Recent tau-lepton results at Belle and Belle II

Kenta Uno (KEK) on behalf of the Belle/Belle II collaboration

2023/8/21

EPS-HEP2023 conference 21 August 2023

Unravelling the mysteries of matter, life and the universe.

Introduction: τ physics

- Leptonic and Hadronic decays: > 200 decay channels!
- \rightarrow Sensitive to new physics

<u>Search</u>

- Lepton ravor violation. $\tau \to \tau \gamma, \tau \to \tau \tau, \tau \to \ell \nu$
 - Observation \rightarrow Clear signs of new physics

Precision measurements of the tau properties

- Lepton Flavor Universality
 - Deviation from the SM \rightarrow Indirect signs of new physics

0.511 MeV/c

pton

Belle, Belle II experiments

Belle experiment (1999 – 2010)

- 8 GeV e^- and 3.5 GeV e^+
 - Recorded ~1000 fb⁻¹ data
- Belle II experiment (2018)
- 7 GeV e^- and 4 GeV e^+
 - Recorded 424 fb⁻¹ data

Belle (II) detectors

- Good efficiency of neutral particles (π^0 , η)
- Good reconstruction of missing energy
- Specific low-multi triggers at Belle II
 - Eg. single track trigger

This method is used in Belle (II) τ analysis to identify an τ event.

LFV decay: $\tau^{\pm} \rightarrow \ell^{\pm} V^{0}$

Charged Lepton Flavor Violation

- Forbidden in the SM but possible in several new physics scenarios
 - τ → ℓV⁰: sensitive to leptoquark model
 Exotic decay → <u>High signal detection efficiency</u> is crucial!

Improved the sensitivities by untagged reconstruction and BDT 2023/8/21 5

Belle: Analysis approach

Signal-side: Reconstruct ℓ and V^0

• V^0 : ρ^0 , ϕ , ω , $K^*(\overline{K}^{*0})$ Tag-side: Require 1, 3-prong τ

Background (eg. $\tau \rightarrow 3\pi\nu, ee \rightarrow q\bar{q}$) suppression: BDT!

- Prepare BDT classifier for each ℓV^0 mode
- Training: 11 input variables for $\ell \omega$, 9 input variables for others

Belle: $\tau^{\pm} \rightarrow \ell^{\pm} V^0$ results

No significant excess in all ℓV^0 modes

World leading results

Mode	ε (%)	$N_{ m BG}$	$\sigma_{ m syst}$ (%)	$N_{\rm obs}$	$\mathcal{B}_{\rm obs}~(\times 10^{-8})$
$\tau^\pm \to \mu^\pm \rho^0$	7.78	0.95 ± 0.20 (stat.) ± 0.15 (syst.)	4.6	0	< 1.7
$\tau^{\pm} \rightarrow e^{\pm} \rho^0$	8.49	$0.80 \pm 0.27 (stat.) \pm 0.04 (syst.)$	4.4	1	< 2.2
$\tau^\pm \to \mu^\pm \phi$	5.59	$0.47 \pm 0.15 (stat.) \pm 0.05 (syst.)$	4.8	0	< 2.3 *
$\tau^\pm \to e^\pm \phi$	6.45	0.38 ± 0.21 (stat.) ± 0.00 (syst.)	4.5	0	< 2.0 *
$\tau^\pm \to \mu^\pm \omega$	3.27	$0.32 \pm 0.23 (stat.) \pm 0.19 (syst.)$	4.8	0	< 3.9 *
$\tau^\pm \to e^\pm \omega$	5.41	$0.74 \pm 0.43 (stat.) \pm 0.06 (syst.)$	4.5	0	< 2.4 *
$\tau^{\pm} \to \mu^{\pm} K^{*0}$	4.52	$0.84 \pm 0.25 (stat.) \pm 0.31 (syst.)$	4.3	0	< 2.9 *
$\tau^{\pm} \rightarrow e^{\pm} K^{*0}$	6.94	0.54 ± 0.21 (stat.) ± 0.16 (syst.)	4.1	0	< 1.9 *
$\tau^{\pm} \to \mu^{\pm} \overline{K}^{*0}$	4.58	$0.58 \pm 0.17 (stat.) \pm 0.12 (syst.)$	4.3	1	< 4.3 *
$\tau^{\pm} \to e^{\pm} \overline{K}^{*0}$	7.45	0.25 ± 0.11 (stat.) ± 0.02 (syst.)	4.1	0	< 1.7 *

Set ULs at 90% CL by counting approach

$$B(\tau \to eV^0) < (1.7 - 2.4) \times 10^{-8}$$

 $B(\tau \to \mu V^0) < (1.7 - 4.3) \times 10^{-8}$

The ULs are improved by ~30% from the previous results

>> Other Bookmarks annual Belle PAC... Automatic Zoom 0 • C+) Ι >> Belle II Ф τ_{sig} au_{tag} ŀ Mode Result Region $e\phi$ $\mu\phi$ $0.36^{+0.39}_{-0.23} \ {\rm stat}$ SR: $M_{\ell\phi}$ and $\Delta E_{\tau} = (E_{\ell\phi}^{CM} - \sqrt{s}/2)$ $0.23^{+0.55}_{-0.21}$ stat $N_{\rm exp}$ \mathbf{SR}

 \mathbf{SR}

 $N_{\rm obs}$

Untagged approach

Reconstruct $\tau_{sig} \rightarrow \ell \phi$

 $2.0^{+2.6}_{-1.3}$ stat

 $0.0^{+1.8}_{-0.0}$ stat

M background in simulation

ne successful first application of the new untagged appro suppression via BDT classifiers, in the reconstruction of n this method, we obtain double the final signal efficiency

10

eg. Axion-like particle (ALP) Upper Limit from AKGUS • 476 pb⁻¹ data (1995) UL at 95% CL $\beta(\tau^{\pm} \to e^{\pm}\alpha)/\beta(\tau^{\pm} \to e^{\pm}\nu\bar{\nu}) < (0.6 - 3.4) \times 10^{-2},$ $\beta(\tau^{\pm} \to \mu^{\pm}\alpha)/\beta(\tau^{\pm} \to \mu^{\pm}\nu\bar{\nu}) < (0.3 - 3.6) \times 10^{-2},$ $0.0 < m_{\alpha} < 1.6 \text{ GeV}$ Light ALP: JHEP 09 (2021) 173 $|C_{l_i l_i}| = |C_{l_i l_i}| = 1$ Mu3e-online MEGII-fwd (F=100) MEGII-fwd (F=1) RG Projected WD cooling Belle-II 50 ab cooling SN1987A. ARGUS $c\tau_a < 1 m$ SN1987A,.... 10^{5} 10^{2} 10^{3} 105 10^{7} 10⁸ 10^{4} 10^{6} 10^{9} m_a [eV]

• Search for $\tau \rightarrow \ell + \alpha$ (invisible)

Belle (II) can set more stringent limits on the invisible boson

Phys.Rev.Lett.130,181803

$\tau^{\pm} \rightarrow \ell^{\pm} \alpha$: Analysis approach

- Split event in two hemispheres based on the thrust axis
 - Signal side: 1 lepton track ($\ell = e, \mu$)
 - Tag side: 3-pion ($\tau \rightarrow 3\pi\nu$ decay)
 - Veto neutrals to suppress hadronic bkg
- Exploit the shape differences
 - Signals: $\tau \rightarrow \ell \alpha$ two-body decays
 - Backgrounds: $\tau \rightarrow \ell \nu \nu$ three-body decays
- → p_{ℓ} , E_{ℓ} in tau rest frame: monochromatic

How to obtain tau direction?

• Require $\tau \to a_1 (\to 3\pi) \nu$ in tag side

$$ightarrow ec{e}_{ au_{ ext{tag}}} pprox ec{e}_{3\pi} \quad m_{ au} = 1.78 \text{ GeV} \ m_{a_1} = 1.26 \text{ GeV}$$

Truth \textbf{p}_{μ} in $\tau(\text{truth})\text{-rest frame [GeV/c]}$

No significant excess over the background predictions..

 m_{τ} : one of the fundamental parameters of

Precise measurement is important for tests of L Belle II: Use Pseudomass endpoint (M_{min})

important for LFU tests of SM

• Uncertainties of the tau lepton propercies are

 \rightarrow Use kinemat

 au_{tag}

tau lepton mass measurement

Corrections factors

$$M_{\rm min} = \sqrt{m_{3\pi}^2 + 2(\sqrt{s} - E_{3\pi})(E_{3\pi} - |\vec{p}_{3\pi}|)}$$

Beam energy calibration and momentum correction are crucial

- Beam energy is corrected using B-meson hadronic decays
- Momentum scale : extract scale factors for K/π using $D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+) \pi^+$
 - \vec{p} due to imperfect \vec{B} , mismodeling in material \rightarrow bias mass extraction

m_{τ} me Perform an	asureme unbinned maxi	ent: mum	$F = \frac{1777}{16} = \frac{1777}{16} = \frac{1777}{16} = \frac{1777}{12} = \frac{1777}{12$
$F(M_{\min}) = 1 - m_{\tau}$ Fit function + $P_4(M_{\tau})$ $m_{\tau} = 1777.0$	$P_3 \cdot \arctan\left(rac{M_{\min} - P_1}{P_2} ight)$ $M_{\min} - P_1) + P_5(M_{\min} - P_2)$ $9 \pm 0.08 \pm 0.11$ Me	$\Big)$ - $P_1)^2$. eV/c^2	16 Belle II + Data - Fit f_{0} 14 $\int L dt = 190 \text{ fb}^{-1}$ Background $m_{\tau} = 1777.09 \pm 0.08 \pm 0.11 \text{ MeV/}c^{2}$ 10 f_{0}
Systematic uncertainties	SourceKnowledge of the colliding beams: Beam-energy correction Boost vectorReconstruction of charged particles: Charged-particle momentum correction Detector misalignmentFit model: Estimator bias Choice of the fit function Mass dependence of the biasImperfections of the simulation: Detector material density Modeling of ISR, FSR and τ decay Neutral particle reconstruction efficiency Momentum resolution Tracking efficiency correction Trigger efficiency Background processesTotal	Uncertainty (MeV/ c^2) 0.07 < 0.01 0.06 0.03 0.02 < 0.01 0.03 0.02 < 0.01 0.03 0.01 0.03 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.11	$ = \begin{bmatrix} 0 \\ -2 \\ 0 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -$

World's most precise measurement m_r [MeV/c²]

Conclusions and outlook

Belle (II) has an excellent sensitivity for τ physics

- LFV decays, $\tau \rightarrow \ell \alpha$, ℓV^0 : most stringent BF limit
- World's most precise measurement of τ mass

Statistical uncertainty is still dominant for τ decay searches, eg. LFV

- Now, 424 fb⁻¹ at Belle II.
 - Expect more results on larger statistics \rightarrow Stay tuned!

Backup

Recent tau physics result

Summary of Journal/Conference papers in 2022-2023

- Belle: 5 papers [Link]
- Belle II: 3 papers [Link]

	Short Title	Luminosity	Journal	
	Leptophilic search, $ee \to \tau \tau \phi_L$	$626 { m ~fb^{-1}}$	Submitted to PRL arXiv:2207.07476	
	Search for LFV, $\tau \to \ell V_0$	$980 { m ~fb^{-1}}$	JHEP06(2023)118	
Belle	Heavy neutrino search in tau decays	$980 { m ~fb^{-1}}$	Submitted to PRL arXiv:2212.10095	
	Michel parameter measurement in $\tau \to \mu \nu \nu$	$980 { m ~fb^{-1}}$	Phys.Rev.Lett.131,021801	
	Search for τEDM	$833 { m ~fb^{-1}}$	JHEP04(2022)110	
	τ -lepton mass measurement	$190 {\rm ~fb^{-1}}$	Phys.Rev.D108,032006	
Belle II	Search for LFV, $\tau \to \ell \alpha$	62.8 fb^{-1}	Phys.Rev.Lett.130,181803	
	Search for LFV, $\tau \to \ell \phi$	$190 { m ~fb^{-1}}$	Conference Paper (arXiv:2305.04759)	

Belle II experiment

Flavor physics experiment to search for new physics

- Asymmetric e^+e^- collider mainly at $\sqrt{s} = 10.58$ GeV
 - Produce B, D, τ , etc..
- Goal: 50 ab⁻¹ data in ~10 years
 - 50 × Belle data: $N_{B\bar{B}} \sim 50 \times 10^9$

Summary of LFV in tau decay

arXiv.2203.14919

Thrust

• V_{th} is the magnitude of thrust in the event. The thrust axis, \hat{n}_{th} , is defined so that the value V_{th} ,

$$V_{\rm th} = \sum \frac{|\vec{p_i}^{\rm CM} \cdot \hat{n}_{\rm th}|}{\sum \vec{p_i}^{\rm CM}}$$
(4.3)

is maximized. Here, $\vec{p_i}^{\text{CM}}$ is the three-momentum of each particle in the CM frame.

$\tau \rightarrow \ell V^0$: Belle

 V^0 meson reco.

BDT: LightGBM library

Systematic uncertainties

V ⁰ meson	$ ho^0$	ϕ	ω	$K^{*0}(\overline{K}^{*0})$
Decay particles	$\pi^+\pi^-$	K^+K^-	$\pi^+\pi^-\pi^0$	$K^{\pm}\pi^{\mp}$
Mass window [GeV/c²]	0.445 - 1.08	1.00 - 1.04	0.7 - 0.9	0.7 - 1.1

- $M_{V^0}, M_{\nu}^2, P_{\nu}^{\text{c.m.}}, T, P_{\ell}^{\text{sig}}, E_{\text{tag}}^{\text{hemi}}, \cos \theta_{\text{miss-tag}}^{\text{c.m.}}$
- (categorical variables) τ_{tag} decay mode, collision energy
- (additional for the $\ell \omega$ modes) $P_{\pi^0}^{\text{sig}}, E_{\gamma}^{\text{low}},$

Source	$\sigma_{ m syst}$ (%)
Integrated luminosity	1.4
$ee \to \tau \tau(\gamma)$ cross section [48]	0.3
$\mathcal{B}(\phi \to K^+ K^-)$ and $\mathcal{B}(\omega \to \pi^+ \pi^- \pi^0)$	1.2 and 0.7
Trigger efficiency	0.2 – 0.9
Tracking efficiency	$0.35 imes N_{ m track}$
Electron identification efficiency	$1.7 imes N_{ m electron}$
Muon identification efficiency	$1.8 imes N_{ m muon}$
K^\pm and π^\pm identification efficiency	1.6 (ρ^0) , 1.8 (ϕ) and 1.1 $(K^{*0} \text{ and } \overline{K}^{*0})$
π^0 efficiency	$2.2 imes N_{\pi^0}$
Electron veto for hadrons	0.4 – 1.2
MC statistics	0.3 – 0.5
Track energy resolution	0.3 – 1.3
Photon energy resolution	0.0 – 0.4

$au ightarrow \ell V^0$: Belle II

Signal: $\tau \rightarrow \ell \phi (\rightarrow KK)$ • 1.014 < m_{KK} < 1.024 GeV/c²

Bkg: $ee \rightarrow q\bar{q}, \tau \rightarrow 3\pi\nu$

BDT: XGBoost library

- Event-shape
- Kinematic properties of $\tau_{\rm sig}$, ϕ
- Variables related to the ROE

Affected quantity	Sourco	Mode		
Allected qualitity	Source	$e\phi$	$\mu\phi$	
	Particle identification	0.8%	0.3%	
2	Tracking efficiency	0.9%		
$arepsilon_{\ell\phi}$	Trigger efficiency	0.4%	0.9%	
	Signal variable mismodeling	15.2%	8.5%	
$N_{ m exp}$	Momentum scale	0.6%	0.4%	
L	Luminosity	0.6%		
$\sigma_{ au au}$	Tau-pair cross section	0.3%		

Heavy neutrino

Right handed neutrino (eg. Heavy Neutral Lepton, HNL)

- No strong interaction (it is lepton)
- No weak interaction (it is right-handed)
- No electromagnetic interaction (it is neutral)
- → The only way to interact is to mix with left-handed neutrino

q

 ν_{τ}

U_r

 v_{h}

q

27

$$\nu_{\alpha} = \sum_{i} U_{\alpha i} \nu_{i}, \quad \alpha = e, \mu, \tau, ..., i = 1, 2, 3, 4, ...$$

 α : flavor eigenstates, *i*: mass eigenstates

May also contribute to explanation of baryogenesis and DM (ν MSM)

#neutrinos in this method

Particle with a mass m and width Γ has a momentum p, the probability that it travels distance ℓ or greater is

$$P(l) = \exp\left(-\frac{m\Gamma l}{p}\right), \quad \square \quad P(l) = \frac{m\Gamma}{p} \exp\left(-\frac{m\Gamma l}{p}\right) dl.$$

Estimate $c\tau \sim |U|^{-2} m(\nu_h)^{-5}$

The number of neutrinos detected in the Belle detector is

$$\begin{split} n(\nu_h) &= N_0 \int \varepsilon(m,l) dP(l) \\ &= 2N_{\tau\tau} \ \mathcal{B}(\tau \to \pi \nu_h) \ \mathcal{B}(\nu_h \to \pi \ell) \ \frac{m\Gamma}{p} \int \exp\left(-\frac{m\Gamma l}{p}\right) \varepsilon(m,l) dl \\ &= |U_{\tau}|^2 |U_{\ell}|^2 \ 2N_{\tau\tau} \ f_1(m) \ f_2(m) \ \frac{m}{p} \int \exp\left(-\frac{m\Gamma l}{p}\right) \varepsilon(m,l) dl, \\ |U_{\tau}|^2, |U_{\ell}|^2 \text{coupling come from } B(\tau \to \pi \nu_h), B(\nu_h \to \pi \ell) \Gamma \end{split}$$

To factor out the $|U_{\ell}|^2$ dependence, we define functions $f_{1,2}(m)$ as $|U_{\tau}|^2 f_1(m) = B(\tau \to \pi \nu_h)$ and $|U_{\ell}|^2 f_2(m) = \Gamma(\nu_h \to \pi \ell) = \Gamma B(\tau \to \pi \nu_h)$

Relative mixing coefficients are different b.t.w normal and inverted hierarchy $x_{\alpha} = |U_{\alpha}|^2 / |U|^2 \ (\alpha = e, \mu, \tau) \rightarrow x_e = 0.06, x_{\mu} = 0.48, x_{\tau} = 0.46$ from oscillation data 2023/8/21

tion threshold

of cross section

r, Belle and

in the

