Recent results on $|V_{cb}|$ and $|V_{ub}|$ at the Belle II experiment

Racha Cheaib, DESY

Belle II

EPS

Aug 22, 2023

On behalf of the Belle II Experiment

V_{ch} and V_{ub}

Precision measurements of CKM matrix at the core of the physics program at Belle II

 $|V_{ub}|$ and $|V_{cb}|$ are determined mainly from semileptonic decays of *B* mesons

V_{cb} and V_{ub}

Two main approaches for $|V_{ub}|$ and $|V_{cb}|$ measurements

V_{cb} and V_{ub}

V_{cb} and V_{ub}

So how do we do this at Belle II ?

Exclusive IV_{cb}

- Clean mode with a good handle on efficiency and backgrounds.
- Measure the differential rate as a function of 3 angular \bullet distributions and w.

$$\frac{d\Gamma}{dw} = \frac{\eta_{\rm EW}^2 G_F^2}{48\pi^3} m_{D^*}^3 (m_B - m_{D^*})^2 g(w) F^2(w) |^2$$

Extract |V_{cb}| using averaged differential rate and input from \bullet Lattice QCD calculations.

 $B \rightarrow D^* \ell \nu$

$$w = \frac{m_B^2 + m_D^2 - q^2}{2m_B m_D}$$

Untagged analysis using 2019-2021 Belle II dataset: 189 fb⁻¹ Reconstruct $D^{*+} \rightarrow [D^0 \rightarrow K^- \pi^+]\pi^+$ and identify lepton ulletcandidate

*_ VP

Need the direction of signal *B*:

- Use the direction of the $D^{*+}\ell^{-}(Y)$ system to constrain the signal B direction on a cone with opening angle θ_{BY} .
- Examine residual tracks and clusters not used in the signal reconstruction to determine other *B* direction.

 $\cos \theta_{BY} = \frac{2E_B^{\text{c.m.}}E_Y^{\text{c.m.}} - m_B^2 c^4 - m_Y^2 c^4}{2|\vec{p}_B^{\text{c.m.}}||\vec{p}_Y^{\text{c.m.}}|c^2},$

Extract signal yield from binned maximum likelihood fits to ΔM and $\cos \theta_{BY}$ in each bin of the kinematic distributions

*

- Take the average of the differential rate from the 4 measured distributions and the two lepton flavours.
- Requires input on form factor parametrization.

$$rac{d\Gamma}{dw} = rac{\eta_{
m EW}^2 G_F^2}{48 \pi^3} m_D^3 (m_B - M_B)^3$$

• Extract $|V_{cb}|$ at zero recoil, w = 1.

$$w = \frac{m_B^2 + m_D^2 - q^2}{2m_B m_D}$$

 $B \rightarrow D^* \ell \nu$

Use averaged decay rate to determine the form factors and $|V_{cb}|$

	_

- Looking beyond zero recoil with recent results (Eur. Phys. J. C 82, 1141 (2022))
- LQCD input from Fermilab/MILC at w=[1.03, 1.10, 1.17]

	BGL		10 <u>10 10 10 10 10 10 10 10 10 10 10 10 10 1</u>	CLN
	Constraints on	Constraints on		Constraints on
	$h_{A_1}(w)$	$h_{A_1}(w), R_1(w), R_2(w)$		$h_{A_1}(w)$
$a_0 imes 10^3$	$21.7 \hspace{0.2cm} \pm 1.3 \hspace{0.2cm}$	$25.6 \hspace{0.2cm} \pm \hspace{0.2cm} 0.8 \hspace{0.2cm}$	$h_{A_1}(1)$	0.91 ± 0.02
$b_0 imes 10^3$	13.19 ± 0.24	13.61 ± 0.23	ρ^2	1.22 ± 0.05
$b_1 imes 10^3$	-6 ± 6	2 ± 6	$R_{1}(1)$	1.14 ± 0.07
$c_1 imes 10^3$	$-0.9\ \pm 0.7$	0.0 ± 0.7	$R_{2}(1)$	0.88 ± 0.03
$ V_{cb} \times 10^3$	$40.3 \hspace{0.2cm} \pm 1.2 \hspace{0.2cm}$	38.3 ± 1.1	$ V_{cb} imes 10^3$	$40.3 \hspace{0.2cm} \pm 1.2 \hspace{0.2cm}$
χ^2/ndf	39/33	75/39	χ^2/ndf	39/33
<i>p</i> -value	21%	0.04%	p-value	23%

Belle I

- Agreement between the different parameterizations and the extracted $|V_{cb}|$ values .
- Constraints on $h_{A_1}(w), R_1(w), R_2(w)$ shift $|V_{cb}|$ significantly and lead to tension with predictions from FNAL/MILC.

*

Tagged Exclusive IV_{cb}

Another approach to measure |V_{cb}| using hadronic tagging.

arXiv.2301.04716

"tag" B

 $\Upsilon(4S)$

*_

 \overline{R}

e

- Fully reconstruct the decay of the other *B* using hadronic modes.
- Determine exclusively the direction of the • tagging *B* and thus the signal *B*.
 - High purity approach albeit lower efficiency.

ν

B-tagging at Belle II

- Exclusive reconstruction of *B* mesons using hadronic and semi-leptonic modes.
- Achieved using the Full Event Interpretation (FEI), a multivariate algorithm based on a hierarchal approach.

• Employs over 200 Boosted Decision Trees to reconstruct $\sim 10000 B$ decay chains.

30-50% improvement in efficiency compared to Full Reconstruction at Belle.

Comp. Softw. Big. Sci. 3 (2019)

- everything else in the event.

Extract |V_{cb}| using fit to the differential distribution and the total decay rate in the CLN parametrisation using input values of the form factors $R_1(1)$ and $R_2(1)$. (Eur. Phys. J. C 81 (2021))

exclusive measurements

arXiv.2301.04716

*

Systematic sources	Relative uncertainty $(\%)$
FEI efficiency	3.9
Low momentum π efficiency	4.1
Tracking efficiency	0.9
Lepton particle identification	2.0
Background	1.2
$N_{B\overline{B}}$	2.9
f_{+0}	1.2
Number of mixed $B\overline{B}$	0.9
$\mathcal{B}\left(D^{*-} \to \pi^- \overline{D}^0\right)$	0.7
$\mathcal{B}\left(\overline{D}^0 \to K^+ \pi^-\right)$	0.8
ECL energy	1.0
Form factor	0.1
MC sample size	1.8
Total	7.3

Extract |V_{cb}| using fit to the differential distribution and the total decay rate in the CLN parametrization using input values of the form factors $R_1(1)$ and $R_2(1)$. (Eur. Phys. J. C 81 (2021))

exclusive measurements

arXiv.2301.04716

DESY.

*

Systematic sources	Relative uncertainty (%)			
FEI efficiency	3.9			
Low momentum π efficiency	4.1			
Tracking efficiency	0.9			
Lepton particle identification	2.0			
Background	1.2			
$N_{B\overline{B}}$	2.9			
f_{+0}	1.2			
Number of mixed $B\overline{B}$	0.9			
$\mathcal{B}\left(D^{*-} o \pi^- \overline{D}^0 ight)$	0.7			
$\mathcal{B}\left(\overline{D}^0 \to K^+ \pi^-\right)$	0.8			
ECL energy	1.0			
Form factor	0.1			
MC sample size	1.8			
Total	7.3			

A determination of the form factors using both BGL and CLN parametrizations, along with $|V_{cb}|$, with this tagged approach is in progress with current Belle II dataset.

Inclusive IV_{cb}

Inclusive IV_{cb}

- No reconstruction of the X_c system.
- Clean theoretical predictions: no form factor uncertainties.
- Experimentally more challenging due to higher background levels.

HQE in powers of $1/m_h$

- Determine parameters of HQE using moments of the differential rate.

Determine $|V_{ch}|$ using the total branching fraction as input.

Inclusive IV_{cb}

Achieve more precision by including higher order:

$$\Gamma \propto |V_{cb}|^2 m_b^5 \left[\Gamma_0 + \Gamma_0^{(1)} \frac{\alpha_s}{\pi} + \Gamma_0^{(2)} \left(\frac{\alpha_s}{\pi}\right)^2 + \frac{\mu_\pi^2}{m_b^2} \left(\Gamma^{(\pi,0)} + \frac{\alpha_s}{\pi} \Gamma^{(\pi,1)}\right) \right. \\ \left. + \frac{\mu_G^2}{m_b^2} \left(\Gamma^{(G,0)} + \frac{\alpha_s}{\pi} \Gamma^{(G,1)}\right) + \frac{\rho_D^3}{m_b^3} \Gamma^{(D,0)} + \mathcal{O}\left(\frac{1}{m_b^4}\right) \cdots \right)$$

- Number of parameters: 4 up to $1/m_b^3$, 13 up to $1/m_b^4$ and 31 up to $1/m_b^5$ ${\bullet}$
- Use reparametrization invariance to link different orders of 1/m_b and reduce the number of total parameters
- **Requires RPI observables such as q^2 \rightarrow 8 parameters instead of 13** !

$$\left\langle (q^2)^n \right\rangle_{\rm cut} = \int_{q^2 > q_{\rm cut}^2} dq^2 \, (q^2)^n \, \frac{d\Gamma}{dq^2} \middle/ \int_{q^2 > q_{\rm cut}^2} dq^2 \, \frac{d\Gamma}{dq^2}$$

Measure $\langle q^{2n} \rangle$ with Belle II data to determine inclusive $|V_{cb}|$

Alternative Inclusive IV_{cb}

Fael, Mannel, Vos, JHEP 02 (2019) 177

q^2 Moments of $B \to X_c \ell \nu_\ell$

- Use hadronic FEI tagging with 62.8 fb⁻¹ of data and identify one signal-side lepton.
- Identify X_c system using remaining tracks and clusters in the $\Upsilon(4S)$ rest of event.
- Use kinematic fit to improve overall $q^2 = (p_{B_{sig}}^* p_X^*)^2$, determined in CM frame.

PRD 107,072002(2023)

continuous weight function.

 $\langle q^2_{
m gen,\,sel}
angle$ [GeV²/c⁴]

- Extract the $\langle q^{2n} \rangle$, n = 1 4 moments, in the region $q^2 = 1.5 8.0 \text{ GeV}^2/c^4$
- Compare measured moments, after background subtraction and simulation, to moments determined using $B \to X_c \ell \nu$

PRD 107,072002(2023)

² Moments of $B \to X_{c} \ell \nu_{\ell}$

Exclusive IV_{ub}

- Roughly an order of magnitude smaller than $|V_{cb}|$
- Experimentally challenging due to dominant $B \rightarrow X_c \ell \nu$ background.

- Exclusive via $B \rightarrow \pi \ell \nu$
 - Most precise determination of $|V_{ub}|$ (~4%)
 - Form factor determined non-perturbative from lattice QCD (high q^{2}) or LCSR (q^{2} ~0).

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} |p_\pi|^3 |f_+(q^2)|^2$$

arXiv:2210.04224

Untagged $B^0 \to \pi^- \ell \nu_\ell$

- Identify pion and lepton to reconstruct B_{sig} with 189 fb⁻¹ of Belle II data.
- Similar strategy as untagged $B \rightarrow D^* \ell \nu$ to determine B_{sig} \bullet direction.
- Suppress backgrounds from continuum events, $e^+e^- \rightarrow q\bar{q}$, ${ \bullet }$ using trained BDTs

arXiv:2210.04224

- Identify pion and lepton to reconstruct B_{sig} with 189 fb⁻¹ of Belle II data.
- Similar strategy as untagged $B \rightarrow D^* \ell \nu$ to determine B_{sig} ${\bullet}$ direction.
- Suppress backgrounds using trained BDTs

- Use tracks and clusters in the rest of the event to reconstruct
- Determine the beam-constrained mass, and energy difference

$$M_{bc} = \sqrt{(E_{beam}^{*2} - |\vec{p}_B^*|^2)} \qquad \Delta E = E_B^* - E_B^*$$

- Determine partial branching fractions in 6 bins of q^2 .

$$\mathcal{B}(B^0 \to \pi^- \ell^+ \nu_\ell) = (1.426 \pm 0.056 \text{(stat)} \pm 0.125 \text{(sys)})$$

$$|V_{ub}|_{B^0 \to \pi^- \ell^+ \nu_\ell} = (3.55 \pm 0.12 (\text{stat}) \pm 0.13 (\text{syst}) \pm 0.17 (\text{theo})) \times 10^{-3}$$

Leading systematic uncertainty from the estimate of continuum background. **Consistent with world average.**

Tagged Exclusive IV_{ub}

Tagged $B \rightarrow \pi e \nu_{\rho}$

- FEI hadronic tagging to measure $\mathscr{B}(B \to \pi e \nu)$ with
- Identify oppositely charged lepton and pion using PID algorithms.
- Fit M_{miss}^2 in 3 bins of q^2 .

 $\mathcal{B}(B^0 \to \pi^- e^+ \nu_e) = (1.43 \pm 0.27 (\text{stat}) \pm 0.07 (\text{syst})) \times 10^{-4}$ $\mathcal{B}(B^+ \to \pi^0 e^+ \nu_e) = (8.33 \pm 1.67(\text{stat}) \pm 0.55(\text{syst})) \times 10^{-5}$

$$|V_{
m ub}| = (3.88 \pm 0.45) \times 10^{-3}$$

Results are statistically limited. Consistent with world average

The developing picture

Future Prospects at Belle II

- Reduce systematic uncertainties related to the reconstruction of the slow pion.
- Improve continuum modelling and related uncertainty with larger off-resonance sample.
- For tagged approach, also reduce systematic uncertainties related to tagging efficiency.
 - Clean up low purity hadronic *B* modes.
- Achieve higher accuracy with improved measurements for $N_{B\bar{B}}$ and f^{+0}
- Achieve higher precision in the measurements of the moments for inclusive $|V_{cb}|$ with larger dataset.
 - Valuable input for theory!
- Improved measurements of $B \to D^{**}\ell\nu$.

Belle II will restart data-taking in Fall 2023.

Conclusion

- Measurements in progress to resolve $|V_{ub}|$ and $|V_{cb}|$ puzzle.
- Exclusive $|V_{cb}|$:
 - Recent results at Belle II with untagged $B \to D^* \ell \nu$ and the form factors in the BGL and CLN parameterization.
 - Consistent with both inclusive and exclusive determinations.
 - Examine beyond zero recoil constraints from Fermilab/MILC.
 - Recent results with tagged $B \rightarrow D^* \ell \nu$ approach and CLN parametrisation.
 - Consistent with world average of exclusive determinations.
 - Work in progress for a full extraction of the form factors as in the untagged analysis.
- Inclusive $|V_{cb}|$:
 - Novel $\langle q^{2n} \rangle$ moments measurements at Belle II using tagged approach.
 - First determination of inclusive $|V_{ch}|$ using this information.
- Exclusive $|V_{\mu b}|$:
 - First results at Belle II with tagged and untagged $B \rightarrow \pi \ell \nu$. \bullet
 - Both results are consistent with the world average. \bullet
 - Work in progress for a precision measurement with current Belle II dataset (362 fb⁻¹) and the inclusion of $B \to \rho \ell \nu$.

Back up

- Exclusive reconstruction of hadronic B modes.

Had B+/B ⁰	SL $B+/B^0$
0.28/0.18	0.67/0.63
0.78/0.46	1.80/2.04

- HQE in powers of $1/m_b$
- Determine parameters of HQE using moments of the differential rate.

$$\langle E^{n} \rangle_{\text{cut}} = \frac{\int_{\underline{E}_{\ell} > \underline{E}_{\text{cut}}} dE_{\ell} E_{\ell}^{n} \frac{d\Gamma}{dE_{\ell}}}{\int_{\underline{E}_{\ell} > E_{\text{cut}}} dE_{\ell} \frac{d\Gamma}{dE_{\ell}}} \qquad \langle (M_{X}^{2})^{n} \rangle_{\text{cut}} = \frac{\int_{\underline{E}_{\ell} > \underline{E}_{\text{cut}}} dM_{X}^{2} (M_{X}^{2})^{n} \frac{d\Gamma}{dM_{X}^{2}}}{\int_{\underline{E}_{\ell} > E_{\text{cut}}} dM_{X}^{2} \frac{d\Gamma}{dM_{X}^{2}}} \qquad R^{*}(E_{\text{cut}}) = \frac{\int_{\underline{E}_{\ell} > \underline{E}_{\text{cut}}} dE_{\ell} \frac{d\Gamma}{dE_{\ell}}}{\int_{0} dE_{\ell} \frac{d\Gamma}{dE_{\ell}}}$$

Using the branching fraction, determine $|V_{cb}|$

$$\operatorname{Br}(\bar{B} \to X_c \ell \bar{\nu}) \propto \frac{|V_{cb}|^2}{\tau_B} \left[\Gamma_0 + \Gamma_{\mu_\pi} \frac{\mu_\pi^2}{m_b^2} + \Gamma_{\mu_G} \frac{\mu_G^2}{m_b^2} + \Gamma_{\rho_D} \frac{\rho_D^3}{m_b^3} \right]$$

Inclusive IV_{cb}

	Kinetic scheme	1S scheme
<i>O</i> (1)	m_b, m_c	m _b
$O(1/m_b^2)$	μ_π^2, μ_G^2	λ_1,λ_2
$O(1/m_b^3)$	$ ho_D^3, ho_{LS}^3$	$ ho_1, au_{1-3}$

JHEP 1109 055 (2011) Phys Rev D 70, 094017 (2004)

Achieve more precision by including higher order:

$$\Gamma \propto |V_{cb}|^2 m_b^5 \left[\Gamma_0 + \Gamma_0^{(1)} \frac{\alpha_s}{\pi} + \Gamma_0^{(2)} \left(\frac{\alpha_s}{\pi} \right)^2 + \frac{\mu_\pi^2}{m_b^2} \left(\Gamma^{(\pi,0)} + \frac{\alpha_s}{\pi} \Gamma^{(\pi,1)} \right) \right. \\ \left. + \frac{\mu_G^2}{m_b^2} \left(\Gamma^{(G,0)} + \frac{\alpha_s}{\pi} \Gamma^{(G,1)} \right) + \frac{\rho_D^3}{m_b^3} \Gamma^{(D,0)} + \mathcal{O}\left(\frac{1}{m_b^4} \right) \cdots \right)$$

- Number of parameters: 4 up to $1/m_b^3$, 13 up to $1/m_b^4$ and 31 up to $1/m_b^5$ ullet
- Use reparametrization invariance to link different orders of 1/mb and reduce the number of total parameters
- Requires RPI observables such as q²
 - $2M_B r_G^4 \equiv \frac{1}{2} \langle B | \bar{b}_v [i D_\mu, i D_\nu] [i D^\mu, i D^\nu] b_v | B \rangle \propto \langle \vec{E}^2 \vec{B}^2 \rangle$
 - $2M_B r_E^4 \equiv \frac{1}{2} \langle B | \bar{b}_v [ivD, iD_\mu] [ivD, iD^\mu] b_v | B \rangle \propto \langle \vec{E}^2 \rangle$
 - $2M_B s_B^4 \equiv \frac{1}{2} \langle B | \bar{b}_v [i D_\mu, i D_\alpha] [i D^\mu, i D_\beta] (-i \sigma^{\alpha \beta}) b_v | B \rangle \propto \langle \vec{\sigma} \cdot \vec{B} \times \vec{B} \rangle$
 - $2M_B s_F^4 \equiv \frac{1}{2} \langle B | \bar{b}_v [ivD, iD_\alpha] [ivD, iD_\beta] (-i\sigma^{\alpha\beta}) b_v | B \rangle \propto \langle \vec{\sigma} \cdot \vec{E} \times \vec{E} \rangle$
 - $2M_B s^4_{aB} \equiv \frac{1}{2} \langle B | \bar{b}_v [iD_\mu, [iD^\mu, [iD_\alpha, iD_\beta]]] (-i\sigma^{\alpha\beta}) b_v | B \rangle \propto \langle \Box \vec{\sigma} \cdot \vec{B} \rangle$.

8 parameters instead of 13 !

Alternative Inclusive IV_{cb}

$$\left\langle (q^2)^n \right\rangle_{\rm cut} = \int_{q^2 > q_{\rm cut}^2} dq^2 (q^2)^n \frac{d\Gamma}{dq^2} \bigg/ \int_{q^2 > q_{\rm cut}^2} dq^2 \frac{dq^2}{dq^2} \bigg|_{q^2 > q^2} dq^2 \frac{dq^2}{dq^2}$$

$$R^*(q_{\rm cut}^2) = \int_{\boldsymbol{q}^2 > \boldsymbol{q}_{\rm cut}^2} dq^2 \frac{d\Gamma}{dq^2} \bigg/ \int_0^{\infty} dq^2 \frac{d\Gamma}{dq^2}$$

Fael, Mannel, Vos, JHEP 02 (2019) 177

- Experimentally challenging due to dominant $B \to X_c \ell \nu$ background.
- Only certain kinematic regions allow for clean separation: lepton momentum endpoint spectrum or low m_x.
- Inclusive via $B \to X_u \ell \nu$:
 - Precision of (~7%)
 - Operator Product Expansion (OPE) = Heavy Quark Expansion.
 - HQE breaks down and a non-perturbative shape function is required.

$$d\Gamma = d\Gamma_0 + d\Gamma_2 \left(\frac{\Lambda_{\rm QCD}}{m_b}\right)^2 + d\Gamma_3 \left(\frac{\Lambda_{\rm QCD}}{m_b}\right)^3 + d\Gamma_4 \left(\frac{\Lambda_{\rm QCD}}{m_b}\right)^4$$

- Exclusive via $B \to \pi \ell \nu$
 - Most precise determination of |V_{ub}| (~4%)
 - Form factor determined non-perturbative from lattice QCD (high q^2) or LCSR ($q^2 \sim$ 0) .

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} |p_\pi|^3 |f_+(q^2)|^2$$

Jub

 $|V_{ub}| = (4.25 \pm 0.12^{+0.15}_{-0.14} \pm 0.23) \times 10^{-3}$ PDG inclusive $|V_{ub}| = (3.70 \pm 0.10 \pm 0.12) \times 10^{-3}$ PDG exclusive

> Current ~3σ tension between inclusive and exclusive determinations

Belle II experiment

- A *B* meson factory in Tsukuba, Japan based on the SuperKEKB accelerator complex.
- Upgrade of its predecessor Belle at KEKB.

Luminosity projected to be 30 x larger than that of Belle.

arrel)	
d)	J

The big picture

- Exclusive reconstruction of hadronic B modes.

Had B+/B ⁰	SL $B+/B^0$
0.28/0.18	0.67/0.63
0.78/0.46	1.80/2.04

mesons.

	B^{\pm}	B^0			B^{\pm}
Hadro	nic				Semileptonic
FEI with FR channels FEI FR SER	$\begin{array}{c} 0.53 \ \% \\ 0.76 \ \% \\ 0.28 \ \% \\ 0.4 \ \% \end{array}$	$\begin{array}{c} 0.33 \ \% \\ \hline 0.46 \ \% \\ \hline 0.18 \ \% \\ \hline 0.2 \ \% \end{array}$	F F S	EI R ER	1.80 % 0.31 % 0.3 %

Comp. Softw. Big. Sci. 3 (2019)

2.04~%0.34~%0.6~%

progress for Summer 2022.

- Experimentally challenging due to dominant $B \to X_c \ell \nu$ background.
- Only certain kinematic regions allow for clean separation: lepton momentum endpoint spectrum or low m_x.
- Inclusive via $B \to X_u \ell \nu$:
 - Precision of (~7%)
 - Operator Product Expansion (OPE) = Heavy Quark Expansion.
 - HQE breaks down and a non-perturbative shape function is required.

$$d\Gamma = d\Gamma_0 + d\Gamma_2 \left(\frac{\Lambda_{\rm QCD}}{m_b}\right)^2 + d\Gamma_3 \left(\frac{\Lambda_{\rm QCD}}{m_b}\right)^3 + d\Gamma_4 \left(\frac{\Lambda_{\rm QCD}}{m_b}\right)^4$$

- Exclusive via $B \to \pi \ell \nu$
 - Most precise determination of |V_{ub}| (~4%)
 - Form factor determined non-perturbative from lattice QCD (high q^2) or LCSR (q^2 ~0).

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} |p_\pi|^3 |f_+(q^2)|^2$$

Jub

 $|V_{ub}| = (4.25 \pm 0.12^{+0.15}_{-0.14} \pm 0.23) \times 10^{-3}$ PDG inclusive $|V_{ub}| = (3.70 \pm 0.10 \pm 0.12) \times 10^{-3}$ PDG exclusive

> Current ~3σ tension between inclusive and exclusive determinations

B-tagging at Belle II

- Exclusive reconstruction of *B* mesons using hadronic and semi-leptonic modes.
- Achieved using the Full Event Interpretation (FEI), a \bullet multivariate algorithm based on a hierarchal approach.

Employs over 200 Boosted Decision Trees to reconstruct lacksquare $\sim 10000 B$ decay chains.

mesons.

	B^{\pm}	B^0		B^{\pm}
Hadro	nic			Semileptonic
FEI with FR channels FEI FR SER	$0.53 \% \\ 0.76 \% \\ 0.28 \% \\ 0.4 \%$	$\begin{array}{r} 0.33 \ \% \\ 0.46 \ \% \\ \hline 0.18 \ \% \\ 0.2 \ \% \end{array}$	FEI FR SER	1.80 % 0.31 % 0.3 %

Comp. Softw. Big. Sci. 3 (2019)