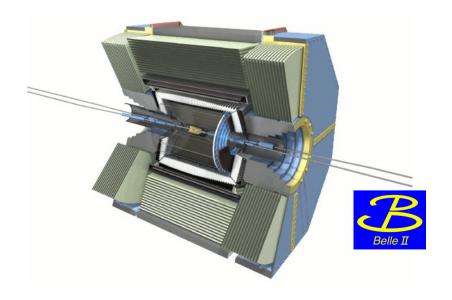
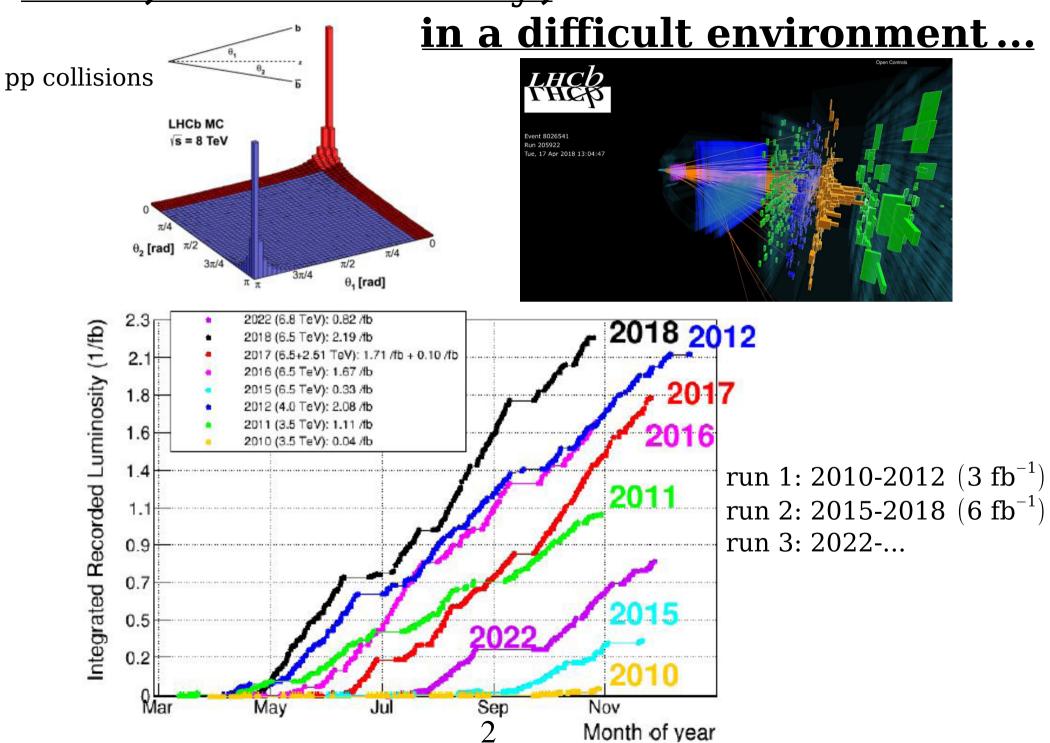

Flavour Physics Current Status and Future Prospects

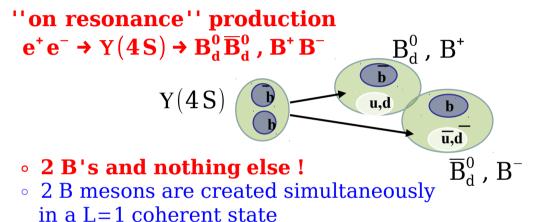

K. Trabelsi

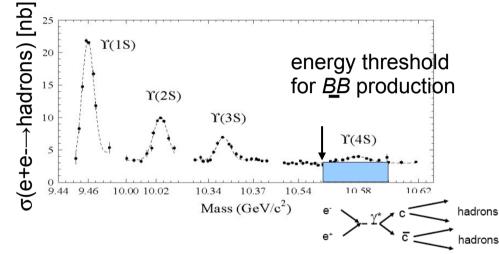
karim.trabelsi@in2p3.fr


(focusing mostly on LHCb/Belle II's most recent results)

WHEPP XVI, Gandhinagar, 3rd January 2024

LHCb, a flavour-factory,




Belle II, a flavour-factory,

 $(Belle \sim 1 ab^{-1})$

a rich physics program...

- We plan to collect (at least) 50 ab^{-1} of e^+e^- collisions at (or close to) the Y(4S) resonance, so that we have:
- a (Super) B-factory ($\sim 1.1 \times 10^9 \text{ B}\overline{\text{B}}$ pairs per ab⁻¹)

- $\text{ a (Super) charm factory } (\sim 1.3 \times 10^9 \text{ cc pairs per ab}^{-1}) \\ \text{(but also charmonium, X, Y, Z, pentaquarks, tetraquarks, bottomonium...)}$
- a (Super) τ factory (~0.9 × 10⁹ τ ⁺ τ ⁻ pairs per ab⁻¹)
- exploit the clean e⁺e⁻ environment to probe the existence of exotic hadrons, dark photons/Higgs, light Dark Matter particles, ALPs, LLPs ...

⇒ to reach
$$6 \times 10^{35}$$
 cm⁻² s⁻¹
⇒ cumulate 50 ab⁻¹ by ~ 2035

Belle(II), LHCb side by side

Belle (II)

$e^+e^- \rightarrow Y(4S) \rightarrow b\overline{b}$

at Y(4S): 2 B's (B⁰ or B⁺) and **nothing else** ⇒ **clean events**

(flavour tagging, B tagging, missing energy)

⇒ initial conditions are precisely known

$$\sigma_{b\overline{b}} \sim 1 \text{ nb} \Rightarrow 1 \text{ fb}^{-1} \text{ produces } 10^6 \text{ B}\overline{\text{B}}$$
 $\sigma_{b\overline{b}}/\sigma_{total} \sim 1/4$

LHCb

$$pp \rightarrow b\overline{b}X$$

production of B^+ , B^0 , B_s , B_c , Λ_h ...

but also a lot of other particles in the event

⇒ lower reconstruction efficiencies

 $\sigma_{b\bar{b}}$ much higher than at the Y(4S)

	√s [GeV]	σ _{են} [nb]	σ _{bδ} / σ _{tot}
HERA pA	42 GeV	~30	~10-6
Tevatron	2 TeV	5000	~10-3
LHC	8 TeV	~3x10 ⁵	~ 5x10 ⁻³
LHC	14 TeV	~6x10 ⁵	~10*2

b $\overline{\mathbf{b}}$ production cross-section at LHCb ~ 500,000 × BaBar/Belle!!

higher luminosity

 $\sigma_{b\overline{b}}/\sigma_{total}$ much lower than at the Y(4S) \Rightarrow lower trigger efficiencies

B mesons live relatively long

mean decay length $\beta \gamma c \tau \sim 200 \mu m$

mean decay length $\beta \gamma c \tau \sim 7 \text{ mm}$

data taking period(s)

(displaced vertices)

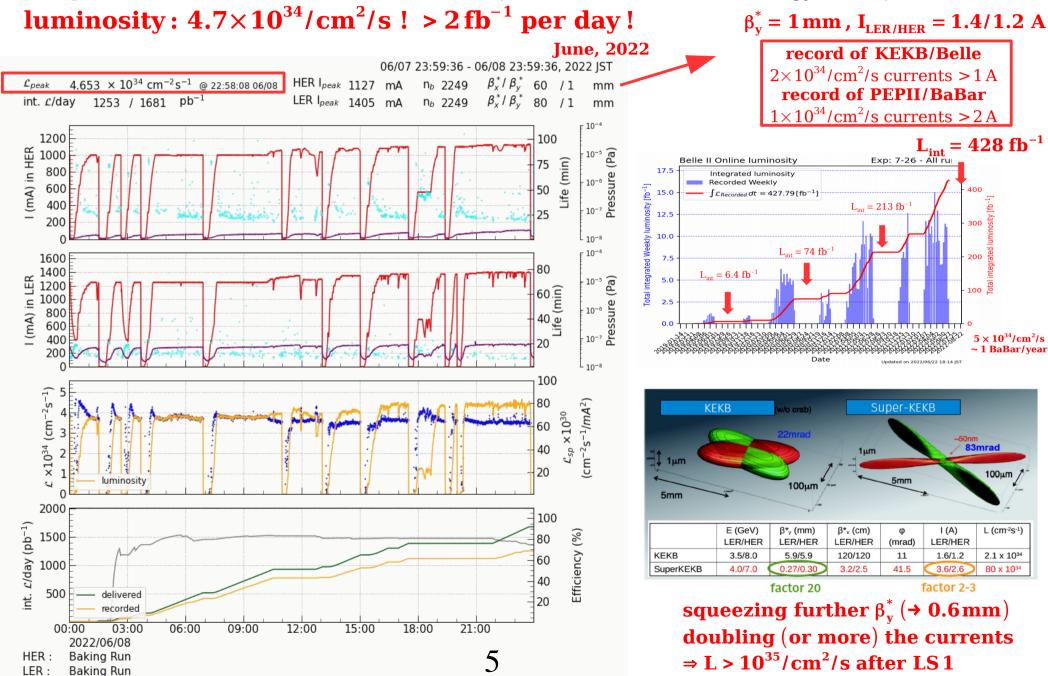
$$[1999-2010] = 1 \text{ ab}^{-1}$$

 $[2019-...] = ...$

$$[run \ I: 2010-2012] = 3 \ fb^{-1}$$

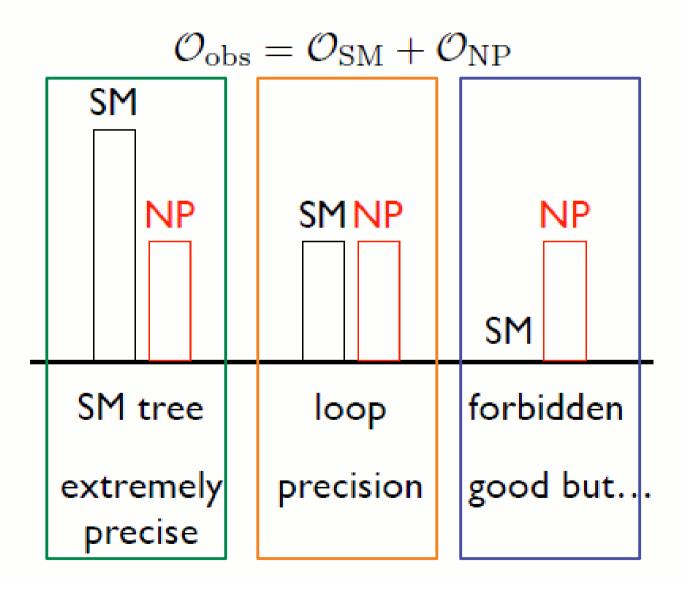
 $[run \ II: 2015-2018] = 6 \ fb^{-1}$
ture

(near) future

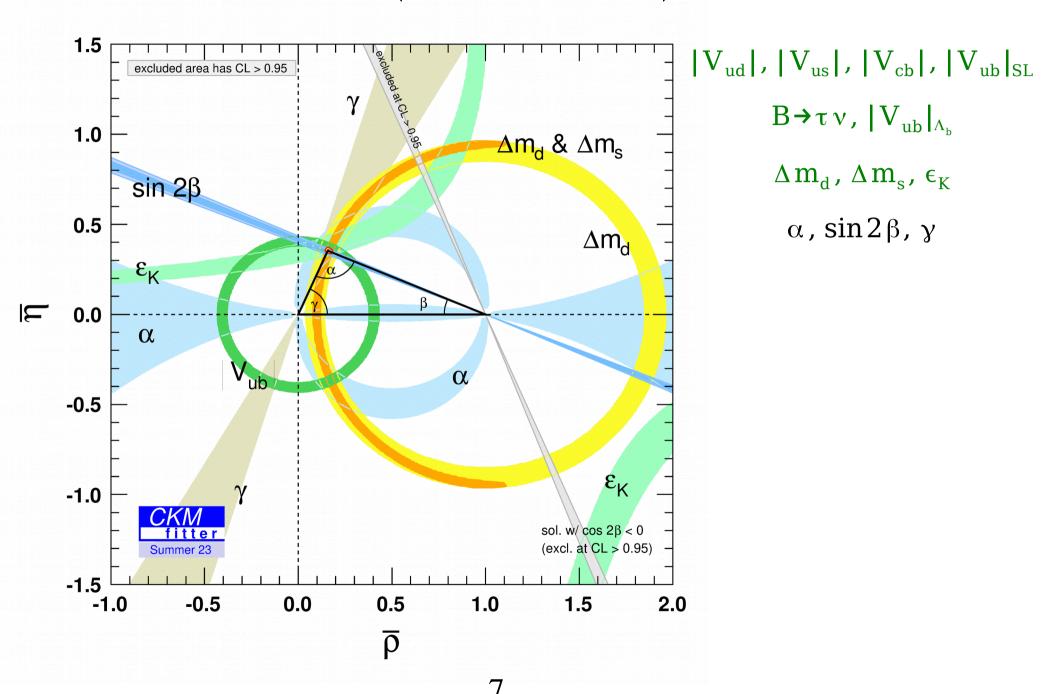

[Belle II from 2019] $\rightarrow 50 \text{ ab}^{-1}$

[LHCb upgrade from 2022]

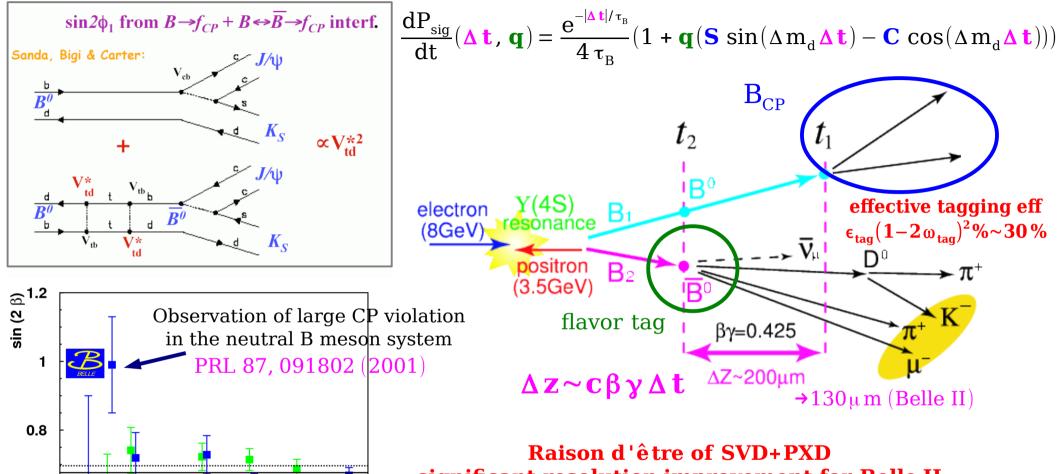
Belle II run I (2019-2022)


data taking from March 2019 to June 2022

→ despite difficult conditions since March 2020 (Covid, war in Ukraine, energy cost...)


Physics at Belle II/LHCb

Three classes of SM processes



The current status of CKM

(CKMfitter 2023)

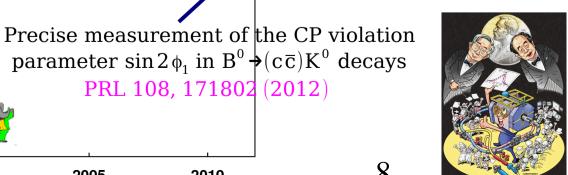
Time-dependent CP asymmetries in decays to CP eigenstates

parameter $\sin 2\phi_1$ in $B^0 \rightarrow (c\overline{c})K^0$ decays

PRL 108, 171802 (2012)

2010

2005

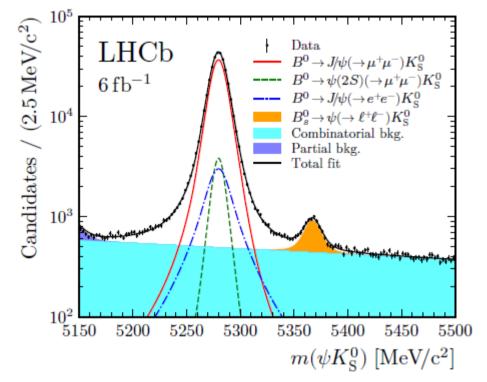

0.6

0.4

0.2

2000

significant resolution improvement for Belle II (but also improvement of flavour tagging)



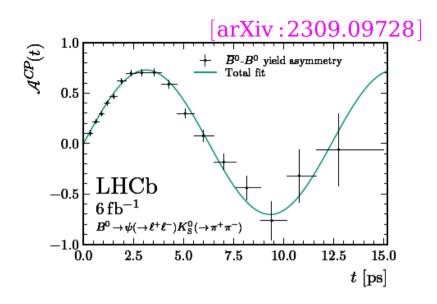
A single irreducible phase in the weak interaction matrix accounts for most of the CPV observed in kaons and B's

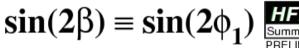
Critical role of the B factories in the verification of the KM hypothesis

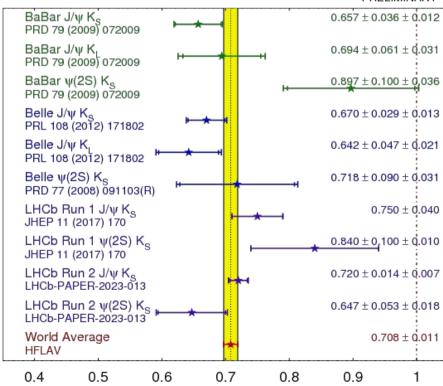
sin 2β at LHCb/Belle II

- New result from LHCb using Run 2 data (6 fb⁻¹)
- ∘ B→J/ ψ (→ $\mu^+\mu^-$, e^+e^-) K_S^0 , J/ ψ (→ $\mu^+\mu^-$) K_S^0

$$\begin{split} S(\psi K_S^0) &= 0.717 \pm 0.013 \pm 0.008 \\ C(\psi K_S^0) &= 0.008 \pm 0.012 \pm 0.003 \end{split}$$


⇒ Combined with Run 1:

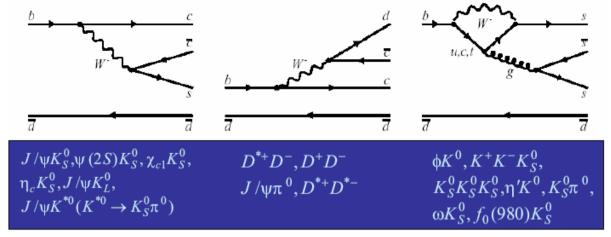

$$S(\psi K_S^0) = 0.724 \pm 0.014$$


$$C(\psi K_s^0) = 0.004 \pm 0.012$$

Belle II

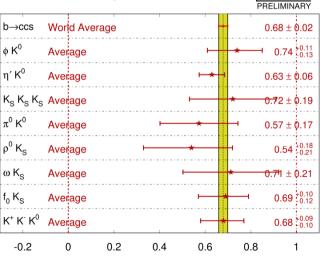
$$S = 0.724 \pm 0.035 \pm 0.014$$

 $C = -0.035 \pm 0.026$ 0.013



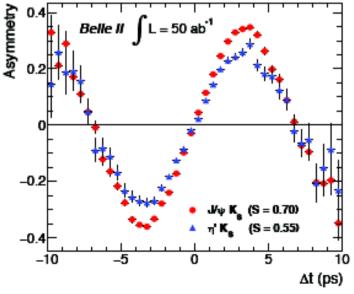
sin 2β with b→s penguins

dominated by B-factories



increasing tree diagram amplitude

increasing sensitivity to new physics


Not including LD amplitude

$sin(2\beta^{eff}) \equiv sin(2\varphi_1^{eff}) \underset{\text{PRELIMINARY}}{\underbrace{\text{HFAG}}}$

More statistics crucial for mode-by-mode studies

Channel	∫ L	Event yield	$\sigma(S)$	$\sigma(A)$
ϕK^0	$5~{ m ab^{-1}}$	5590	0.048	0.035
$\eta' K^0$	$5~{ m ab^{-1}}$	27200	0.027	0.020
ωK_S^0	$5~{ m ab^{-1}}$	1670	0.08	0.06
$K_S\pi^0\gamma$	$5~{ m ab^{-1}}$	1400	0.10	0.12
$K_S\pi^0$	$5~{ m ab}^{-1}$	5699	0.09	0.10
$K_S\pi^\circ$	5 ab -	5699	0.09	0.10

η'K⁰
0.3

-0.2

-0.1

Theory uncertainty on Δ S

AS

QCDF Beneke, PLB620, 143 (2005)

SCET/QCDF, Williamson and Zupan, PRD74, 014003 (2006)

QCDF Cheng, Chua and Soni, PRD72, 014006 (2005)

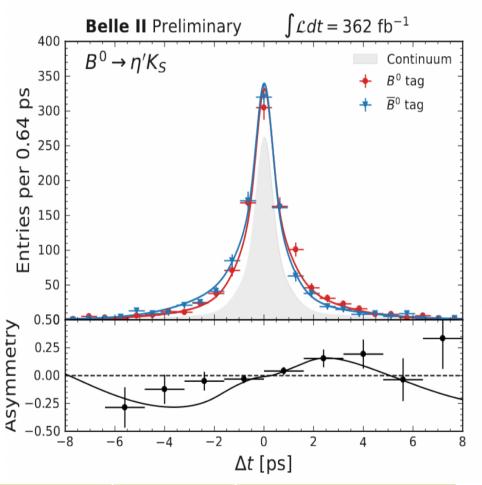
SU(3) Gronau, Rosner and Zupan, PRD74, 093003 (2006)

 $f_0^0(980) K^0$

 $\rho^0 K^0$

 $\pi^0 K_s^0$

 ϕK^0


First Belle II measurement of CPV in $B \rightarrow \eta' K_S^0$

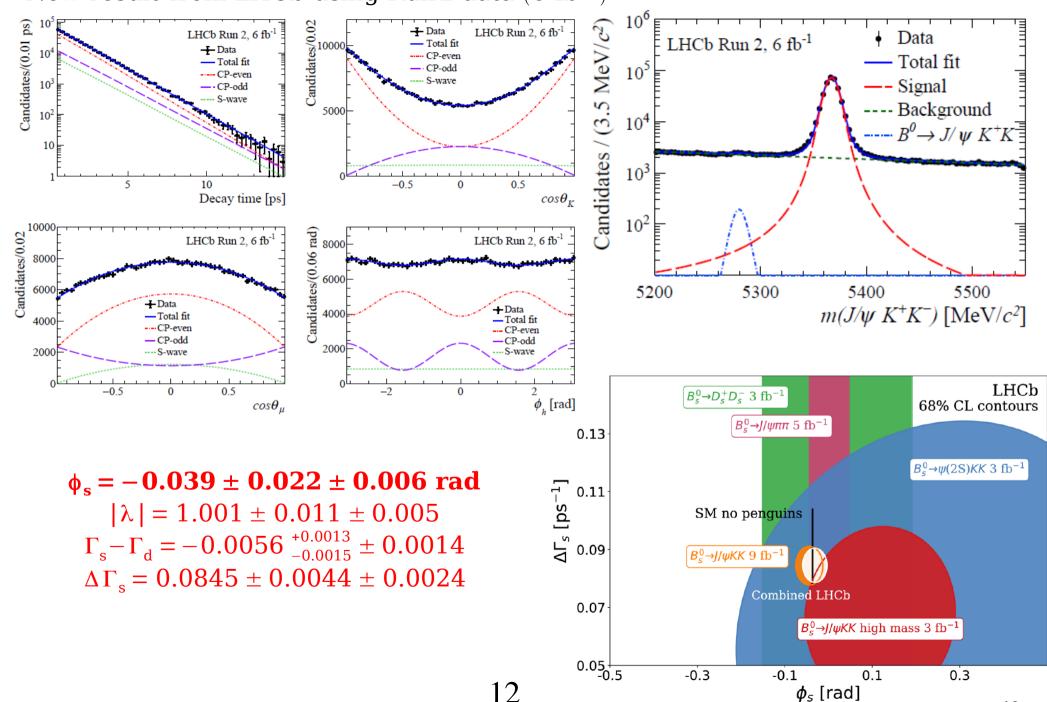
is a central flavor goal unique to Belle II

 $B^0 \rightarrow \eta' K_S^0$ is best: high BF and o(%) theoretical uncertainty

$$C = 0.19 \pm 0.08 \pm 0.03$$

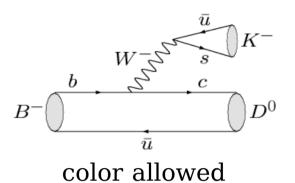
 $S = 0.67 \pm 0.10 \pm 0.04$

Contributes to world average with sensitivity close to Belle's and BaBar's



Mode	Experiment	$sin(2\beta^{eff}) \equiv sin(2\phi_1^{eff})$	C _{CP}	Correlation	Reference
	BaBar N(BB)=467M	$0.57 \pm 0.08 \pm 0.02$	$-0.08 \pm 0.06 \pm 0.02$	0.03 (stat)	PRD 79 (2009) 052003
η′K ⁰	Belle N(BB)=772M	$0.68 \pm 0.07 \pm 0.03$	$-0.03 \pm 0.05 \pm 0.03$	0.03 (stat)	JHEP 1410 (2014) 165
,,,,	Average	0.63 ± 0.06	-0.05 ± 0.04	0.02	HFLAV correlated average $\chi^2 = 1.3/2$ dof (CL=0.53 \Rightarrow 0.6 σ)
	Figures:	<u>eps.gz</u> <u>png</u>	eps.gz png		<u>eps.gz</u> <u>pn</u> g

11


[arXiv:2309.09728]

New result from LHCb using Run 2 data (6 fb⁻¹)

γ measurements from $B^{\pm} \rightarrow DK^{\pm}$

- Theoretically pristine B→DK approach
- ∘ Access γ via interference between $B^- \rightarrow D^0 K^-$ and $B^- \rightarrow \overline{D}^0 K^-$

 $B^- \rightarrow D^0 K^- \sim V_{ch} V_{us}^*$

 $\sim A \lambda^3$

color suppressed $B^{-} \rightarrow \overline{D}^{0} K^{-} \sim V_{ub} V_{cs}^{*}$ $\sim A \lambda^{3} (\rho + i \eta)$

relative weak phase is γ relative strong phase is $\delta_{\scriptscriptstyle B}$

$$\begin{split} r_{B} &= \frac{|A_{suppressed}|}{|A_{favoured}|} \\ &\sim \frac{|V_{ub}V_{cs}^{*}|}{|V_{cb}V_{us}^{*}|} \times [color\ supp] \\ &= 0.1 \text{-} 0.2 \end{split}$$

$$B^{\pm} \rightarrow DK^{\pm}$$

$$B^{\pm} \rightarrow D^{*}K^{\pm}, D^{*} \rightarrow D\pi^{0}$$

$$B^{\pm} \rightarrow D^{*}K^{\pm}, D^{*} \rightarrow D\gamma$$

$$B^{\pm} \rightarrow DK^{*\pm}$$

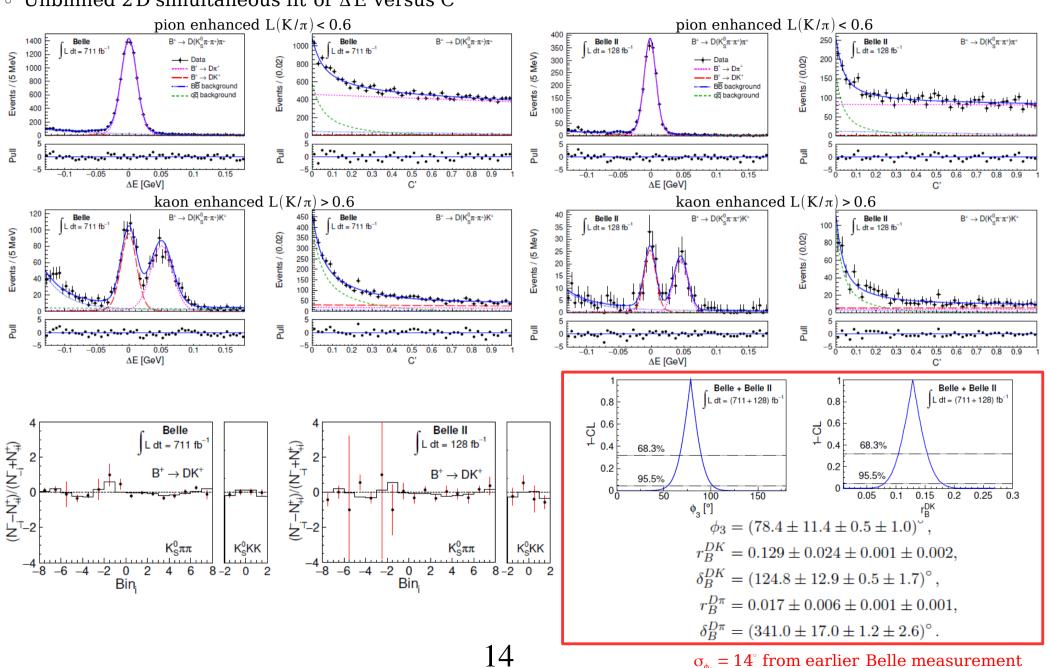
$$B^{0} \rightarrow DK^{*0}$$

$$B^{\pm} \rightarrow DK\pi\pi$$

$$B \rightarrow ...$$

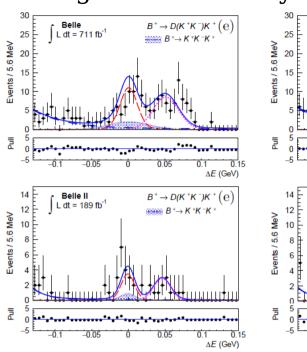
$$D \rightarrow K^{+}K^{-}, \pi^{+}\pi^{-}...$$

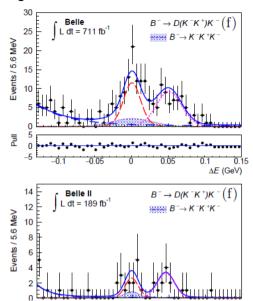
 $D \rightarrow K_{S}\pi^{0}, K_{S}\eta...$
 $D \rightarrow KK\pi^{0}, \pi\pi\pi^{0}...$
 $D \rightarrow K_{S}\pi\pi, K_{S}KK$
 $D \rightarrow K_{S}\pi\pi\pi^{0}$
 $D \rightarrow ...$

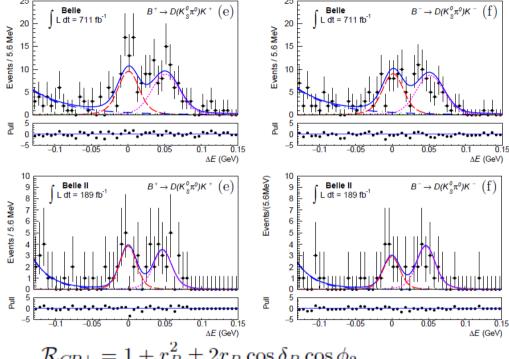

BPGGSZ study $\mathbf{B} \rightarrow \mathbf{D}(\mathbf{K}_{\mathbf{S}}^{\mathbf{0}}\mathbf{h}^{+}\mathbf{h}^{-})\mathbf{h}^{-} \quad h = \pi, K$

 \circ Analysis with 711 fb⁻¹ Belle data and 128 fb⁻¹ Belle II data

(Belle/Belle II collaboration)


[arXiv:2110.12125, JHEP (2022) 63]

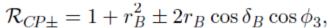

Unbinned 2D simultaneous fit of ΔE versus C'



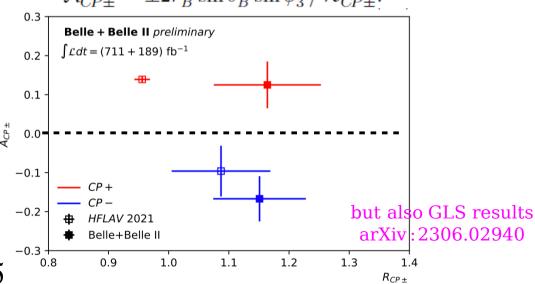
GLW study for $B \rightarrow D(KK)K$ and $D(K_s^0 \pi^0)K$

Fitting simultaneously the $B \rightarrow D\pi$ and DK samples, $D \rightarrow K\pi$ and ... $D \rightarrow KK$ and $K_s^0\pi^0$

In GLW, CP-odd state accessible only to B-factories [arXiv:2308.05048]

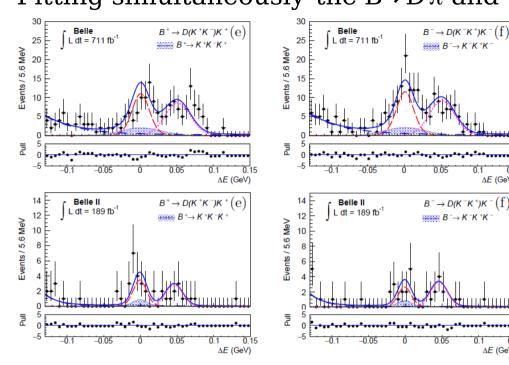

$$\mathcal{R}_{CP+} = 1.164 \pm 0.081 \pm 0.036,$$

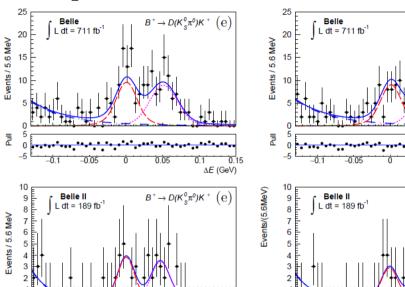
$$\mathcal{R}_{CP-} = 1.151 \pm 0.074 \pm 0.019,$$


$$\mathcal{A}_{CP+} = (+12.5 \pm 5.8 \pm 1.4)\%,$$

$$\mathcal{A}_{CP-} = (-16.7 \pm 5.7 \pm 0.6)\%.$$

Direct evidence of opposite A_{CP} for even and odd states

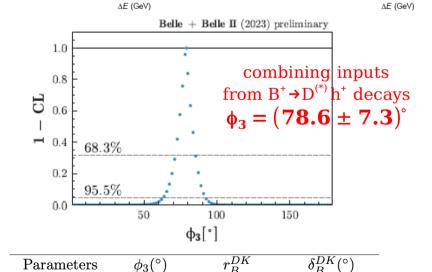



$$\mathcal{A}_{CP\pm} = \pm 2r_B \sin \delta_B \sin \phi_3 / \mathcal{R}_{CP\pm}.$$

GLW study for $B \rightarrow D(KK)K$ and $D(K_S^0 \pi^0)K$

Fitting simultaneously the $B \rightarrow D\pi$ and DK samples, $D \rightarrow K\pi$ and ... $D \rightarrow KK$ and $K_S^0\pi^0$

In GLW, CP-odd state accessible only to B-factories [arXiv:2308.05048]


$$\mathcal{R}_{CP+} = 1.164 \pm 0.081 \pm 0.036,$$

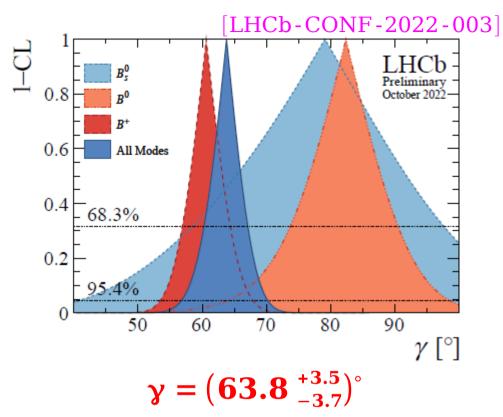
$$\mathcal{R}_{CP-} = 1.151 \pm 0.074 \pm 0.019,$$

$$\mathcal{A}_{CP+} = (+12.5 \pm 5.8 \pm 1.4)\%,$$

$$\mathcal{A}_{CP-} = (-16.7 \pm 5.7 \pm 0.6)\%.$$

Direct evidence of opposite A_{CP} for even and odd states

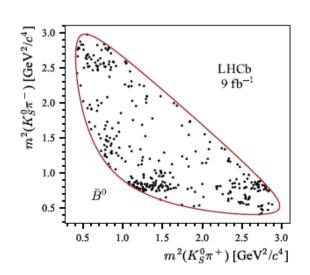
 $B^- \to D(K^0 \pi^0) K^-$ (f)


 $B^- \rightarrow D(K_0^0 \pi^0) K^-$ (f)

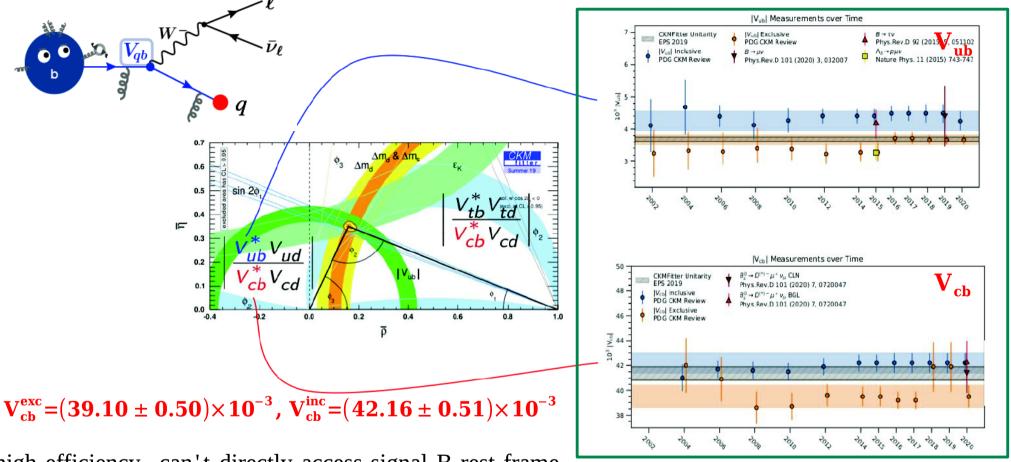
Best fit value	78.6	0.117	138.4
68.3% interval	[71.4, 85.4]	[0.105, 0.130]	[129.1, 146.5]
95.5% interval	[63, 92]	[0.092, 0.141]	[118, 154]

y measurements at LHCb

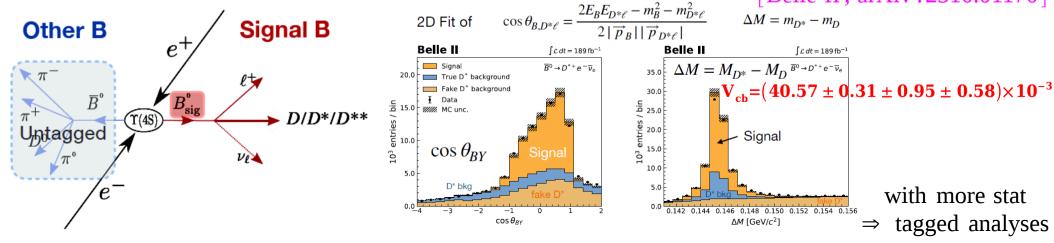
B decay	D decay	Ref.	Dataset
$B^{\pm} \rightarrow Dh^{\pm}$	$D o h^+ h^-$	[29]	Run 1&2
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^+\pi^-\pi^+\pi^-$	30	Run 1
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$	18	Run 1&2
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^+ h^- \pi^0$	19	Run 1&2
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K_{\rm S}^0 h^+ h^-$	[31]	Run 1&2
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K_S^0 K^{\pm} \pi^{\mp}$	32	Run 1&2
$B^{\pm} \rightarrow D^*h^{\pm}$	$D \rightarrow h^+h^-$	32 29 33	Run 1&2
$B^{\pm} \rightarrow DK^{*\pm}$	$D \rightarrow h^+h^-$	33	Run 1&2(*)
$B^{\pm} \rightarrow DK^{*\pm}$	$D \rightarrow h^+\pi^-\pi^+\pi^-$	33	Run 1&2(*)
$B^{\pm} \rightarrow Dh^{\pm}\pi^{+}\pi^{-}$	$D \rightarrow h^+h^-$	34	Run 1
$B^0 \rightarrow DK^{*0}$	$D \rightarrow h^+h^-$	[35]	Run 1&2(*)
$B^0 \rightarrow DK^{*0}$	$D \rightarrow h^+\pi^-\pi^+\pi^-$	35	Run 1&2(*)
$B^0 \rightarrow DK^{*0}$	$D ightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$	36	Run 1
$B^0 \rightarrow D^{\mp}\pi^{\pm}$	$D^+ \rightarrow K^- \pi^+ \pi^+$	37	Run 1
$B_s^0 \rightarrow D_s^{\mp} K^{\pm}$	$D_s^+ \rightarrow h^+ h^- \pi^+$	38	Run 1
$B_s^0 \rightarrow D_s^{\mp} K^{\pm} \pi^+ \pi^-$	$D_s^+ \rightarrow h^+ h^- \pi^+$	39	Run 1&2
D decay	Observable(s)	Ref.	Dataset
$D^0 \rightarrow h^+h^-$	ΔA_{CP}	24,40,41	Run 1&2
$D^0 \rightarrow K^+K^-$	$A_{CP}(K^+K^-)$	16,24,25	Run 2
$D^0 \rightarrow h^+h^-$	$y_{CP} - y_{CP}^{K^-\pi^+}$	49	Run 1
$D^0 \rightarrow h^+h^-$	$y_{CP} - y_{CP}^{K-\pi^+}$ $y_{CP} - y_{CP}^{K-\pi^+}$	42 15	Run 2
$D^0 \rightarrow h^+h^-$	$y_{CP} - y_{CP}$ ΔY	43-46	Run 1&2
$D \to h^+h^-$ $D^0 \to V^+\pi^-$ (Single T)		45 40	Dun 1


$D^0 \rightarrow h^+ h^-$	ΔA_{CP}	24, 40, 41	Run 1&2
$D^0 o K^+K^-$	$A_{CP}(K^+K^-)$	16, 24, 25	Run 2
$D^0 o h^+ h^-$	$y_{CP} - y_{CP}^{K^-\pi^+}$	42	Run 1
$D^0 o h^+ h^-$	$y_{CP} - y_{CP}^{K^-\pi^+}$	15	Run 2
$D^0 o h^+ h^-$	ΔY	43 46	Run 1&2
$D^0 \to K^+\pi^-$ (Single Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	47	Run 1
$D^0 \to K^+\pi^-$ (Double Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	48	Run 1&2(*)
$D^0 o K^\pm \pi^\mp \pi^+ \pi^-$	$(x^2 + y^2)/4$	49	Run 1
$D^0 \rightarrow K_{\rm S}^0 \pi^+ \pi^-$	x, y	50	Run 1
$D^0 ightarrow K_{\mathrm{S}}^0 \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	51	Run 1
$D^0 \to K_{\rm S}^0 \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	52	Run 2
$D^0 \to K_S^0 \pi^+ \pi^- (\mu^- \text{ tag})$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	17	Run 2

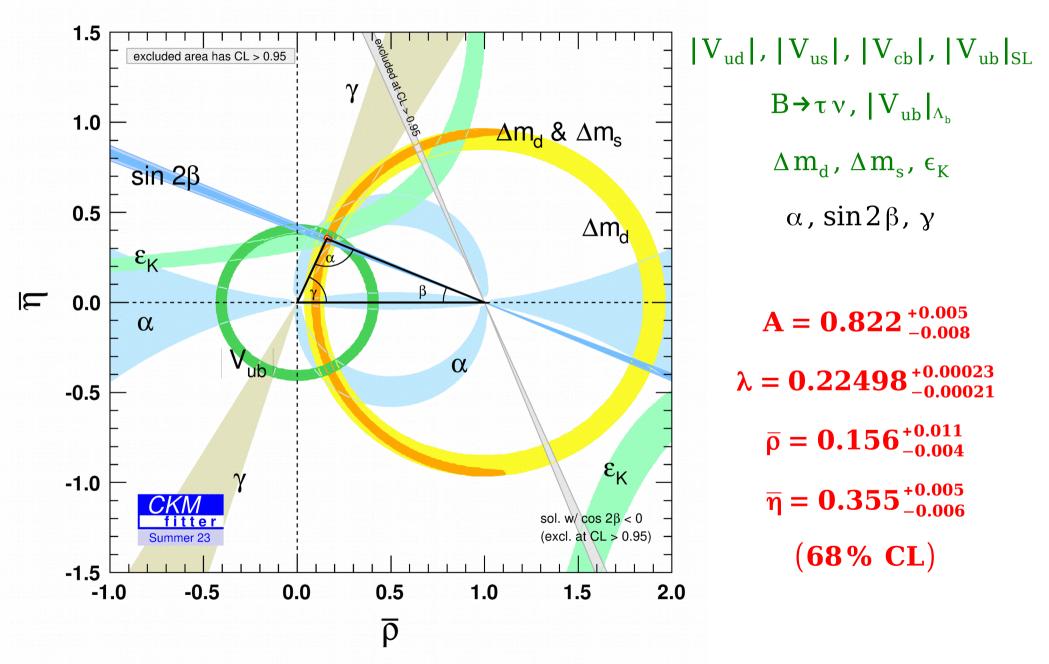
[Global fit by CKMfitter: $\gamma = (65.3^{+0.7}_{-1.9})^{\circ}$]


A few more new results came this year (not included above) e.g. $B^0 \rightarrow DK^*$ with $D \rightarrow K_S^0 h^+ h^- [arXiv:2309.05514]$

$$\gamma = (49^{+22}_{-19})^{\circ}$$

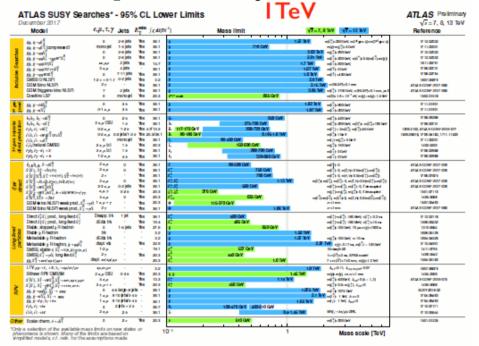

Semi-leptonic B decays

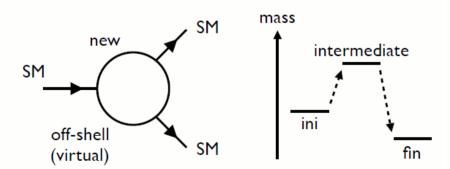
responsible for some of the long-standing **discrepancies** since about a decade


high efficiency, can't directly access signal B rest frame

[Belle II, arXiv:2310.01170]

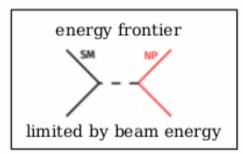
The current status of CKM

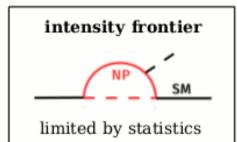

(CKMfitter 2023)


How do you we search for new particles?

Direct vs Indirect Searches

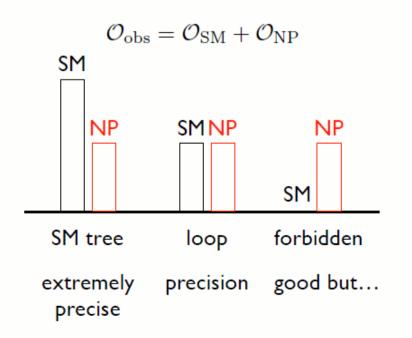
complementarity with LHC

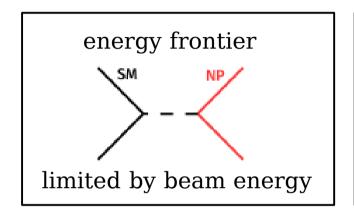

> ~100GeV (ITeV), if interaction is weak (strong) New particle via quantum effects

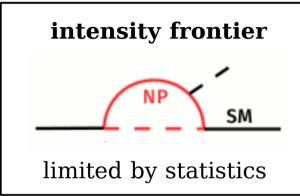


No sharp cutoff for energy scale (cf. LHC search)

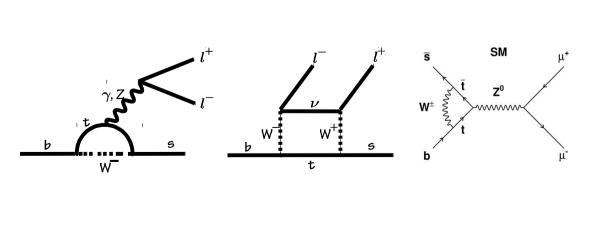
— suppressed by $(E/\Lambda)^n$

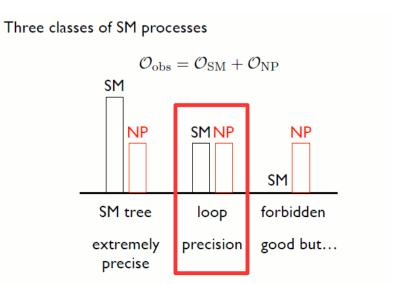

Why flavor physics?


→ NP beyond the direct reach of the LHC

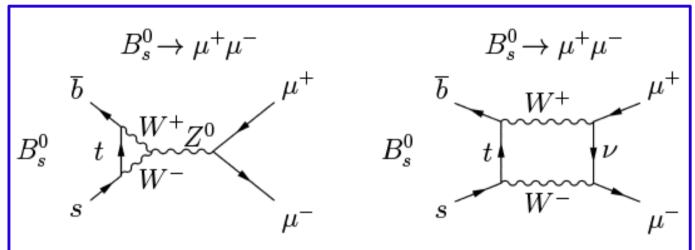

Three classes of SM processes

Rare B decays


- FCNC are strongly suppressed in the SM: only loops + GIM mechanism
- Any new particle generating new diagrams can change the amplitudes

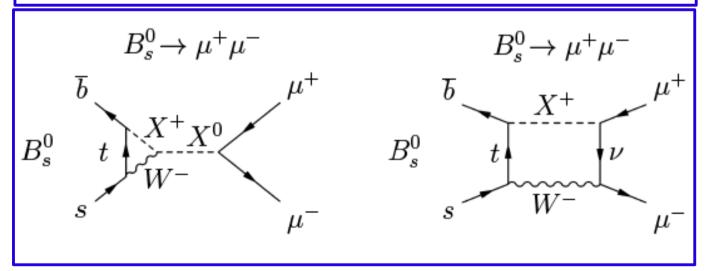


→ NP beyond the direct reach of the LHC


New particles can for example contribute to loop or tree level diagrams by enhancing/suppressing decay rates, introducing new sources of CP violation or modifying the angular distribution of the final-state particles

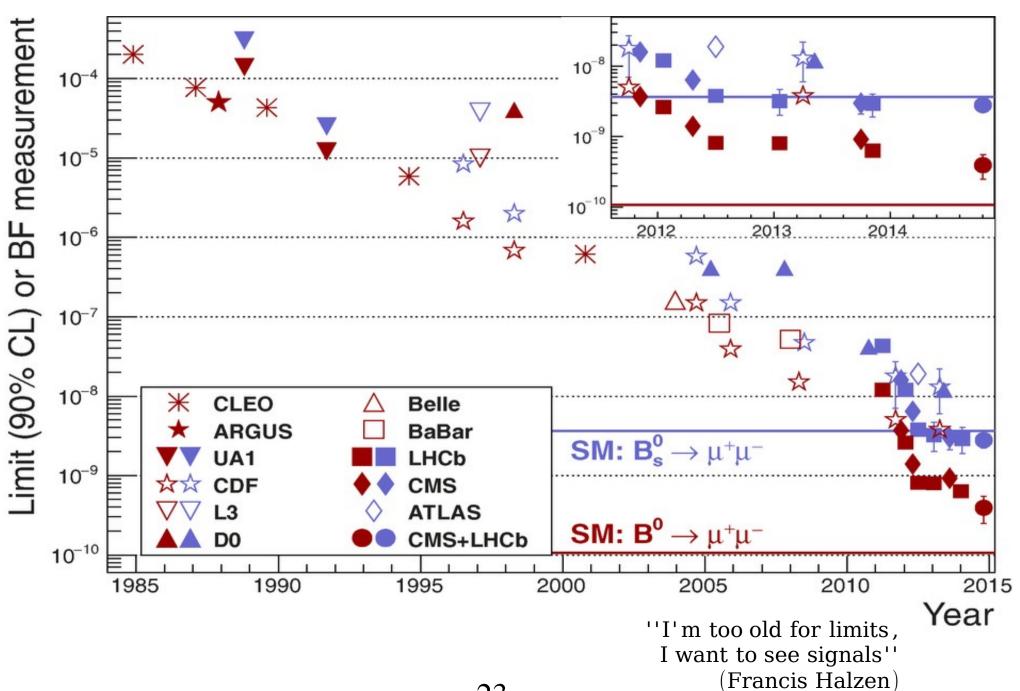
$\mathbf{B}_{(\mathbf{s})} \rightarrow \mu \mu$: ultra rare processes...

loop diagram + suppressed in SM + theoretically clean =
 an excellent place to look for new physics

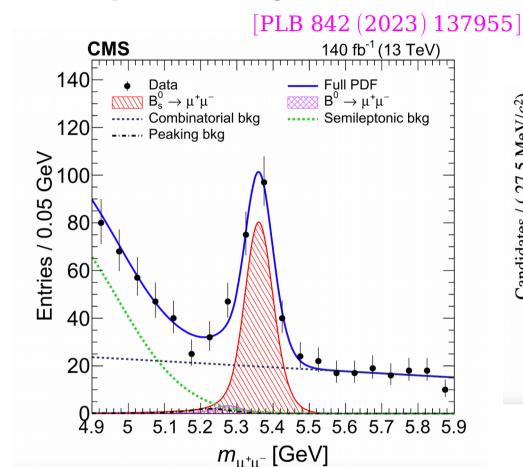


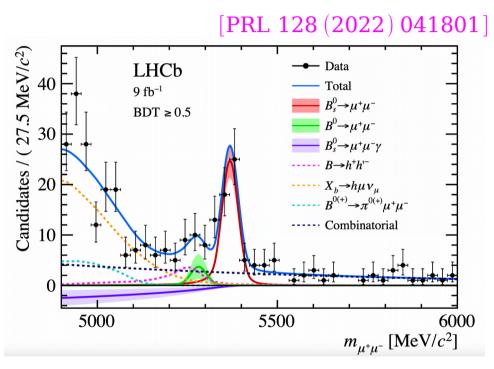
higher-order FCNC allowed in SM

$$B(B_s \rightarrow \mu^+ \mu^-) = (3.66 \pm 0.14) \times 10^{-9}$$


$$B(B_d \rightarrow \mu^+ \mu^-) = (1.03 \pm 0.05) \times 10^{-10}$$

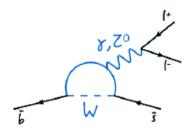
[Beneke et al, JHEP 10 (2019) 232]


same decay in theories extending the SM (some of NP scenarios may boost the B→μμ decay rates)

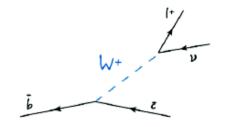

$B_{(s)} \rightarrow \mu \mu$: ultra rare processes...

$\mathbf{B}_{(\mathbf{s})} \rightarrow \mu \mu$: ultra rare processes...

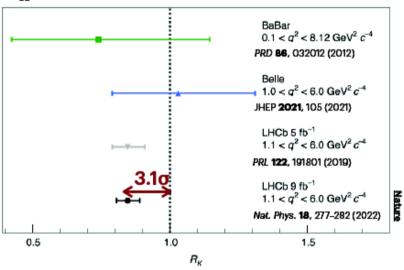
- Observation by CMS and LHCb in 2014
- Clean experimental signature: ATLAS, CMS and LHCb



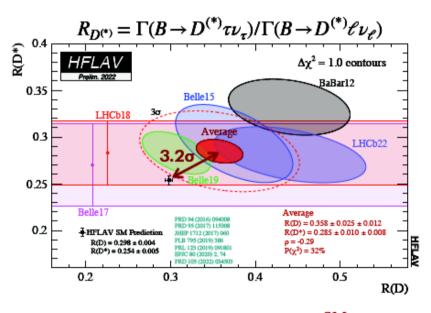
$$B(B_s^0 \rightarrow \mu^+ \mu^-) = (3.09^{+0.46}_{-0.43}^{+0.15}) \times 10^{-9}$$


$$B(B^0 \rightarrow \mu^+ \mu^-) < 2.6 \times 10^{-10} @ 95\% CL$$

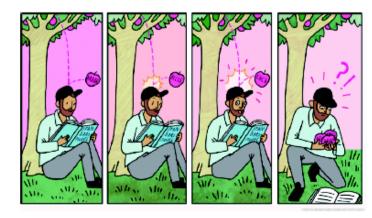
Pioneer measurements for effective lifetime already available

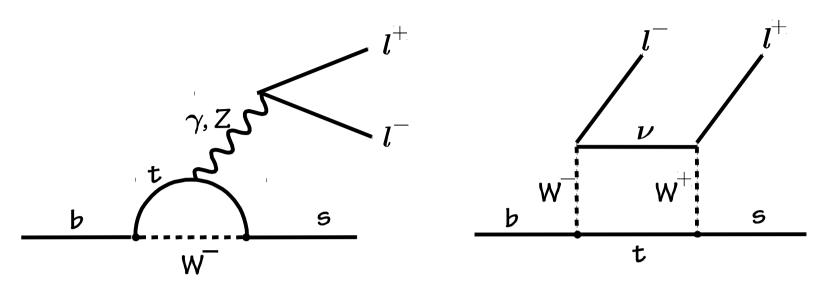

what happened with the B anomalies...?

Deviations from SM have been measured, among several observables, in universality tests of lepton interactions in $b \rightarrow s$ and $b \rightarrow c$ transitions


$$R_K = \Gamma(B^+ \to K^+ \mu^+ \mu^-) / \Gamma(B^+ \to K^+ e^+ e^-)$$

 μ vs e: $R_{\mu}^{\text{exp}} < R_{\mu}^{\text{SM}}$




T vs e/ μ : $R_{D^{(*)}}^{\text{exp}} > R_{D^{(*)}}^{\text{SM}}$

Main players in B-physics

Belle (II), BaBar \rightarrow B-mesons in e^+e^- collisions LHCb → b-flavored hadrons in pp collisions

$\mathbf{b} \rightarrow \mathbf{s} \mathbf{l}^{+} \mathbf{l}^{-}$

 \Rightarrow 2 orders of magnitude smaller than $b \rightarrow s \gamma$ but rich NP search potential

- electromagnetic penguin: C₇
- Amplitudes from vector electroweak:
 - axial-vector electroweak: C₁₀

may interfere w/ contributions from NP

Many observables:

- Branching fractions
- Isospin asymmetry (A_I) , Lepton forward-backward asymmetry (A_{FB}) , CP asymmetry ...
- and much more...
- \Rightarrow Exclusive $(B \rightarrow K^{(*)}l^+l^-)$, Inclusive $(B \rightarrow X_s l^+l^-)$

Lepton flavor universality (LFU) in $b \rightarrow s l^+ l^-$

How do the SM gauge bosons couple to charged leptons of different flavors?

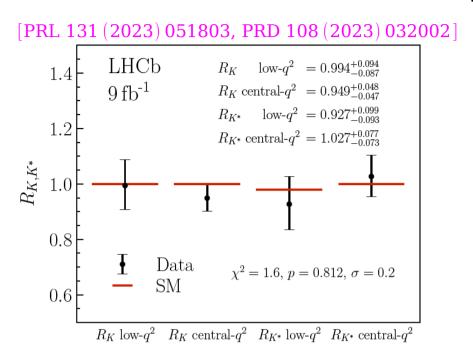
Universality in neutral current interactions

$$U^{\dagger}U = V^{\dagger}V = \mathbb{I}_{3\times3} \implies \mathcal{L}_{\mathrm{nc}}^{\ell} \equiv \left(\overline{\widehat{e}}\gamma_{\mu}\widehat{e} + \overline{\widehat{\mu}}\gamma_{\mu}\widehat{\mu} + \overline{\widehat{\tau}}\gamma_{\mu}\widehat{\tau}\right) \left(g_{\gamma}A^{\mu} + g_{Z}Z^{\mu}\right)$$

The photon and Z-boson couple with the same strength to the three lepton families Universality

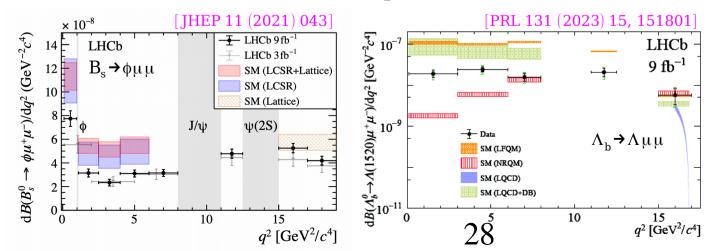
How do we test this feature of the Standard Model?

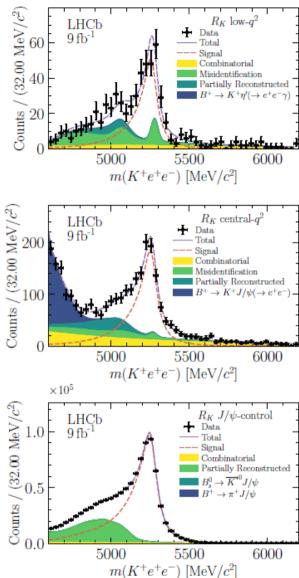
$$R_Y = \frac{\mathrm{BR}\left(X \to Y e_i^+ e_i^-\right)}{\mathrm{BR}\left(X \to Y e_j^+ e_j^-\right)} \qquad i \neq j$$



SM expectation

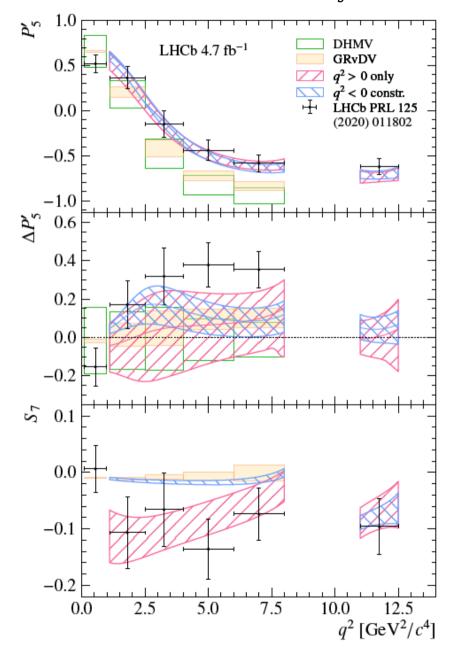
Experimental results

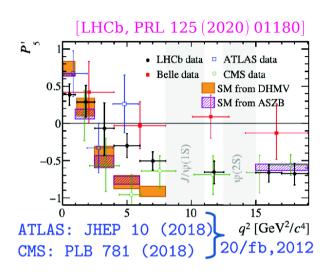

$$R_Y = 1 + \mathcal{O}\left(\frac{m_{i,j}^n}{m_X^n}\right)$$


Lepton flavor universality (LFU) in b→sl⁺l⁻

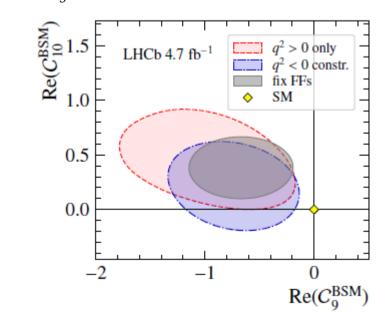
Significant change of the landscape ⇒ Compatible with SM

• BR measurements differ from predictions

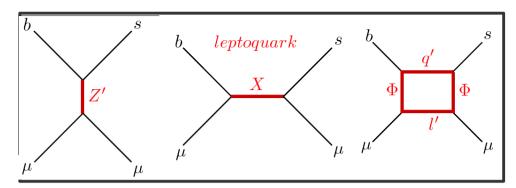




Unbinned $B \rightarrow K^{*0} \mu^{+} \mu^{-}$

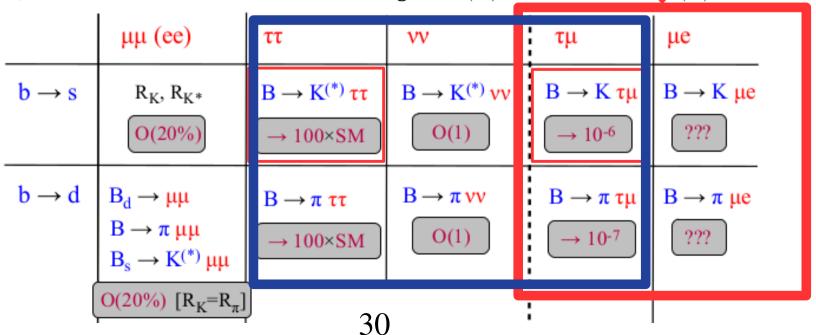

[arXiv:2312.09102, arXiv:2312.09115]

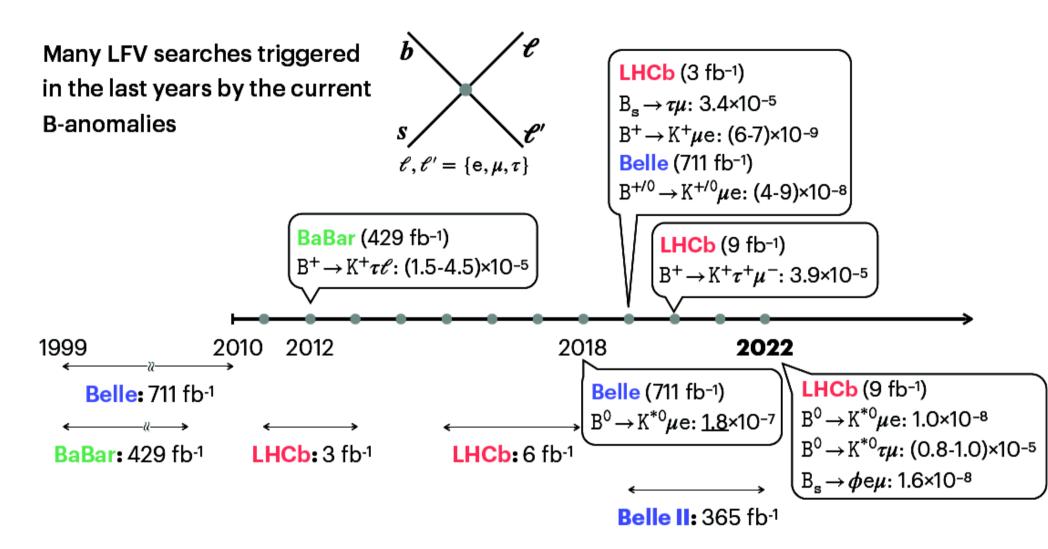
first unbinned amplitude analysis of $B \rightarrow K^{*0} \mu \mu$ (same dataset as Run 1+2016 q² binned) \Rightarrow determines simultaneously the short- and long-distance contribution


Data still prefers negative C_9^{NP} , but tension in C_9 reduced to $\sim 1.8\sigma$ and 1.4σ global

Test of lepton universality using $B^+ \rightarrow K^{(*)}l^+l^-$ decays

Model candidates

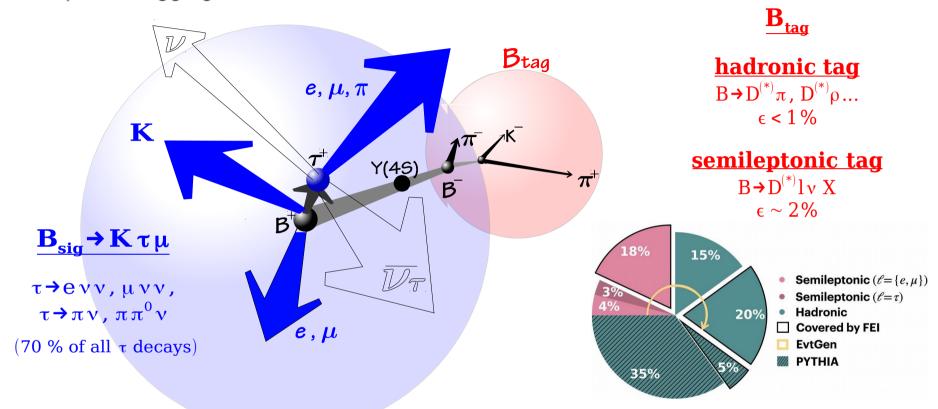

- ✓ Effective operator from Z' exchange
- ✓ Extra U(1) symmetry with flavor dependent charge
- **♦ Models with leptoquarks**
 - ✓ Effective operator from LQ exchange
 - ✓ Yukawa interaction with LQs provide flavor violation
- ♦ Models with loop induced effective operator
 - ✓ With extended Higgs sector and/or vector like quarks/leptons
 - ✓ Flavor violation from new Yukawa interactions


Leptoquarks are color-triplet bosons that carry both lepton and baryon numbers

Lot of those models predict also LFV b→seμ, b→seτ,...

G.Isidori, FPCP 2020: correlations among $b \rightarrow s(d)ll'$ within the (2)-based EFT

EXPERIMENTAL STATUS ON $b \rightarrow s\ell\ell'$



Limits on modes with τ 's are not as constraining as those with μ e because of the more challenging τ reconstruction

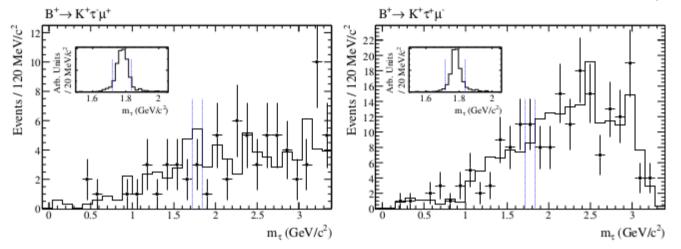
• (2-5)×10⁻⁵ range for $B^+ \to K^+ \tau \ell$ (BaBar and LHCb)

Missing energy modes and B-tagging

Many interesting B-physics studies involve missing energy: D^(*)τν, Κτι Κ^(*)ττ Κ^(*)νν πιν, τι, τν, μν... which require B-tagging.

B-tagging is key tool for missing energy analyses

- low efficiency (efficiency for hadronic B-tagging < 1%)
- and ML can't save you... B-tagging algorithms are trained using MC samples
- $_{\circ}~40\%$ of hadronic B decays generated by PYTHIA...
- o and even among the EvtGen part... most BFs measured are from ARGUS, CLEO...
- **→** calibration is essential

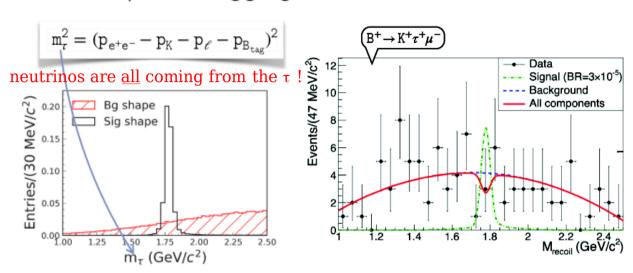

Lot of on-going improvements:

- improve our simulation of all B_{tag} modes included \rightarrow better B-tagging performance
- also some opportunities to remeasure/study those B decays and intermediate states

LFV $B \rightarrow K \tau l (l = e, \mu)$ decays

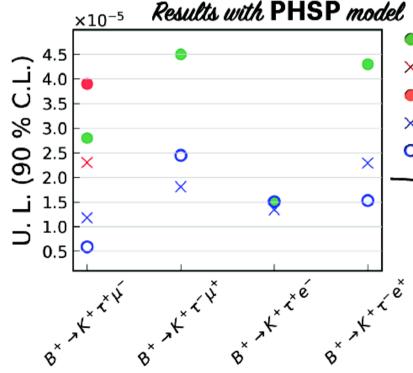
[BaBar, arXiv:1204.2852]

strategy used: B fully reconstructed (had tag), $\tau^+ \to l^+ \nu_l \nu_\tau$, $(n\pi^0)\pi\nu$, with $n \ge 0$ using momenta of K, l and B, can fully determine the τ four-momentum unique system: no other neutrino than the ones from one tau $(\ne B \to \tau \nu, D^{(*)} \tau \nu...)$


[Belle II, arXiv:1808.10567]

Observables	Belle $0.71 \mathrm{ab^{-1}} (0.12 \mathrm{ab^{-1}})$	Belle II 5 ab ⁻¹	Belle II 50 ab ⁻¹
$Br(B^+ \rightarrow K^+ \tau^{\pm} e^{\mp}) \cdot 10^6$	_	_	< 2.1
$Br(B^+ \rightarrow K^+ \tau^{\pm} \mu^{\mp}) \cdot 10^6$	_	_	< 3.3
$Br(B^0 \rightarrow \tau^{\pm}e^{\mp}) \cdot 10^5$	_	_	< 1.6
${\rm Br}(B^0 o au^\pm \mu^\mp) \cdot 10^5$	_	_	< 1.3

- ⇒ can we do better? combining hadronic tag with an more inclusive tag...
- ⇒ can do $K^*\tau e$, $K^*\tau \mu$ with similar sensitivity...


Missing energy modes and B-tagging

Many interesting B-physics studies involve missing energy: D^(*)τν, Κτι Κ^(*)ττ Κ^(*)νν, πιν, τι, τν, μν... which require B-tagging.

[Belle, PRL130, 261802 (2023)]

				ı
Mode	$N_{ m sig}$	ε (%)	$\mathcal{B}^{\rm UL} \ (10^{-5})$	$\mathcal{B}_{ m NP}^{ m UL} \ (10^{-5})$
$B^+ o K^+ au^+ \mu^-$		0.064	0.59	0.65
$B^+ o K^+ au^+ e^-$			1.51	1.71
$B^+ o K^+ au^- \mu^+$	2.3 ± 4.1	0.046	2.45	2.97
$B^+ o K^+ au^- e^+$	-1.1 ± 7.4	0.079	1.53	2.08
PHSP				

- BaBar (426 fb-1)
- × LHCb (9 fb-1) expected
- LHCb (9 fb-1)
- \times Belle (711 fb⁻¹) expected
- O Belle (711 fb-1)

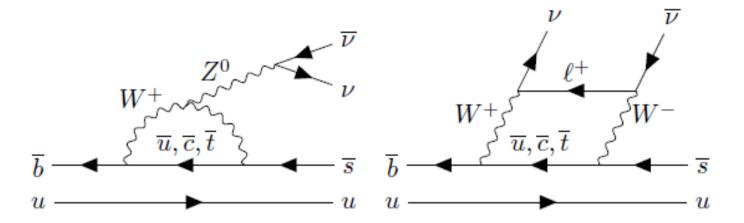
34

Hadronic B-tagging

 $B_{s2}^{*0} \rightarrow B^{+}K^{-}$ tagged

Hadronic B-tagging

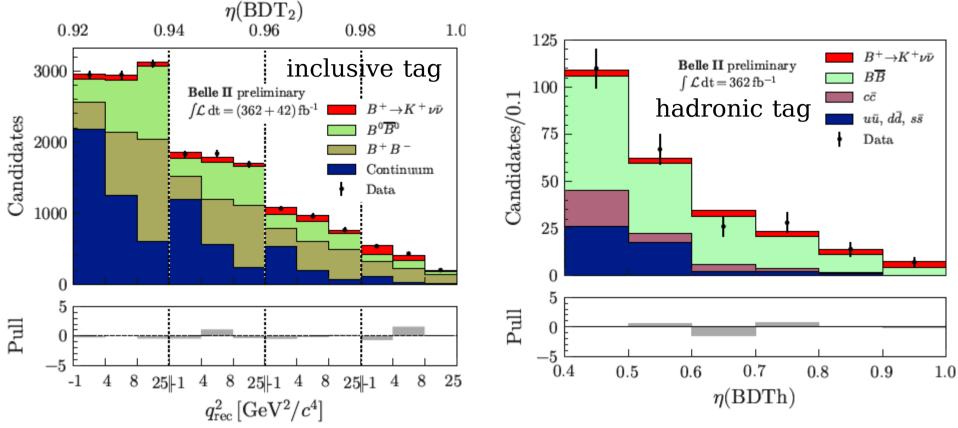
with less than 1 ab⁻¹...competitive with LHCb!


World's best limits for the $B^+ \to K^+ \tau \ell$ modes

More to come:

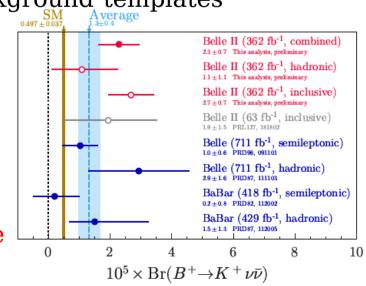
- $\circ \mathbf{B}^0 \to \mathbf{K}_S^0 \tau \mathbf{l}$
- $\circ \mathbf{B}^{+} \rightarrow \mathbf{K}^{+} \tau \tau$

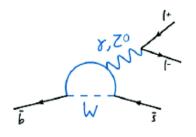
$\mathbf{B} \to \mathbf{K} \vee \overline{\mathbf{v}}$


[arXiv:2311.14647]

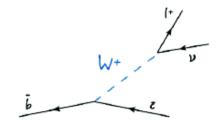
- ∘ B→K $\nu\nu$ is known with high accuracy B(B→K $\nu\nu$) = $(5.6 \pm 0.4) \times 10^{-6}$ [arXiv:2207.13371]
- Extensions beyond SM may lead to significant rate increase
- Very challenging experimentally, not yet observed
 - Low branching fraction, high background contributions
 - 3-body kinematics, no good kinematics
- Unique for Belle II
- \circ Two analyses: more sensitive **inclusive** (eff = 8%), conventional **hadronic** tagging (eff = 0.4%)
- Use event properties to suppress background with multiple variables combined
- \circ Use classifier output as (one of) the fit variables, use simulation for signal and background templates
- Use multiple control channels to validate simulation with data

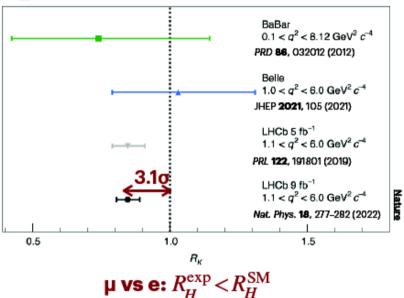
Evidence of $B \rightarrow K \nu \overline{\nu}$


[arXiv:2311.14647]

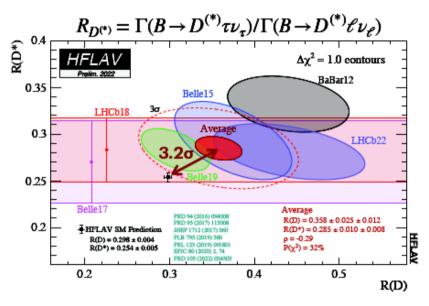

Maximum likelihood fit to data using signal and background templates

 $\mathbf{B_{incl}} = (2.7 \pm 0.5 \; (\mathrm{stat}) \pm 0.5 \; (\mathrm{syst})) \times 10^{-5}$ $\mathbf{B_{had}} = (1.1 ^{+0.9}_{-0.8} \; (\mathrm{stat}) ^{+0.8}_{-0.5} \; (\mathrm{syst})) \times 10^{-5}$


- ∘ For inclusive analysis, evidence for $B \rightarrow K v \overline{v}$ at 3.5 σ branching fraction within 3σ of SM
- $_{\circ}$ For hadronic tag, the result is consistent with null hypothesis and SM at 1.1 σ and 0.6 σ
- \Rightarrow Combination of two analyses provides first evidence of the decay at 2.7 σ from SM $$_{36}$$

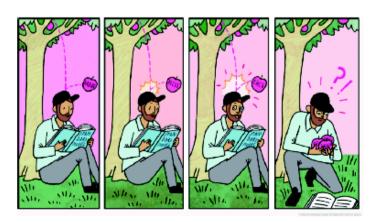

what happened with the B anomalies...?

Deviations from SM have been measured, among several observables, in universality tests of lepton interactions in $b \rightarrow s$ and $b \rightarrow c$ transitions

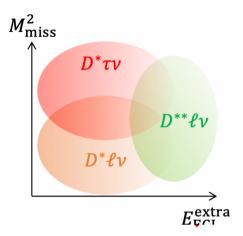


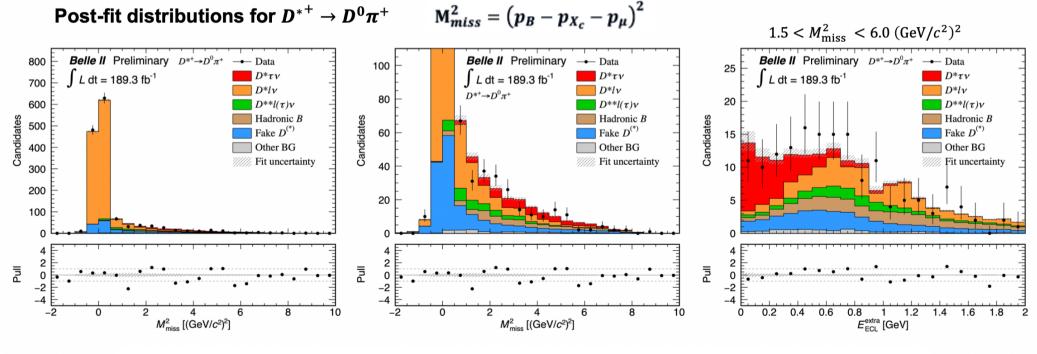
$$R_K = \Gamma(B^+ \to K^+ \mu^+ \mu^-) / \Gamma(B^+ \to K^+ e^+ e^-)$$

Lepton Flavor Universality **V**iolation



T vs e/ μ : $R_{D^{(*)}}^{\text{exp}} > R_{D^{(*)}}^{\text{SM}}$

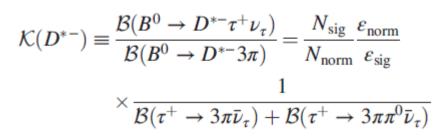


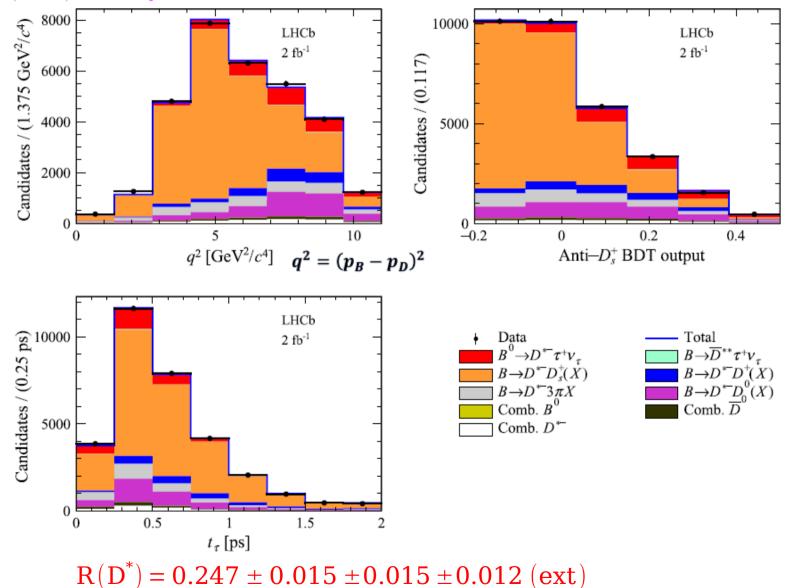

Belle (II), BaBar \rightarrow B-mesons in e^+e^- collisions LHCb → b-flavored hadrons in pp collisions

First Belle II result on $B(B \rightarrow D^* \tau \nu)/B(B \rightarrow D^* l \nu)$

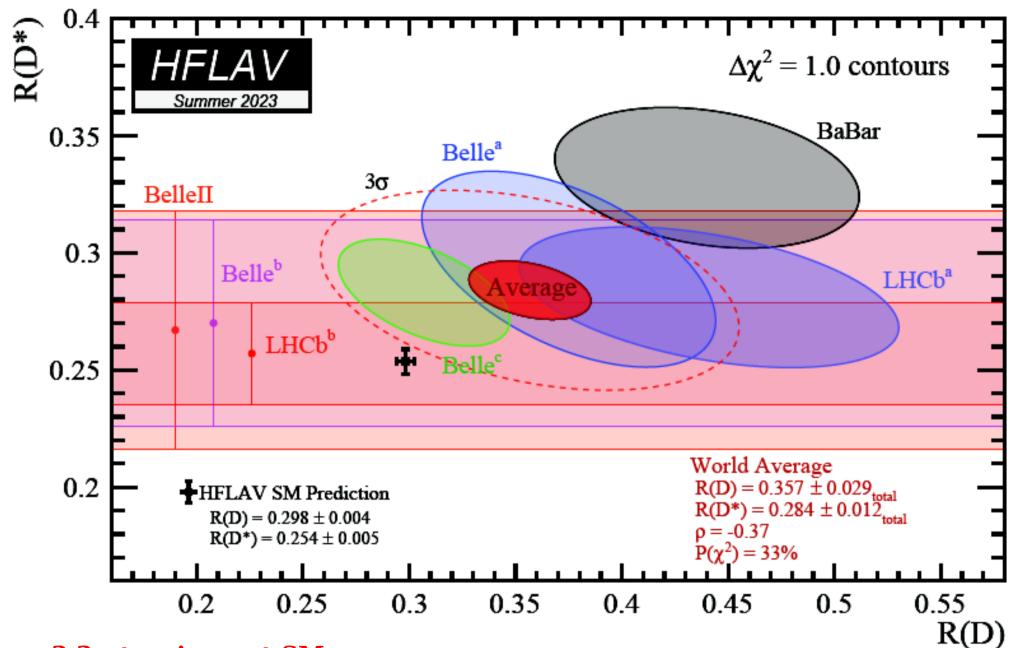
- Half of available sample (200 million B\overline{B} pairs)
- Fully reconstruct the partner B in the event to suppress bckg
- \circ Reconstruct numerator and denominator with \sim same selections
- Two-dimensional fit of missing mass and total residual energy in calorimeter determines signal yields
- Data sidebands validate understanding of sample composition

Not leading, 40% improvement in statistical precision over Belle at the same sample size Consistent with WA


 $R(D^*) = 0.267^{+0.041}_{-0.039}(stat)^{+0.028}_{-0.033}(syst)$

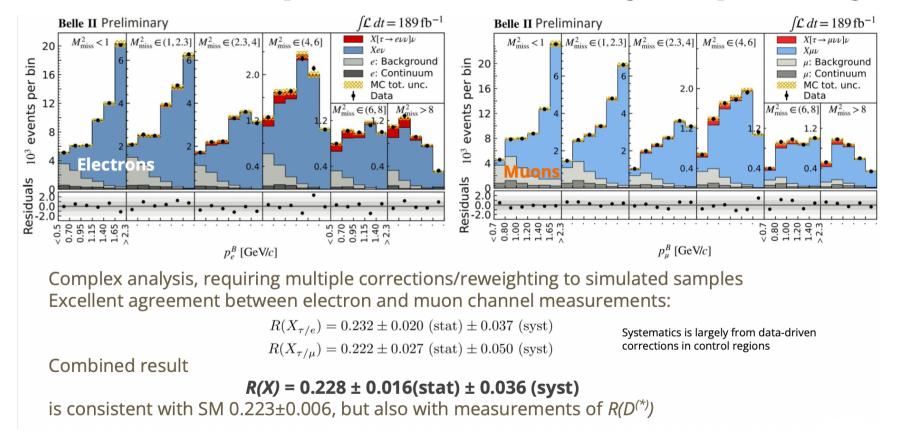

$R(D^*)$ at LHCb

 $B^0 \rightarrow D^{*} \tau^+ \nu_{\tau}$, $\tau^+ \rightarrow 3 \pi (\pi^0) \overline{\nu}_{\tau}$


Run 2: 2 fb^{-1}

[PRD 108 (2023) 012018]

 $\Rightarrow \mathbf{R}(\mathbf{D}^*)_{\mathbf{comb}} = \mathbf{0.257} \pm \mathbf{0.012} \pm \mathbf{0.014} \pm \mathbf{0.012} (\mathbf{ext})$

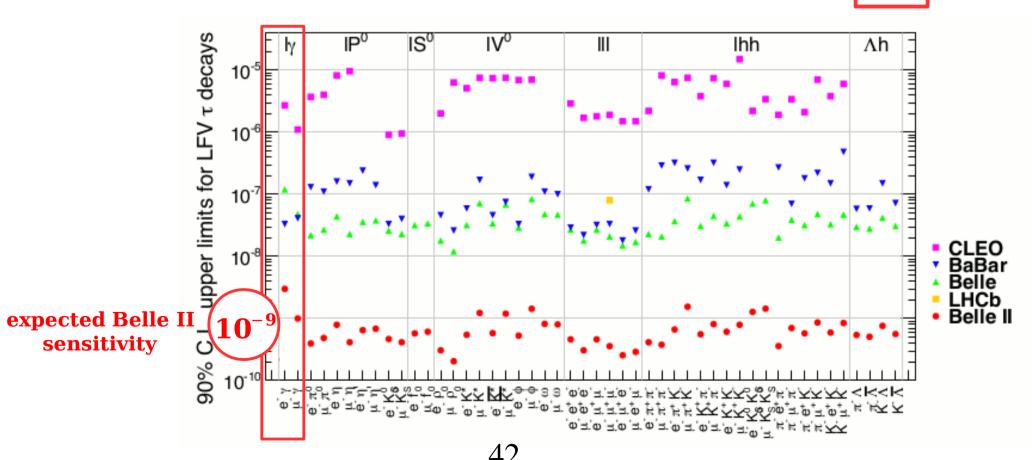

⇒ 3.3σ tension wrt SM More measurements to come from LHCb and Belle (II)

More observables (e.g. D* polarization [LHCb, arXiv:2311.05224; Belle, arXiv:1903.03102])

First B factory result on $B(B \rightarrow [c]\tau \nu)/B(B \rightarrow [c]l\nu)$

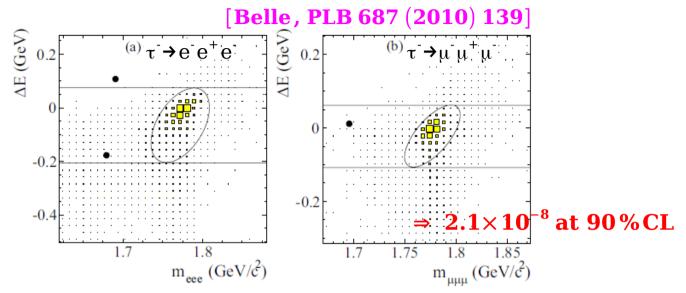
arXiv:2311.07248

- BF ratio without explicitly reconstructing the charm meson offers an unique, supplementary and theoretically more reliable probe, than $R(D^{(*)})$
- Half of available sample (200 million $B\overline{B}$ pairs)
- Fully reconstruct the partner B in the event to suppress bckg
- Sophisticated event weighting to ensure proper sample-composition, validated in multiple sidebands.
- Two-dimensional fit of lepton momentum and missing mass provides signal yield:



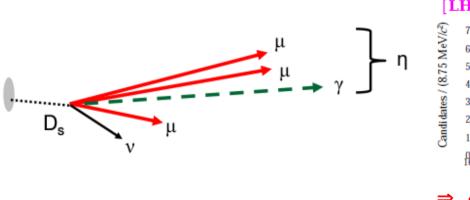
First ever such result from B factories

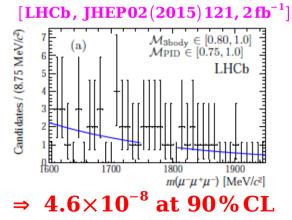
"τ center"


- Belle II is also a τ-factory!
- \circ lepton flavour violating decays of the τ as NP probe
- ⇒ LFV accidental symmetry of SM, many NP models can naturally break this symmetry

Model Reference		τ→μγ	т→µµµ
SM+ v oscillations	EPJ C8 (1999) 513	10-40	10 ⁻¹ 40
SM+ heavy Maj v _R	PRD 66 (2002) 034008	10 ⁻⁹	10-10
Non-universal Z'	PLB 547 (2002) 252	10 ⁻⁹	10-8
SUSY SO(10)	PRD 68 (2003) 033012	10-8	10-10
mSUGRA+seesaw	PRD 66 (2002) 115013	10 ⁻⁷	10-9
SUSY Higgs	PLB 566 (2003) 217	10-10	10 ⁻⁷

cLFV: beyond the Standard Model


 τ LFV searches at Belle II will be extremely clean with very little background (if any), thanks to pair production and double-tag analysis technique.



how to improve further?

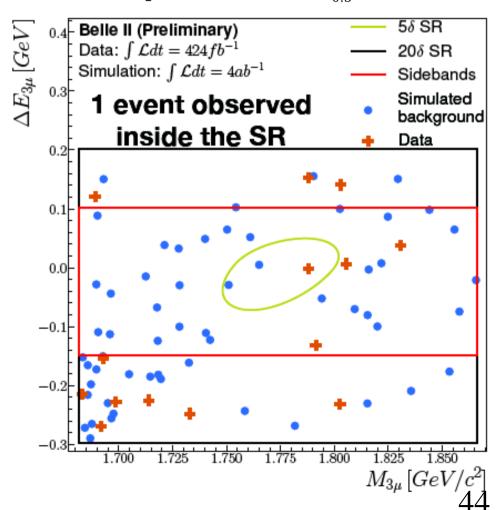
... considering $\tau \rightarrow \mu/e h^+ h^$ in function of one prong tag categories ... for $\tau \rightarrow 3$ muons, improve μ -ID at low mom (ECL info)

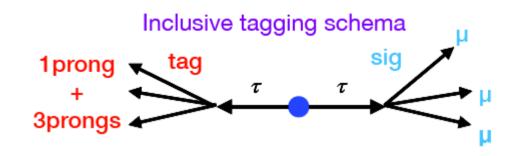
In contrast, hadron collider experiments must contend with larger combinatorial and specific backgrounds

Background modes normalised to $D_s \rightarrow \eta(\mu\mu\gamma)\mu\nu$ (BR ~ 10⁻⁵)

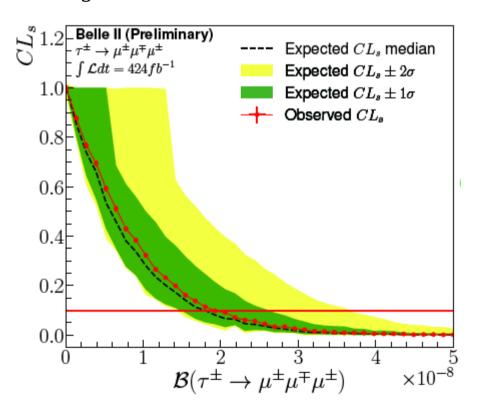
Decay channel	Relative abundance
D_s \rightarrow η(μμγ)μν	1
$D_s{\to}\phi(\mu\mu)\mu\nu$	0.87
D_s \rightarrow η'(μμγ)μν	0.13
D \rightarrow η(μμγ)μν	0.13
D \rightarrow ω(μμ)μν	0.06
D→ρ(μμ)μν	0.05

CMS, full Run 2 dataset: 2.9×10^{-8} at 90% CL


Most improvement in coming decade is expected from Belle II, which can reach 1×10^{-9} [arXiv:1011.0352] and will do 4%en better if can achieve \sim zero bckgd


τ→3μ at Belle II

Analysis selection and results: inclusive approach

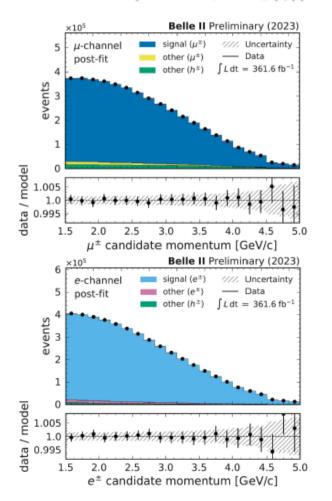

BDT trained on 32 variables: inputs from signal τ^{-} , event tag side, event shape and kinematics

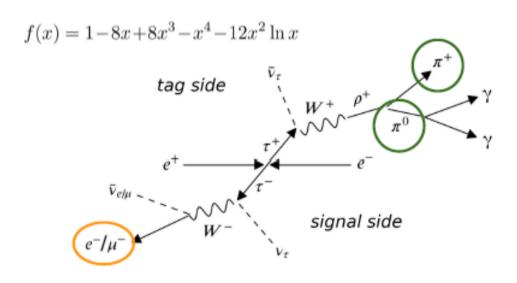
$$\epsilon_{sig} = (20.42 \pm 0.06)\% (3 \times larger than Belle)$$

Expected BKG: $0.5^{+1.4}_{-0.5}$ evts

No significant excess in 424 fb⁻¹ of data

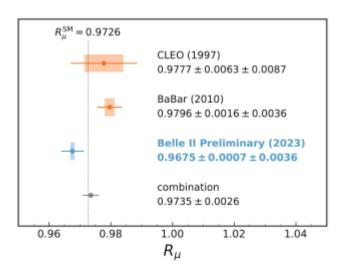
Obtained most stringent limit 1.9×10^{-8}


Lepton universality tests at Belle II


precise test of μ -e universality by measuring

$$\left(\frac{g_{\mu}}{g_e}\right)_{\tau} = \sqrt{\frac{\mathcal{B}\left(\tau^- \to \nu_{\tau} \mu^- \overline{\nu}_{\mu}(\gamma)\right)}{\mathcal{B}\left(\tau^- \to \nu_{\tau} e^- \overline{\nu}_e(\gamma)\right)}} \frac{f(m_e^2/m_{\tau}^2)}{f(m_{\mu}^2/m_{\tau}^2)} \qquad \qquad f(x) = 1 - 8x + 8x^3 - x^4 - 12x^2 \ln x$$

ratio of leptonic branching fractions


$$R_{\mu} \equiv \frac{\mathcal{B} \left(\tau^{-} \to \nu_{\tau} \mu^{-} \overline{\nu}_{\mu}(\gamma)\right)}{\mathcal{B} \left(\tau^{-} \to \nu_{\tau} e^{-} \overline{\nu}_{e}(\gamma)\right)} \stackrel{\text{SM}}{=} 0.9726$$

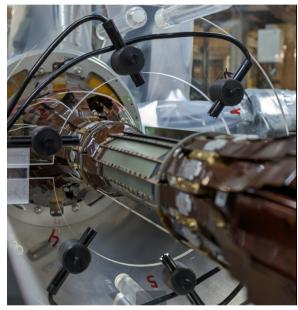
Source	Uncertainty [%]
Charged-particle identification:	
Electron identification	0.22
Muon misidentification	0.19
Electron misidentification	0.12
Muon identification	0.05
Trigger	0.10
Imperfections of the simulation:	
Modelling of FSR	0.08
Normalisation of individual processes	0.07
Modelling of the momentum distribution	0.06
Tag side modelling	0.08
π^0 efficiency	0.02
Modelling of ISR	0.03
Photon efficiency	< 0.03
Photon energy	< 0.03
Size of the samples	
Simulated samples	0.06
Luminosity	0.03
Charged-particle reconstruction:	
Particle decay-in-flight	0.02
Tracking efficiency	0.03
Detector misalignment	< 0.03
Momentum correction	< 0.03
Total 15	0.37

$R_u = 0.9675 \pm 0.0037$

Long-shutdown (LS1) activity and plans

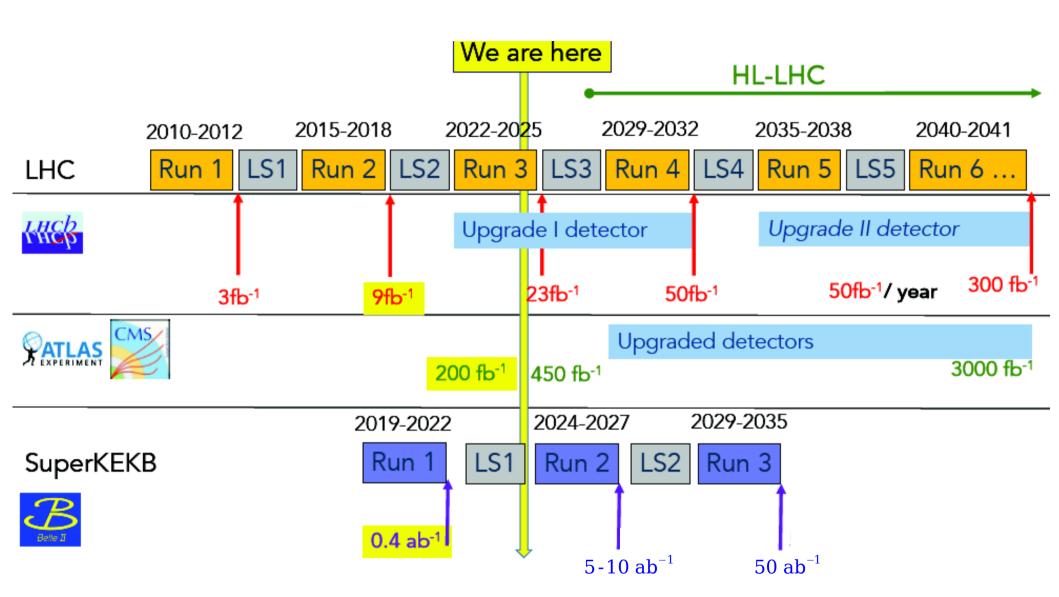
Belle II stopped taking data in Summer 2022 for a long shutdown

- accelerator improvements: injection, non-linear collimators, monitoring...
- additional shielding and increased resilience against beam bckg
- replacement of beam-pipe
- installation of 2-layered pixel vertex detector
- replacement of photomultipliers of the central PID detector (TOP)
- completed transition to new DAQ boards (PCIe40)
- work on other detectors as CDC, KLM...
- improved data-quality monitoring and alarm system


VXD extraction in May

TOP MCP-PMT replacement work

PXD2 at KEK since March



CDC FE reinstallation work

LHCb and Belle II datasets: present and future

(M.H. Schune)

Summary

- Very active field: many more results than shown!
- Importance to have both the e⁺e⁻ and pp environments
- LHCb brought many interesting results in Run 1&2, with world leading measurements in the flavour sector
- ο Belle (II) is a unique environment to study modes with missing energy $B \rightarrow K \nu \overline{\nu}$, $K \tau \tau$, $K \tau l$, $\tau \tau$, τl , $D^{(*)} \tau \nu$, $\tau \nu$, $\mu \nu$ but also perform precise measurements of CKM UT (CPV or not), τ sector, low mutiplicity, dark sector... and many other opportunities

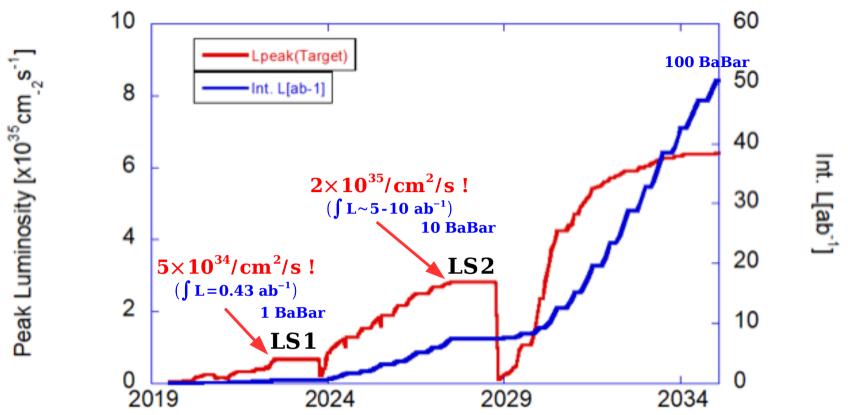
Leptonic decays

$$\begin{split} B^0_{(s)} &\to \ell^+ \ell^- \\ BR(B^0_{(q)} &\to \ell^+ \ell^-) = \frac{\tau_B G^4_F M^2_W sin^4 \theta_W}{8\pi^{5|}} |C_{10} V_{tb} V^*_{tq}| F^2_B m_B m^2_\ell \times \Big| \sqrt{1 - \frac{4m^2_\ell}{m^2_B}} \end{split}$$

Branching ratio proportional to the lepton mass squared

$$\frac{BR(B^0_{(q)} \to \tau^+ \tau^-)}{BR(B^0_{(q)} \to \mu^+ \mu^-)} \sim \frac{m_\tau^2}{m_\mu^2} \qquad \qquad \frac{BR(B^0_{(q)} \to \mu^+ \mu^-)}{BR(B^0_{(q)} \to e^+ e^-)} \sim \frac{m_\mu^2}{m_e^2}$$

Helicity suppression, same reason why the pion decays into muon instead of electron \Rightarrow true only in SM


$$\frac{BR(B^0_{(d)} \to \mu^+ \mu^-)}{BR(B^0_{(s)} \to \mu^+ \mu^-)} = \frac{\tau_{B^0_d}}{\tau_{B^0_d}} \frac{m_{B^0_d}}{m_{B^0_d}} \frac{F_{B^0_d}}{F_{B^0_d}} (\frac{V_{td}}{V_{ts}})^2$$

All parameters either measurable or calculable with high precision valid only in Minimal Flavour Violating Models (where the flavour structure is described only by CKM)

In a ''general'' NP scenarios, the branching ratio of B leptonic decay is given by

$$BR(B_s^0 \to \mu^+ \mu^-) \propto (1 - \frac{4m_\ell^2}{m_B^2}) |C_S - C_S'|^2 + |(C_P - C_P')^2 + 2\frac{m_\ell^2}{m_B^2} (C_{10} - C_{10}')|^2 + \frac{50}{10}$$

Belle II calendar

run 1 (→ June 2022): integrated luminosity $\sim 0.43 \text{ ab}^{-1}$, $4-5\times10^{34}/\text{cm}^2/\text{s}$ PXD complete (2 layers) to be installed during **LS1** (2022-2023) (+beampipe + TOP PMTs)

run 2 (\rightarrow 2027): integrated luminosity 5-10 ab⁻¹, 2×10³⁵/cm²/s

2028: collider upgrade (QCS+RF) → installation upgraded detector run 3 (→ 2035): 50 ab⁻¹