Recent tau-lepton results at Belle and Belle II

Kenta Uno (KEK) on behalf of the Belle/Belle II collaboration

EPS-HEP2023 conference 21 August 2023

Unravelling the mysteries of 2023/8/21 matter, life and the universe.

Introduction: τ physics \blacksquare oluction' τ phy $\mathcal{L}(\mathcal{L})=\mathcal{L}(\mathcal{L})$ is the set of $\mathcal{L}(\mathcal{L})=\mathcal{L}(\mathcal{L})$, we can express that

e−(*µ*−)

 λ

- Leptonic and Hadronic decays: > 200 decay channels!
- → Sensitive to new physics^{w-}

Search

- Lepton Flavor Violation. $\tau \to \ell \gamma, \tau \to \ell \ell \ell, \tau \to \ell \ell \ell^+$ $\bar{\nu}_e(\bar{\nu}_\mu)$
	- Observation \rightarrow Clear signs of new physics 2020

Precision measurements of the tau properties

- Lepton Flavor Universality
	- Deviation from the SM \rightarrow Indirect signs of new physics

W[−]

0.511 MeV/

ptons

Belle, Belle II experiments

Belle experiment (1999 - 2010)

- 8 GeV e^- and 3.5 GeV e^+
	- Recorded ~1000 fb-1 data
- Belle II experiment (2018)
- $\overline{7}$ GeV e^- and 4 GeV e^+
	- Recorded 424 fb-1 data

Belle (II) detectors

- Good efficiency of neutral particles (π^0, η)
- Good reconstruction of missing energy
- Specific low-multi triggers at Belle II
	- Eg. single track trigger

<u>This method is used in Belle (II) τ analysis to identify an τ event.</u>

LFV decay: $\tau^{\pm} \rightarrow \ell^{\pm} V^0$

Charged Lepton Flavor Violation

- Forbidden in the SM but possible in several new physics
	- $\tau \rightarrow \ell V^0$: sensitive to leptoquark model Ex[otic decay](https://link.springer.com/article/10.1007/JHEP06(2023)118) \rightarrow High signal detection efficiency is cru

2023/8/21 5 Improved the sensitivities by untagged reconstruction a

Belle: Analysis approach

Signal-side: Reconstruct ℓ and V^0

• V^0 : ρ^0 , ϕ , ω , $K^*(\bar{K}^{*0})$

Tag-side: Require 1, 3-prong τ

Background (eg. $\tau \rightarrow 3\pi \nu$, ee $\rightarrow q\bar{q}$) suppression: BDT!

- Prepare BDT classifier for each ℓV^0 mode
- Training: 11 input variables for $\ell\omega$, 9 input variables for others

Belle: $\tau^{\pm} \rightarrow \ell^{\pm} V^0$ results

No significant excess in all ℓV^0 modes

World leading results

Set ULs at 90% CL by counting approach systematic uncertainty of the expected number of signal events (σ observed number of observed number of observed number of observed number of σ

$$
B(\tau \to eV^0) < (1.7 - 2.4) \times 10^{-8}
$$

$$
B(\tau \to \mu V^0) < (1.7 - 4.3) \times 10^{-8}
$$

re: with the reconstant selection of the event selection criteria and with the 126 fb−1 of additional with the 126 fb−1 of additi The ULs are improved by ~30% from the previous results

efficiency " and " a

Untagged approach

M⌧ [GeV*/*c²]

1*.*00 CL*s Belle II* (Preliminary) 10d. *v* CL*s,*obs CL*s,*exp r the new untagge $\frac{1}{2}$ e successful first application of the new untagged appr 1*.*00 CL*s Belle II* (Preliminary) μ _{al} s₁ CL*s,*obs if this method, we obtain double the final signal eff e successful first app

$\ell^\pm \to \ell^\pm \alpha$ search at Belle II Phys.Rev.Lett.130,181803

- Search for $\tau \to \ell + \alpha$ (invisible)
	- eg. Axion-like particle (ALP)
- Upper Limit from ARGUS¹⁰¹¹
- 476 pb⁻¹ data (1995) $\frac{1}{2}$ $\frac{1}{2}$ iments are the top pp−1 data (1995) and set upper limits on the the term is an and set upper limits on the term is a $\frac{1}{2}$ and $\frac{1}{$

 $\frac{1}{2}$ 10⁹ UL at 95% CL 10^{8} **RG** coolino $\mathcal{B}(\tau^{\pm} \to e^{\pm}\alpha)/\mathcal{B}(\tau^{\pm} \to e^{\pm}\nu\bar{\nu})$ $\langle (0.6-3.4) \times 10^{-2}, \frac{\pi}{8} \rangle$ $B(\tau^{\pm} \to \mu^{\pm} \alpha)/B(\tau^{\pm} \to \mu^{\pm} \nu \bar{\nu})$ *<* $(0.3 - 3.6) \times 10^{-2}$, $\geq 10^{7}$ SN1987A_{er} $2.0 < m_{\alpha} < 1.6$ GeV ϵ ^{10⁶ ϵ} $0.0 < m_{\alpha} < 1.6$ GeV $\frac{3}{2}$ is a $\frac{1}{2}$ if $\frac{1}{2}$ 10^{5} $10⁴$ $10⁶$ $\frac{10^2}{10^2}$ *− 10³* m_a [eV]

Example 1.5 Belle (II) can set more stringent limits on the invisible b

 10

$\tau^{\pm} \rightarrow \ell^{\pm} \alpha$: Analysis approach $E = \frac{E}{\text{Belle } \Pi}$ ²⁶² Analysis approach

- Split event in two hemispheres based on the thrust axis three-body decays, ^τ *[±]* [→] "*±*ν!ν^τ . Therefore, the lepton momentum in the ^τ -rest frame (*p*^τ 264) 264) 264) 264) 264 (264) 264 (264) 264 (264) 264
	- Signal side: 1 lepton track ($l = e, \mu$)
	- Tag side: 3-pion ($\tau \rightarrow 3\pi \nu$ decay)
	- Veto neutrals to suppress hadronic bkg
- Exploit the shape differences
	- Signals: $\tau \rightarrow \ell \alpha$ two-body decays
	- Events / 0.03 Backgrounds: $\tau \rightarrow \ell \nu \nu$ three-body decays $\frac{g}{g}$
- \rightarrow p_{ℓ} , E_{ℓ} in tau rest frame: monochromatic

How to obtain tau direction?

Require $\tau \to a_1(\rightarrow 3\pi)\nu$ in tag side

$$
\Rightarrow \vec{e}_{\tau_{\text{tag}}} \approx \vec{e}_{3\pi} \quad m_{\tau} = 1.78 \text{ GeV}
$$

$$
m_{a_1} = 1.26 \text{ GeV}
$$

Truth p_u in τ (truth)-rest frame [GeV/c]

 \sqrt{P}

 \blacksquare

No cianificant overce a \sim ∫ SIGN⊓ and in 0*.*2%–1*.*5% for the muon channel, depending on e packground predictions.. the background predictions for standard-model processes are shown stacked, with the gray persont the second particles represents the number of particles represents represent to the particles represent structure choose over the background p No significant excess over the background predictions..

Heavy neutrino search in τ Submitted to PRL (arXiv:2212.10095 efficiency \mathcal{L}

Neutrino mass, $m_\nu \neq 0 \Rightarrow$ Need a mechanism to establish it

• One approach is to include right-handed neutrino

 $\pmb{\tau^\pm}\to \pmb{\pi^\pm\nu_h}\,$ $(\pmb{\nu_h}\to \pmb{\pi^\pm\ell^\mp})\, \frac{\nu_h:}{}^{\mathsf{M} \text{ajorana neutrino (long-lived)}}$ $F_{\rm eff}$ are construction effects on the neutrino transformation different mass masses v_h :

Signal-side: Require $\pi \pi \ell$ ($\ell = e, \mu$)

• $v_h \rightarrow \pi^{\pm} \ell^{\mp}$: π and ℓ with a common vertex Tag-side: Require 1, 3-prong τ

Background: $ee \rightarrow q\bar{q}$, $\tau\tau$, $\ell\ell$, $ee\ell\ell$

 \rightarrow Suppress the bkgs by $M(\pi \pi \ell)$, ΔE cuts.

 $\Delta E = (E_{\pi\pi\ell}^{\rm CM} - \sqrt{s}/2)$

Peak search in $m_{\pi\ell}$ distribution

 $\vec{\nu}$

 ℓ

 v_h

 $\tau_{\rm tag}$

 $\tau_{\rm sig}$

Corrections factors

$$
M_{\min} = \sqrt{m_{3\pi}^2 + 2(\sqrt{s} - E_{3\pi})(E_{3\pi} - |\vec{p}_{3\pi}|)}
$$

Beam energy calibration and momentum correction are crucial

- Beam energy is corrected using B-meson hadronic decays
- Momentum scale : extract scale factors for K/π using $D^{*+} \to D^0 (\to K^-\pi^+)\pi^+$
- \cdot \vec{p} due to imperfect \vec{B} , mismodeling in material \rightarrow bias mass extraction

Therefore no additional source of systematic uncertainty is systematic uncertainty in the systematic uncertainty is

wond o mode product modell childrene in_{tell}iviewe j ona s most þrecise med **UICIIICIIL** m_τ [MeV/ c^2] substance matic variables. World's most precise mea World's most precise measurement

Conclusions and outlook

Belle (II) has an excellent sensitivity for τ physics

- LFV decays, $\tau \to \ell \alpha$, ℓV^0 : most stringent BF limit
- World's most precise measurement of τ mass

Statistical uncertainty is still dominant for τ decay searches, eg. LFV

- Now, 424 fb $^{-1}$ at Belle II.
	- Expect more results on larger statistics \rightarrow Stay tuned!

Backup

Recent tau physics result

Summary of Journal/Conference papers in 2022

- Belle: 5 papers [Link]
- Belle II: 3 papers [Link]

Belle II experiment

Flavor physics experiment to search for new physics

- Asymmetric e^+e^- collider mainly at $\sqrt{s} = 10.58$ GeV
	- Produce B, D, τ , etc..
- Goal: 50 ab⁻¹ data in \sim 10 years
	- 50 \times Belle data: $N_{B\bar{B}} \sim 50 \times 10^9$

Summary of I EV in tau de Summary of LFV in tau de $\frac{1}{2}$ at the 90% confidence level. The 90% confidence level.

arXiv.2203.14919

Thrust

• V_{th} is the magnitude of thrust in the event. The thrust axis, \hat{n}_{th} , is defined so that the value V_{th} ,

$$
V_{\rm th} = \sum \frac{|\vec{p}_i^{\rm CM} \cdot \hat{n}_{\rm th}|}{\sum \vec{p}_i^{\rm CM}} \tag{4.3}
$$

is maximized. Here, \vec{p}_i^{CM} is the three-momentum of each particle in the CM frame.

$\tau \rightarrow \ell V^0$: Belle

 V^0 meson reco.

BDT: LightGBM library

Systematic uncertainties

- $M_{V^0}, M_{\nu}^2, P_{\nu}^{\text{c.m.}}, T, P_{\ell}^{\text{sig}}, E_{\text{tag}}^{\text{hemi}}, \cos \theta_{\text{miss-tag}}^{\text{c.m.}}$
- \bullet (categorical variables) τ_{tag} decay mode, collision energy average number of tracks (particles) in the reconstructed \mathcal{L} + \mathcal{L} events for each signal model model
- (additional for the $\ell\omega$ modes) $P_{\pi^0}^{\text{sig}}$, E_{γ}^{low} , the range of the uncertainty of

$\tau \rightarrow \ell V^0$: Belle II

Signal: $\tau \to \ell \phi (\to K K)$ Final: $\tau \to \ell \varphi (\to K\kappa)$
1.014 $< m_{KK} < 1.024$ GeV/c² Bkg: $ee \to q\bar{q}, \tau \to 3\pi\nu$

BDT: XGBoost library

- Event-shape
- Kinematic properties of τ_{sig} , ϕ
- Variables related to the ROE

Heavy neutrino ● There is no right-handed neutrino in the SM thus neutrinos should be strictly massless;

Right handed neutrino (eg. Heavy Neutral Lepton, HNL) Rignt handed neutrino (eg. Heavy Neut [20] K. Hanagaki et al., Nucl. Instr. and Meth. A 485, 490 (2002). Neutral Lepton, HNL) [22] S. Brandt, C. Peyrou, R. Sosnowski, and A. Wroblewski, Phys. Lett. 12, 57 (1964);

- No strong interaction (it is lepton)
- No weak interaction (it is right-handed) \overrightarrow{q}
- No electromagnetic interaction (it is neutral) No electroneces et is interaction (● No electromagnetic interaction (it is neutral). $W_{\mathcal{C}}$ al) see \mathcal{E}
- \rightarrow The only way to interact is to mix with left-handed neutrino: v_r U_r v_h

$$
\nu_{\alpha} = \sum_{i} U_{\alpha i} \nu_{i}, \quad \alpha = e, \mu, \tau, ..., i = 1, 2, 3, 4, ...
$$

α – flavor eigenstates, i – mass eigenstates. α : flavor eigenstates, i: mass eigenstates

May also contribute to explanation of baryogenesis and DM (νMSM)

 $\frac{p}{2}$ q

q'

τ −

τ

²⁹² Appendix A: Derivation of Eq. 3 293 If a particle with a mass m and width Γ has a momentum p, then the probability that it is it is in the probability that it is in method **p** $\frac{1}{2}$ + $\frac{1}{2}$ = $\frac{1}{2}$ p #neutrinos in this method

Particle with a mass *m* and width Γ has a momentum p , the nucleonality that it travels distance *l* ar exactor is 205 the contractive and matrix ride dimension p, and distance ℓ or a reater is probability that it travels distance ℓ or greater is

$$
P(l) = \exp\left(-\frac{m\Gamma l}{p}\right), \qquad dP(l) = \frac{m\Gamma}{p} \exp\left(-\frac{m\Gamma l}{p}\right)dl.
$$
\nEstimate $c\tau \sim |U|^{-2}m(v_h)^{-5}$

The number of neutrinos detected in the Belle detector is

$$
n(\nu_h) = N_0 \int \varepsilon(m, l) dP(l)
$$

= $2N_{\tau\tau} \mathcal{B}(\tau \to \pi\nu_h) \mathcal{B}(\nu_h \to \pi\ell) \frac{m\Gamma}{p} \int \exp\left(-\frac{m\Gamma l}{p}\right) \varepsilon(m, l) dl$
= $|U_{\tau}|^2 |U_{\ell}|^2 2N_{\tau\tau} f_1(m) f_2(m) \frac{m}{p} \int \exp\left(-\frac{m\Gamma l}{p}\right) \varepsilon(m, l) dl,$
 $|U_{\tau}|^2, |U_{\ell}|^2 \text{coupling come from } B(\tau \to \pi\nu_h), B(\nu_h \to \pi\ell)\Gamma$

 $|U_{\tau}|^2$, $|U_{\ell}|^2$ coupling come from $B(\tau \to \pi \nu_h)$, $B(\nu_h \to \pi \ell)$ is the $|U_{\ell}|^2$ dependence, we define functions $f_{1,2}(m)$ as $\frac{1}{\sqrt{2}}$ $\frac{2}{(10 \text{ rad of 100 s})}$ and $\frac{2}{(10 \text{ rad/s})}$ $\frac{1}{2}$ $T^{\sigma}(1)1(1^{n\sigma}) \to (1^{n\sigma}n\sigma)1^{n\sigma}$ 2 coupling contraction branching from the branching fraction $\sum_{i=1}^n U_i$ or $\sum_{i=1}^n U_i$ or $\sum_{i=1}^n U_i$ or $\sum_{i=1}^n U_i$ $U_{\tau}|^{2} f_1(m) = B(\tau \to \pi \nu_h)$ and $|U_{\ell}|^{2} f_2(m) = \Gamma(\nu_h \to \pi \ell) = \Gamma B(\tau \to \pi \nu_h)$

2023/8/21 28 σ_{τ} σ_{1} , σ_{2} , σ_{3} and σ_{ℓ} σ_{1} , σ_{2} $(x, \tau) \rightarrow x_0 = 0.06$, x_0 ι.t.w norn $2023/8/21$ ative mixing coefficients are different b.t.w normal and inverted nierarchy
- W 12 Util2 (x = 2 y =) N x = 0.06 x = 0.40 x = 0.46 from escillation data - $|U_{\alpha}|$ / $|U|$ ($u - e, \mu, U$) / x_e $-$ 0.00, x_{μ} $-$ 0.40, x_{τ} $-$ 0.40 in only oscination data 20 299 coupling to the coupling of the coupling o
299 coupling to the coupling of the coupling o 300 coemes from the partial width Fig. or Fig. + B(v) = B(v) = B(v) = B(v) + Fig. + B(v) + Fig. Relative mixing coefficients are different b.t.w normal and inverted hierarchy $x_\alpha = |U_\alpha|^2/|U|^2$ $(\alpha = e, \mu, \tau) \rightarrow x_e = 0.06, x_\mu = 0.48, x_\tau = 0.46$ from oscillation data

tion threshold of cross section

● vary collision energy around the tau pair production threshold

in the kinematics of the three

