle II preliminary UL similar to those set First UL on gs obtained from from previous searches a dedicated search 10⁻¹ with larger luminosity 10^{-1} than ours UL on g' UL on g_s 10-2 10-CMS (95% CL) 10-10-Expected UL ± 1o 0% CL UI Expected UL ± 1σ Expected UL ± 20 Expected UL ± 20 10 10 10 m-[GeV/c2] m_[GeV/c2] Quarkonia, tau and low multiplicity from Belle and Belle II - Robin Leboucher

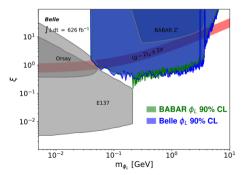
UBC

Belle - Search for dark leptophilic scalar

The dark leptophilic scalar ϕ_L can only couple to leptons:

- ullet long-standing (g 2) $_{\mu}$ anomaly
- dark matter abundance
- lepton flavour universality violations
- leptophilic scalar constraints are still loose

- Search process $e^+e^- \rightarrow \tau^-\tau^+\phi_l (\rightarrow \ell^-\ell^+)$ where $\ell = e, \mu$
- Reject the main backgrounds with BDT


Results

No significant excess was observed in 626 fb^{-1}

- 90% CL upper limits on the cross-section
 - σ ($e^+e^- \rightarrow \phi_L \tau^- \tau^+$) **B** ($\phi_L \rightarrow \ell \ell$), with $\ell = e, \mu$ and on the coupling constant

Phys. Rev. D. 109 (2024) p. 032002

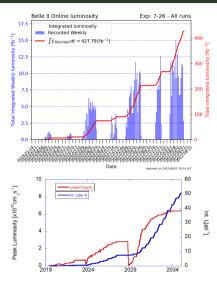
- no ϕ_L with mass ${\sf M}(\phi_L)<4\,{\rm GeV}$ that can explain the observed excess in $(g-2)_\mu$

Outlook and conclusion

The observation of the Υ (10753) is confirmed, its nature remains unclear \Rightarrow but several studies are ongoing to push forward

Several new world best limit on high-profile τ LFU/LFV searches ($\tau \rightarrow \ell V^{o}$ and $\tau \rightarrow 3\mu$) Proving that Belle and Belle II are also τ -factories

Belle II has unique sensitivity for light dark sectors searches and is complementary to other experiments Excellent performance with displaced vertices and missing energy allows the world's leading results


Belle II has successfully concluded Run1 with 424 fb⁻¹, and the first results show excellent performances Now, after 18 months of shutdown, we aim to collect data at 10^{35} cm⁻²s⁻¹ and reach the 1 ab⁻¹ by the end of the year!

Thank you!

Backups

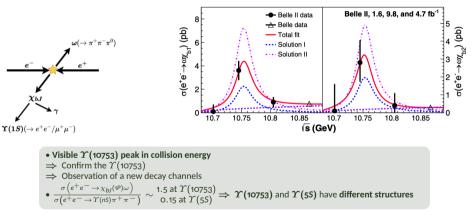
Belle II Luminosity and LS1 plans

LS1 plans:

Belle II stopped taking data in Summer 2022 for a long shutdown

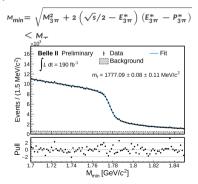
- o replacement of beam-pipe
- replacement of photomultipliers of the central PID detector (TOP)
- o installation of 2-layered pixel vertex detector
- improved data-quality monitoring and alarm system
- complete transition to new DAQ boards (PCle40)
- replacement of aging components
- additional shielding and increased resilience against beam backgrounds

Currently working on pixel detector installation:


- > shipping to KEK in mid March
- > final test at KEK scheduled in April

Belle II - Observation of Υ (10753) $\rightarrow \omega \chi_{bJ}$ (1P)

Search for $e^+e^-
ightarrow \omega (
ightarrow \pi^+\pi^-\pi^{
m o}) \chi_{bJ} (
ightarrow \gamma \Upsilon$ (1S)):



Belle II – τ mass measurement

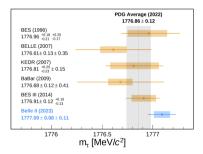
Reconstruct:

$$e^+e^-
ightarrow [au_{sig}
ightarrow \pi\pi\pi
u_ au] \ [au_{tag}
ightarrow \ell
u
u/\pi(\pi^{
m o})
u]$$

And then exploit the Pseudomass technique developed by ARGUS: unbinned maximum likelihood fit of the pseudo mass:

Dominated by systematics uncertainties				
Source	Uncertainty			
	MeV/c^2			
Knowledge of the colliding beams:				
Beam energy correction	0.07			
Boost vector	≤ 0.01			
Reconstruction of charged particles:				
Charged particle momentum correction	0.06			
Detector misalignment	0.03			
Fitting procedure:				
Estimator bias	0.03			
Choice of the fit function	0.02			
Mass dependence of the bias	≤ 0.01			
Imperfections of the simulation:				
Detector material budget	0.03			
Modeling of ISR and FSR	0.02			
Momentum resolution	≤ 0.01			
Neutral particle reconstruction efficiency	≤ 0.01			
Tracking efficiency correction	≤ 0.01			
Trigger efficiency	<pre>< 0.01 <!-- dots</pre--></pre>			
Background processes	≤ 0.01			
Total	0.11			

Phys. Rev. D. 108 (2023) p. 032006



World's most precise M_{τ} measurement:

$$M_{\tau} = 1777.09 \pm 0.08_{\text{stat}} \pm 0.11_{\text{sys}} \text{ MeV}/c^2$$

Using

Demonstration of Belle II capability to provide high precision measurement

au mass measurement

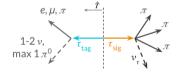
UBC

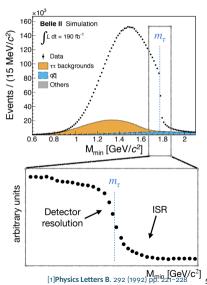
Motivations:

- Lepton masses are fundamental parameters of the SM
- Current precision on au mass is 10³ worse than muon mass
- Its precision impacts LFU test analysis

$$e^+e^-
ightarrow [au_{sig}
ightarrow \pi\pi\pi
u_ au] [au_{tag}
ightarrow \ell
u
u/\pi(\pi^{
m o})
u]$$

Pseudomass technique


developed by ARGUS


- Exploit the kinematics of the 3π system with only four tracks and no additional high-energy photons
- Pseudomass M_{min}:

$$M_{min} = \sqrt{M_{3\pi}^2 + 2 \left(\sqrt{s}/2 - E_{3\pi}^*\right) \left(E_{3\pi}^* - P_{3\pi}^*\right)} \leq M_{\tau}$$

- Cutoff position at the τ mass is extracted from a fit with an empirical function fit
 - Detector resolution \Rightarrow smeared edges
 - ISR \Rightarrow tail at $M_{min} > M_{\tau}$

Quarkonia, tau and low multiplicity from Belle and Belle II - Robin Leboucher

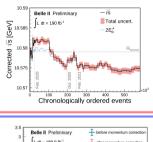
Phys. Rev. D. 108 (2023) p. 032006

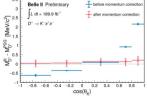
5/10

au mass measurement

Phys. Rev. D. 108 (2023) p. 032006

• Measurement dominated by systematics uncertainties: $M_{min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - P_{3\pi}^*)}$


Source	Uncertainty	
	MeV/c^2	
Knowledge of the colliding beams:		
Beam energy correction	0.07	
Boost vector	\leq 0.01	
Reconstruction of charged particles:		
Charged particle momentum correction	0.06	
Detector misalignment	0.03	
Fitting procedure:		
Estimator bias	0.03	
Choice of the fit function	0.02	
Mass dependence of the bias	\leq 0.01	
Imperfections of the simulation:		
Detector material budget	0.03	
Modeling of ISR and FSR	0.02	
Momentum resolution	≤ 0.01	
Neutral particle reconstruction efficiency	< 0.01	
Tracking efficiency correction	\leq 0.01	
Trigger efficiency	<pre>< 0.01 < 0.01 < 0.01 < 0.01 < 0.01</pre>	
Background processes	\leq 0.01	
Total	0.11	

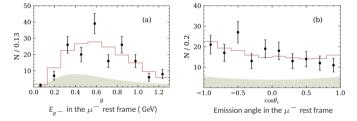

Beam energy callibration

Use *B* meson hadronic decays method and $\Upsilon(4S)$ lineshape measurement to get \sqrt{s}

Momentum scale factor

- Cure bias due to imperfect magnetic field
- Extract polar angle $cos\theta_{track}$ dependant correction: comparing $D^{o} \rightarrow K\pi$ mass peak w.r.t PDG mass

Belle - Michel parameters measurement


Michel parameters arise from bilinear combinations of coupling constants between the au^- and the W boson Any deviations on them are prints of BSM physics; new gauge bosons, the presence of massive neutrinos

The ξ' defines the longitudinal polarization of the daughter μ^- when τ^- is unpolarized

• Use μ^- decays in flight

 $\tau^- \rightarrow \mu^- (\rightarrow e^- \overline{\nu}_e \nu_\mu) \overline{\nu}_\mu \nu_\tau$

- Require two tracks on the signal side:
 - One μ^- from the IP and ending in the CDC
 - One e^- not from the IP and close to the muon \Rightarrow kink J. High Energ. Phys. 2022 (2022) p. 35

Quarkonia, tau and low multiplicity from Belle and Belle II - Robin Leboucher

• First direct measurement of the Michel parameter ξ' in the $au^- o \mu^- \overline{
u}_\mu
u_ au$ **decav** with 988 fb⁻¹ of Belle

$$\xi' = 0.22 \pm 0.94$$
 (stat) ± 0.42 (syst)

Belle II – $au ightarrow \ell lpha$ LFV decay

Motivations:

Decays with new LFV α bosons (ALPs) are predicted in many models

Strategy:

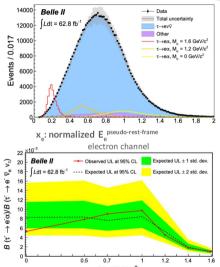
- Approximate τ_{sig} pseudo-rest frame as: $E_{sig} \approx \sqrt{s}/2 \& \hat{\mathbf{p}}_{sig} \approx -\vec{\mathbf{p}}_{\tau tag} / \left| \vec{\mathbf{p}}_{\tau tag} \right|$
- Two body decay: search for a bump in normalized lepton energy spectrum over $au_{\rm SM} o \ell
 u
 u$ irreducible background

Results:

- No signal found in 62.8 fb^{-1}
- Set 95% CL upper-limit on BF ratio:

 ${\cal B}(au o \ell lpha) / {\cal B}(au_{
m SM} o \ell
u
u)$

е. и


à'a

 τ_{tag}

Between 2 to 14 times more stringent than previous limits, ARGUS

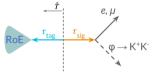
Quarkonia, tau and low multiplicity from Belle and Belle II - Robin Leboucher

[1]Phys. Rev. Lett. 124 (2020) p. 211803 [2]Z. Phys. C - Particles and Fields. 68 (1995) pp. 25-28 8/10

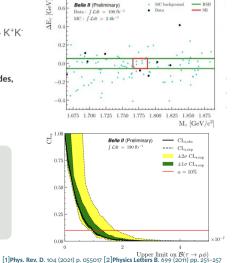
Phys. Rev. Lett. 130 (2023) p. 181803

Belle II - $\tau \rightarrow \ell \phi$ LFV decay

Signal efficiency challenge:


- Untagged reconstruction: drop any requirements on the tag side
- Cut-based preselections on missing momentum to reject $e^+e^- \rightarrow \ell^-\ell^+$ (XX) backgrounds
- BDT classifier: reject main backgrounds $(e^+e^- \rightarrow a\bar{a}, \tau^- \rightarrow 3\pi\nu_{\tau})$ using signal and kinematic features
- Expected background evaluated from data reduced sidebands with scaling from simulation: Poisson counting in signal peaking region:

$$M_{ au}$$
 and $\Delta E_{ au} = E_{sig} - \sqrt{s}/2$


- No significant excess in 189 fb⁻¹
- Set 90% CL upper-limit on the BF with CLs method

• First successful application of the untagged approach in τ -pair analysis at **Belle II**

Ouarkonia, tau and low multiplicity from Belle and Belle II - Robin Leboucher

$$arepsilon_{ extsf{sig}}\simeq$$
 6.1%(6.5%) for $e(\mu)$ modes, 2 $imes$ Belle

Muon mode: $\tau \rightarrow \mu \Phi$

Belle II (Preliminary)

0.6

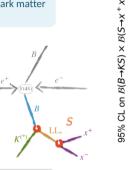
(2023)

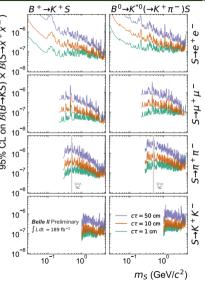
Belle II – Search for long-lived (pseudo)scalar in $b \rightarrow s$ transitions

Phys. Rev. D. 108 (2023) p. L111104

S could mix with SM Higgs with mixing angle θ_s (naturally long-lived for $\theta_s << 1$). For $M_S < M_B$, decay to dark matter kinematically forbidden by relic density constraint

First model-independent search for dark scalar *S* from *B* decays in rare $b \rightarrow s$ transition


• 8 exclusive channels probed


 $B^+ \to K^+ S$

- ${\it B}^{
 m o}
 ightarrow {\it K}^{*
 m o} {\it S}$ with ${\it S}
 ightarrow {\it ee}, \mu \mu, \pi \pi, {\it K} {\it K}$
- Bump hunt in the reduced mass spectrum

 $M^{reduced}_{S \rightarrow x^+x^-} = \sqrt{M^2_{S \rightarrow x^+x^-} - 4m^2_x}$

No significant excess was found in 189 fb⁻¹
First model-independent 95% CL upper-limit on B(B → KS) × B(S → x⁺x⁻)

