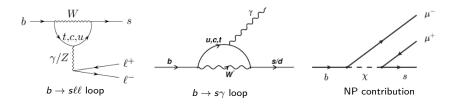


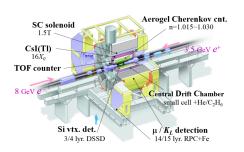
Rare decays at Belle & Belle II

Seema Choudhury

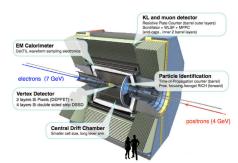

lowa State University, USA (on behalf of the Belle & Belle II Collaborations)

Dec 01 2023

16th International Conference on Heavy Quarks and Leptons (HQL 2023)
28 November - 2 December, 2023
TIFR, Mumbai, India

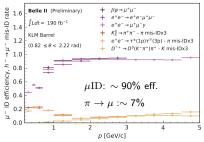

Motivation

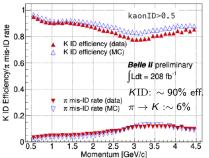
- Rare decays involving $b \to s(d)$ quark level transitions are FCNC processes
- These decays are forbidden at tree level in the SM and occur through electroweak loop diagrams

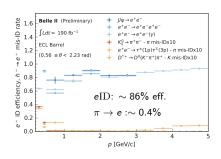


- Resulting B decays are rare having $\mathcal{B}_{SM} = \mathcal{O}(10^{-7} 10^{-4})$
- Amplitude from the NP contribution can interfere with the SM amplitude, altering physical observables like:
 lepton-flavor-universality ratios, isospin asymmetries, forward-backward asymmetries, total or differential branching fractions, angular observables, etc
- Many opportunities to probe the SM and explore the BSM physics

Belle & Belle II detectors

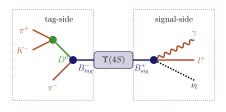



- Asymmetric e^+ (3.5 GeV) e^- (8 GeV) collider
- ullet Collected 711 fb $^{-1}$ at $\Upsilon(4S)$ resonance
- Data taken from 1999 to 2010
- Collected 1 ab⁻¹ of data



- Asymmetric e^+ (4 GeV) e^- (7 GeV) collider
- So far collected 362 fb $^{-1}$ at $\Upsilon(4S)$ resonance
- Data taken between 2019 2022
- Recorded 424 fb $^{-1}$ of data: \sim equivalent to BaBar and 1/2 of Belle data sample
- Aims to collect multi-ab⁻¹ of data

Advantages of Belle & Belle II for rare decays



- Low background environment
- Good particle identification and performance
- PID performance of Belle II is similar to Belle
- High photon detection efficiency

Advantages of Belle & Belle II for rare decays

 Good hermiticity: useful for the channels with missing energy

- B-tag reconstruction: Reconstruction of tag side B allows to infer the properties of the signal-side with missing energy, and also good control over background
- Full Event Interpretation (FEI) [Comput. Softw. Big Sci. 3 (2019) 6] algorithm using machine learning for Hadronic/semileptonic B_{tag} has high purity but low efficiency

 Inclusive tagging benefits has higher background contamination but higher efficiency

Hadronic tagging
Full knowledge of B_{tag} kinematics $\mathcal{O}(0.5\%) \oslash \sim 10\%$ purity

Semileptonic tagging Partial knowledge of B_{tag} kinematics $\mathcal{O}(2\%)$ @ ~5% purity

Inclusive tagging Indirect knowledge of B_{tag} kinematics $\mathcal{O}(100\%)$

Purity

Efficiency

Outline

- Belle (711 fb⁻¹)
 - $B^+ \to K^+ \tau \ell$, $\ell = e$ or μ
 - $B^0 \rightarrow K^{*0} \tau \tau$

[PRL 130 (2023) 261802] [PRD 108 (2023) L011102]

- Belle II (189 fb⁻¹)
 - Towards $R_{K^*} : B \to K^* \ell \ell$, $\ell \ell = ee$ or $\mu \mu$
 - Inclusive $B \to X_s \gamma$
- Belle & Belle II (711 fb⁻¹ & 362 fb⁻¹)
 - Exclusive $B \to \rho \gamma$

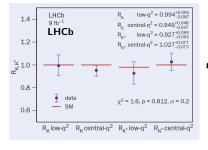
[EPS HEP 2023]

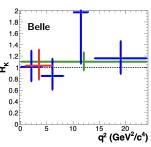
[arXiv:2206.05946]

[arXiv:2210.10220]

• Also see Roberta's talk on rare $B^+ \to K^+ \nu \overline{\nu}$ decay from Belle II [arXiv:2311.14647]

Let's start with Penguin decays...




Introduction on $b \to s\ell\ell$ decays

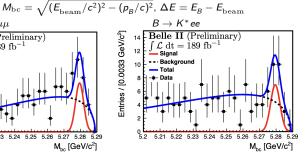
- ullet SM ${\cal B}$ for $B o K^{(*)}\ell\ell$ decay is ${\cal O}(10^{-7})$
- Test of LFU: R_{K(*)}

$$R_{\mathcal{K}^{(*)}} = rac{\mathcal{B}(B o \mathcal{K}^{(*)}\mu\mu)}{\mathcal{B}(B o \mathcal{K}^{(*)}ee)}$$

 According to SM this ratio should be 1 [EPJC 76, 440 (2016)], as the coupling of lepton to gauge boson is independent of flavor

- ullet $R_{K^{(*)}}$ results from LHCb [PRL 131 (2023) 051803] and Belle [JHEP 03 (2021) 105, PRL 126 (2021) 161801] are consistent with SM expectations
- LFU can uniquely tested using Belle II data

- Decay modes reconstructed: $B^0 \to K^{*0}(K^+\pi^-)\ell\ell$ and $B^+ \to K^{*+}(K^+\pi^0, K_S^0\pi^+)\ell\ell$
- Background from continuum and $B\overline{B}$ is suppressed using event shape, vertex quality, and kinematic variables in a BDT
- Performed 2D unbinned ML fit in $M_{\rm bc}$ and ΔE to extract the signal yield

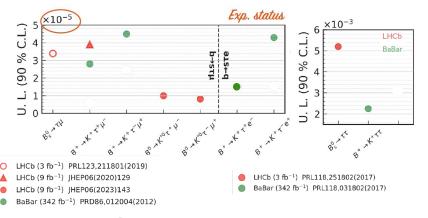

$$M_{\rm bc} = \sqrt{(E_{\rm beam}/c^2)^2}$$

$$B \to K^* \mu \mu$$

$$B \to K^* \mu \mu$$

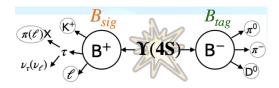
$$\int_{0.5}^{0.5} \mathcal{L} \, dt = 189 \, \text{fb}^{-1}$$

$$\int$$


$$\begin{split} \mathcal{B}(B \to K^*(892)\mu^+\mu^-) &= (1.19 \pm 0.31^{+0.08}_{-0.07}) \times 10^{-6}, \\ \mathcal{B}(B \to K^*(892)e^+e^-) &= (1.42 \pm 0.48 \pm 0.09) \times 10^{-6}, \\ \mathcal{B}(B \to K^*(892)\ell^+\ell^-) &= (1.25 \pm 0.30^{+0.08}_{-0.07}) \times 10^{-6}, \end{split}$$

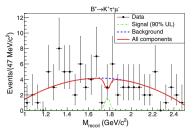
- Similar performances for electrons and muons
- Results are compatible with world averages within the uncertainties

• Observation of these decays is the first step towards LFU test (R_{K^*}) at Belle II


Introduction on $b \to s\tau\ell$ and $b \to s\tau\tau$ decays

- $b \to s \tau \ell$ and $b \to s \tau \tau$ are expected to be more sensitive to NP which has a coupling proportional to lepton or only couples to the third generation
- According to theory [PRL 114 (2015) 091801]: violation of LFU predict LFV processes

- \bullet SM prediction is $\mathcal{O}(10^{-7})$ [PRL 120 (2018) 181802] for the $\tau\tau$ final state
- ullet $b o s au au(\ell)$ are less studied compared to their $e-\mu$ counterparts
- Experimentally challenging due to two or more neutrinos in the final state

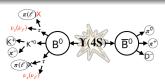

• FEI Hadronic B-tagging (Btag)

- Signal side: $B \to K \tau \ell$, $\tau \to e \nu \overline{\nu}$, $\mu \nu \overline{\nu}$, $\pi \nu$ ($\tau \to \rho \nu$ mode contribute $\sim 50\%$ to $\tau \to \pi \nu$, because of large \mathcal{B}), combined 46% \mathcal{B}
- Dominant background from semileptonic D decays $B^+ o \overline{D^0}(o K^+\ell^-\overline{\nu_\ell})X^+$ or semileptonic B decays $B^+ o \overline{D^0}(o K^+X^-)X\ell^+\nu_\ell$, are vetoed in $M_{K^+\ell^-}$ around D^0 mass region
- ullet Background is suppressed using BDTs having kinematic and topology of the $B_{
 m sig}$ and ECL energy from extra clusters (not associated with $B_{
 m sig}$ or $B_{
 m tag}$)

ullet Signal yield is extracted by unbinned extended ML fit to $M_{
m recoil}$: should peak at the mass of the au lepton

$$M_{
m recoil} = \sqrt{m_B^2 + m_{K\ell}^2 - 2(E_{
m beam}^* E_{K\ell}^* + p_{B_{
m tag}}^* p_{K\ell}^* \cos \theta)},$$

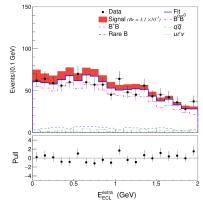
here, $p_{K\ell}^* = p_K^* + p_\ell^*$



- Four channels:
 - 2 charge configurations \times 2 flavours

channel	$N_{\rm sig}$	$\mathcal{B}^{\mathrm{UL}}$ (10^{-5})	
$B^+ o K^+ au^+ \mu^-$	-2.1 ± 2.9	< 0.59	
$B^+ o K^+ au^+e^-$	1.5 ± 5.5	< 1.51	
$B^+ o K^+ au^-\mu^+$	2.3 ± 4.1	< 2.45	
$B^+ o K^+ au^- e^+$	-1.1 ± 7.4	< 1.53	

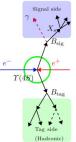
ullet World's best limits for $B^+ o K^+ au \ell$ decays

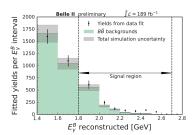

- FEI Hadronic B-tagging (B_{tag})
- $\tau^- \rightarrow e^- \overline{\nu_e} \nu_\tau, \mu^- \overline{\nu_\mu} \nu_\tau, \pi^- \nu_\tau$

- 6 different decay modes: $K^{*0}e^+e^-$, $K^{*0}e^\mp\mu^\pm$, $K^{*0}\mu^+\mu^-$, $K^{*0}e^\mp\pi^\pm$, $K^{*0}\mu^\mp\pi^\pm$, $K^{*0}\pi^+\pi^-$
- $B^0 \to D^{(*)-}(K^{*0}\pi^-(\pi^0))\ell^+\nu_\ell$ background for $K^{*0}\pi^+\pi^-$ and $K^{*0}\ell^\pm\pi^\mp$ are rejected by $M_{K^{*0}\pi^-}\notin [1.84-1.94]~{\rm GeV}/c^2$
- Signal yield is extracted by binned extended ML fit to $E_{\mathrm{ECL}}^{\mathrm{extra}}$, sum of the energy from cluster not associated with B_{sig} or B_{tag} , with a bin width of 0.1 GeV
- Fit result on data

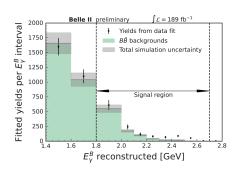
$$N_{
m sig} = -4.9 \pm 6.0$$
 $\mathcal{B}^{
m UL} < 3.1 imes 10^{-3}$ at 90% CL

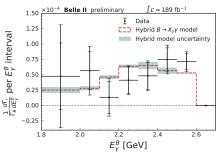
• First experimental limit on the decay $B^0 o K^{*0} au au$



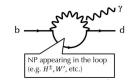

Radiative decays ...

Inclusive $B \to X_s \gamma$ at Belle II


- $B \rightarrow X_s \gamma$ is sensitive to non-SM effects [EPJC 77 (2017) 201]
- Photon-energy spectrum offers access to the mass of the b quark and the function describing its motion inside the B meson [PRL 127 (2021) 102001, EPJC 77 (2017) 201]
- Measurement is possible in clean environment of B factories
- ullet Fully inclusive measurement using hadronic $B_{
 m tag}$
- Knowledge of kinematic properties of $B_{\rm tag}$ allows to access photon energy in the $B_{\rm sig}$ frame, E_{γ}^B
- Signal yield is extracted by fit to tag-side $M_{
 m bc}$ in bins of E_{γ}^{B} (8 bins with $E_{\gamma}^{B}>1.8$ GeV)
- $b \to d\gamma$ contribution accounted for by assuming same shape and efficiency as signal but suppressed by a factor $|V_{td}/V_{ts}|^2 \approx 4.3\%$

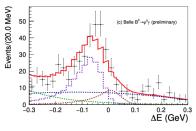


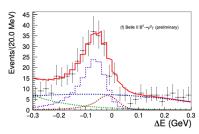
continuum, combinatorial, correctly rec. B



• Background subtracted distribution

- $\begin{array}{c|c} \hline E_{\gamma}^{B} \ (\text{GeV}) & \mathcal{B} \ (10^{-4}) \\ \hline \text{threshold} \\ \hline 1.8 & 3.54 \pm 0.78 \pm 0.83 \\ 2.0 & 3.06 \pm 0.56 \pm 0.47 \\ 2.1 & 2.49 \pm 0.46 \pm 0.35 \\ \hline \end{array}$
- Provided partial \mathcal{B} in bins of $E_{\sim}^{\mathcal{B}}$
- Results are consistent with the SM and world averages HFLAV (all tagging approached) = $(3.49 \pm 0.19) \times 10^{-4}$
- Competitive with BaBar [PRD 77 (2008) 051103] result with hadronic tag method, on similar statistics


• $b \to d\gamma$ transition have one order of magnitude lower $\mathcal B$ compared to $b \to s\gamma$ processes and can be affected by NP independently



- $B \to \rho \gamma$ decay has been observed by the Belle [PRL 101 (2008) 200401] and BaBar [PRD 78 (2008) 112001]
- ullet World average of isospin asymmetry lies about 2σ away from the SM expectation
- Reconstructed $\rho^0 \to \pi^+\pi^-$ and $\rho^+ \to \pi^+\pi^0$ for B^0 and B^+
- ullet Experimentally challenging due to the presence of $B o K^*\gamma$ background
- ullet $M_{K\pi}$: invariant mass of ho recalculated based on hypothesis that one of the π^+ is a K^+
- ullet $M_{K\pi}$ helps separate $K^*\gamma$ background better compared to $M_{\pi\pi}$

• Simultaneous 3D fitting on $M_{\rm bc}$, ΔE , and $M_{K\pi}$ with extended unbinned ML to 6 independent data sets: B^+ , B^- , and B^0 in Belle and Belle II

signal + bkg, signal, continuum bkg, generic B, B
$$\rightarrow$$
 K* γ

$$\begin{split} \mathcal{B}(B^+ \to \rho^+ \gamma) &= (12.85^{+2.02+1.38}_{-1.92-1.13}) \times 10^{-7} \\ \mathcal{B}(B^0 \to \rho^0 \gamma) &= (7.45^{+1.33+0.97}_{-1.27-0.79}) \times 10^{-7} \\ A_{CP}(B^+ \to \rho^+ \gamma) &= (-7.1^{+15.3+1.4}_{-15.2-1.3})\% \\ A_I(B \to \rho \gamma) &= (14.2^{+11.0+6.6+6.0}_{-11.7-6.4-6.5}) \end{split}$$

- Measured the $\mathcal{B},\ CP$ -asymmetry, and isospin asymmetry of $B \to \rho \gamma$ decays using Belle and Belle II combined data
- ullet Improved isospin asymmetry A_I results, which is consistent with the SM prediction with 0.6σ CL
- \bullet Most precise measurement of observables for $B\to\rho\gamma$ to date

Belle

- Most stringent limit for $B^+\to K^+\tau\ell$ decays, $<(0.59-2.45)\times 10^{-5}$ at 90% CL
- First experimental limit on the decay $B^0 \to K^{*0} au au$, $< 3.1 imes 10^{-3}$ at 90% CL

Belle II

- Heading towards $R_K R_{K^*}$ measurement with larger data sample: $\mathcal{B}(B \to K^*\ell\ell)$ are consistent with PDG
- Inclusive $\mathcal{B}(B \to X_s \gamma)$ measurement in bins of E_{γ}^B , results are consistent with world averages
- ullet World's most precise measurement of $B o
 ho\gamma$ decays branching fraction, isospin asymmetry and CP-asymmetry using Belle and Belle II data samples

Belle II data taking will restart in early 2024: many exciting results are on their way ...

Backup slides

TABLE II. Contributions to the systematic uncertainties of the measured signal yields and branching fractions.

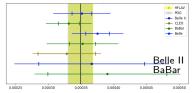
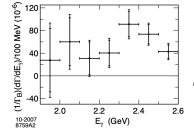
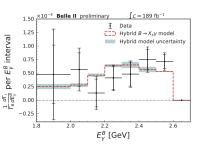
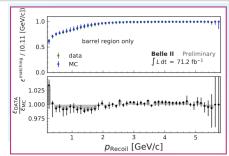

Source	$K^+ au^+ \mu^-$	$K^+ au^+ e^-$	$K^+ \tau^- \mu^+$	$K^+\tau^-e^-$
Additive (events)				
PDF shape (mean)	0.09	0.01	0.08	0.08
PDF shape (width)	0.02	0.08	0.04	0.07
PDF shape (f_{sig})	0.28	0.16	0.11	0.16
Linearity	0.03	0.04	0.02	0.04
Total	0.30	0.18	0.14	0.20
Multiplicative (%)				
B_{tag} calibration	5.9	5.9	5.9	5.9
Track reconstruction	1.1	1.1	1.1	1.1
Kaon identification	1.3	1.4	1.3	1.3
Lepton identification	0.3	0.4	0.3	0.4
τ daughter identification	0.7	0.7	0.6	0.6
MC statistics	1.0	1.5	1.2	1.0
Number of $B\bar{B}$ pairs	1.4	1.4	1.4	1.4
BDT $B\bar{B}$ selection	10.6	10.0	12.7	12.6
BDT $q\bar{q}$ selection	8.8	8.6	9.2	6.6
f^{+-}	1.2	1.2	1.2	1.2
Total	15.3	14.8	17.0	15.7

TABLE I. Systematic uncertainties for the branching fraction of the charged mode $(\mathcal{B}_{\rho^+\gamma})$, the neutral mode $(\mathcal{B}_{\rho^0\gamma})$, the isospin asymmetry, and the CP asymmetry.


Source	$\mathcal{B}_{\rho^+\gamma} \times 10^8$	$B_{\rho^0 \gamma} \times 10^8$	$A_{ m I}$	$A_{\rm CP}$
reconstruction eff.	4.1	1.2	1.5%	0.4%
cut eff.	8.9	3.3	4.0%	0.6%
Fixed PDF parameters	1.1	2.6	1.8%	0.2%
Signal shape	4.6	2.9	3.1%	0.5%
Histogram PDF	1.0	0.6	0.6%	0.2%
$K^*\gamma$ yield	3.4	5.4	3.2%	0.1%
$B\overline{B}$ peaking yield	2.2	0.7	0.9%	0.2%
A_{CP} of peaking	0.2	0.0	0.1%	1.0%
Number of $B\overline{B}$	1.7	1.4	0.3%	0.1%
Other parameters	4.0	3.6	6.3%	0.0%
Total	12.6	8.8	9.0%	1.3%


Table I. Relative systematic uncertainties (in %) for $B \to K^*\ell\ell$.

Source	Systematic (%)
Kaon identification	0.4
Pion identification	2.5
Muon identification	$^{+1.9}_{-0.8}$
Electron identification	$^{+0.9}_{-0.5}$
K_S^0 identification	2.0
π^0 identification	3.4
Tracking	1.2-1.5
MVA selection	1.3 - 1.7
Simulated sample size	< 0.5
Signal cross feed	< 1%
Signal PDF shape	0.5-1.0%
$\mathcal{B}(\varUpsilon(4S)\to B^+B^-)[(\mathcal{B}(\varUpsilon(4S)\to B^0\overline{B^0}))$	1.2
Number of $B\overline{B}$ pairs	2.9
Total	+6.7 -6.0


E^B_{γ} [GeV]	$\frac{1}{\Gamma_B} \frac{d\Gamma_i}{dE_{\gamma}^B} (10^{-4})$	Statistical	Systematic	Fit procedure	Signal efficiency	Background modelling	Other
1.8 - 2.0	0.48	0.54	0.64	0.42	0.03	0.49	0.09
2.0 - 2.1	0.57	0.31	0.25	0.17	0.06	0.17	0.07
2.1 - 2.2	0.13	0.26	0.16	0.13	0.01	0.11	0.01
2.2 - 2.3	0.41	0.22	0.10	0.07	0.05	0.04	0.02
2.3 - 2.4	0.48	0.22	0.10	0.06	0.06	0.02	0.05
2.4 - 2.5	0.75	0.19	0.14	0.04	0.09	0.02	0.09
2.5 - 2.6	0.71	0.13	0.10	0.02	0.09	0.00	0.04

- Belle II (189 fb⁻¹) result is competitive with BaBar (210 fb⁻¹) data, HLFAV
- Main systematic uncertainties for $B o X_s \gamma$ measurement from Belle II are coming from fit procedure (generic B background shape and M_{bc} end-point) and simulation statistics

Photon detection efficiency & Belle II luminosity

Belle II has good photon detection efficiency

- Design peak luminosity of $6.5 \times 10^{35} \ \text{cm}^{-2} \text{s}^{-1}$ (30 times that of KEKB) to be achieved by;
 - reducing beam size by 20 times
 - increasing beam current by 1.5 times