Recent highlights from Belle H

Renu (On the behalf of Belle II collaboration) Supported by DOE funding

Carnegie Nellon University

Beyond the standard model

The SM is the most successful theory that describes elementary particles and interactions. However, there are open questions coming from observations unexplained by the SM.

- No explanation of matter-antimatter asymmetry
- No explanation dark matter or dark energy
- Hints of violation of Lepton Flavor Universality

Physics beyond the SM (New Physics) is likely to exist Precision measurements and high statistics needed to discover New Physics

Digging for New Physics

- Belle II belongs to the Intensity Frontier.
 - predictions.
- Probes New Physics energy scale higher than the one accessed at the Energy Frontier.
- What is needed at the intensity frontier?
 - A larger dataset to minimize statistical uncertainty.
 - Keep systematics under control.

• New Physics is searched for via very high-precision measurements to detect deviations from SM

Belle II detector

- Asymmetric e^+e^- collider
- Collected data
 - ~ 362 fb^{-1} at Y(4S)
 - 42 fb⁻¹ off-resonance, 60 MeV below Y(4S).
 - 19 fb⁻¹ energy scan between 10.6 to 10.8 GeV for exotic hadron studies.

Features:

- Near-hermetic detector
- Excellent vertexing and tracking
- High-efficiency detection of neutrals $(\gamma, \pi^0, \eta, \eta', ...)$
- Good charged particle reconstruction.

Vertex Detector σ vertex $\approx 15 \mu m$

Record-breaking instantaneous luminosity:

Belle II detector performance

Efficiency/ π mis-ID rate Ω

Belle II physics program Diversified physics program

Belle II physics program Diversified physics program

BB basics

► Asymmetric e⁺e⁻ collision:

- Collision energy well defined
- Constrained kinematics \Rightarrow

 $\sqrt{s} = m (\Upsilon(4S)) = 10.58 \ GeV \simeq 2 \ m_B$

• Measurement of Δt (difference between the proper decay times) of the B_{sig} and B_{tag}):

- Boost of center-of-mass
- Excellent vertex performance
- Excellent <u>Flavor tagger</u> performance

A very rich program....

- B mixing & searches for new sources of CPV
- Non-SM probes from radiative & (semi)-leptonic decays
- Tests of LFU, e.g. $\mathscr{R}(X_{e/\mu}),...$
- Measurements of CKM Unitary Triangle (UT) sides & angles for SM precision test

$$V_{\text{CKM}} = \begin{pmatrix} V_{\text{ud}} & V_{\text{us}} & V_{\text{ub}} \\ V_{\text{cd}} & V_{\text{cs}} & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{pmatrix} \xrightarrow{B \to \pi\pi, \rho\rho, \rho\pi} \xrightarrow{(\bar{\rho}, \bar{\eta})} \\ |\frac{V_{ud}}{V_{cd}} \bigvee_{v_{cb}}|^{\alpha = \phi_2} \\ B \to X_u \ell \nu, \pi \ell \nu \xrightarrow{(0, 0)} B^{\pm} \to D^{(*)} K^{(*)\pm} \end{cases}$$

Unitarity of $V_{\text{CKM}} \Rightarrow V_{\text{CKM}}^{\dagger} V_{\text{CKM}} = 1 \Rightarrow V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$

Over constraining the UT is a very powerful test of the SM

$B^0 - \bar{B}^0$ mixing

- New beam scheme means reduced boost:
 - Belle: $\beta \gamma = 0.43, \Delta z \approx 200 \mu m \rightarrow$ **Belle2**: $\beta \gamma = 0.29$, $\Delta z \approx 130 \mu m$
 - added a pixel detector around the beam pipe (radius ≈ 1.4 cm) to recover precision on Δt .
- Measurement of B^0 , lifetime (τ_{B^0}) and flavor oscillation frequency (Δm_d) :
 - Test QCD theory of strong interactions.
 - CKM theory of weak interactions.
 - Crucial for time-dependent CPV analyses.

 $\tau_{B^0} = (1.499 \pm 0.013 \pm 0.018) \ ps$ $\Delta m_d = (0.516 \pm 0.008 \pm 0.005) \ ps^{-1}$

Comparable to previous measurements

Benchmark for time-dependent measurements

PRD 107, L091102

Asymmetry:

$$\mathscr{A} = \frac{N_{B^0\bar{B}^0} - N_{B^0B^0 + \bar{B}^0\bar{B}^0}}{N_{B^0\bar{B}^0} + N_{B^0B^0 + \bar{B}^0\bar{B}^0}}$$

Semi-leptonic B decays

Determination of the CKM elements $|V_{cb}|$ and $|V_{ub}|$

- Semi-leptonic *B* decays are studied to determine the CKM elements $|V_{cb}|$ and $|V_{ub}|$.
 - $|V_{xb}|$ are limiting the global constraining power of UT fits.
- The determination can be: exclusive (single final state) or inclusive (sensitive to all final states).
 - **Experimentally clean Theoretically challenging**
- Experimental Status:
 - Determinations of both $|V_{cb}|$ and $|V_{ub}|$ exhibit a discrepancy at the level of $\sim 3\sigma$ between **exclusive** and **inclusive**.
 - The current experimental **focus** is on understanding the origin of this discrepancy, as this inconsistency limits the power of precision flavour physics.

Semi-leptonic B decays

Determination of the CKM elements $|V_{cb}|$ and $|V_{ub}|$

Many new results measured will be very helpful to examine the long-standing $|V_{xb}|$ puzzle

Mixing phase

- CP-violation occurs with B^0 or \overline{B}^0 decays to CP eigenstate.
- ϕ_1 best-known angle of the UT with ~2.4% precision.

$$\mathscr{A}^{raw}(\Delta t) = \frac{N(\bar{B}^0 \to f_{CP}) - N(B^0 \to f_{CP})}{N(\bar{B}^0 \to f_{CP}) + N(B^0 \to f_{CP})} (\Delta t) = \mathscr{A}_{CP} \cos(\Delta t)$$

Direct CP asymmetry $\mathscr{A}_{CP} \approx 0$ in SM

$$B^0 \to J/\psi K_S^0$$

- Experimentally clean.
- High branching fraction, low background.
- Flavor tagger effective efficiency:

 $\epsilon_{eff} = \epsilon (1 - 2w) = (30.0 \pm 1.2 \pm 0.4)\%$

 $\mathscr{A}_{CP} = 0.094 \pm 0.044^{+0.042}_{-0.017}$ w.a $\mathscr{A}_{CP} = 0.000 \pm 0.020$ $\mathcal{S}_{CP} = 0.72 \pm 0.062 \pm 0.016$ w.a $\mathcal{S}_{CP} = 0.695 \pm 0.019$

ϕ_1^{eff} (β^{eff}) from suppressed penguins

- ▶ Gluonic penguin ($b \rightarrow sq\bar{q}$) decays are suppressed in SM, BR ~ 10⁻⁵-10⁻⁶.
 - ▶ New Physics expected to have larger impact in these decays.
 - Check if \mathscr{A}_{CP} and \mathscr{S}_{CP} deviate from SM expectation in modes with clean theory prediction.
 - Important comparison of $sin2\phi_1$ with the reference favored channels to probe new amplitudes in loops.

Experimentally challenging:

- Fully hadronic states with neutrals (Unique to Belle II)
 - challenging B vertex reconstruction
- Low purity \Rightarrow dedicated continuum suppression.

Consistent with previous determinations despite of small dataset.

(γ)

- Appears in $b \to c$ and $b \to u$ tree decay interference. • $\frac{\mathscr{A}_{\text{supp}}(B^- \to \bar{D}^0 K^-)}{\mathscr{A}_{\text{fav}}(B^- \to D^0 K^-)} = r_B e^{i(\delta_B - \phi_3)} \Rightarrow \phi_3$
- Current world average precision $\Delta \phi_3 \sim 3.5^\circ$

- Multiple approaches: according to D final state:
 - Self-conjugate final states (BPGGSZ): $D^0 \rightarrow K_S h^+ h^-$
 - Singly cabibbo suppressed (GLS): $D^0 \to K_S K^{\pm} \pi^{\mp}$
 - CP eigenstates (GLW): $D^0 \rightarrow K^+ K^-$, $K_S^0 \pi^0$

 $B^+ \rightarrow D^0(K_{\rm S}h^+h^-)h^+$ BPGGSZ method

- Combined 711/fb of **Belle** and 128/fb of **Belle II** dataset.

 $\phi_3 = (78.4 \pm 11.4 \pm 0.5)^{\circ}$ Improved compared to previous Belle analysis

- Combined 711/fb of **Belle** and 189/fb of **Belle II** data
- $B^{\pm} \to DK^{\pm}$ with $D \to K^+K^-$ (CP-even) or $D \to K^0\pi^0$ (CP-odd)
- Interference between CP eigenstates:

•
$$\mathscr{R}_{CP_{\pm}} = 1 + r_B^2 \pm 2 r_B \cos\delta_B \cos\phi_3$$

• $\mathscr{A}_{CP_{\pm}} = \pm 2 r_B \sin\delta_B \sin\phi_3 / \mathscr{R}_{CP_{\pm}}$

$B^{\pm} \rightarrow Dh^{\pm}$ GLS method

- Combined 711/fb of **Belle** and 362/fb of **Belle II** data
- Cabibbo suppressed decay: $B^{\pm} \rightarrow DK^{\pm}, D\pi^{\pm}, D \rightarrow K^0 K^{\pm} \pi^{\mp}$

$$egin{aligned} &A_{
m SS}^{DK} = -0.089 \pm 0.091 \pm 0.011, \ &A_{
m OS}^{DK} = 0.109 \pm 0.133 \pm 0.013, \ &A_{
m SS}^{D\pi} = 0.018 \pm 0.026 \pm 0.009, \ &A_{
m OS}^{D\pi} = -0.028 \pm 0.031 \pm 0.009, \end{aligned}$$

 $R_{\rm SS}^{DK/D\pi} = 0.122 \pm 0.012 \pm 0.004,$ $R_{OS}^{DK/D\pi} = 0.093 \pm 0.013 \pm 0.003,$ $R_{\rm SS/OS}^{D\pi} = 1.428 \pm 0.057 \pm 0.002,$

Results are consistent with LHCb results.

$\phi_2(\alpha)$

- ϕ_2 is least known angle in UT with 4° precision.
- $B \rightarrow \pi \pi / \rho \rho = [b \rightarrow u \bar{u} d] + [d \text{ or } u]$
- $b \rightarrow u\bar{u}d$: Tree and Penguin processes interfere.
- Need to eliminate the contribution of the penguin process → Isospin analysis

$$A^{+0} = A^{+-} / \sqrt{2} + A^{00},$$

$$\bar{A}^{-0} = \bar{A}^{+-} / \sqrt{2} + \bar{A}^{00}$$

$$\mathcal{B}$$

The measured results are in good agreement with world averages

Penguin (new-physics sensitive)

	$B^+ \to \rho^+ \rho^0$	$B^0 \rightarrow \rho^+ \rho^-$	$B^0 \rightarrow \pi^0 \pi^0$	$B^+ \rightarrow j$	
(10^{-6})	$23.2 \pm 2.2 \pm 2.7$	$26.7 \pm 2.8 \pm 2.8$	$1.38 \pm 0.27 \pm 0.22$	6.12 ± 0.53	
p(%)	$-6.9 \pm 6.8 \pm 6.0$		$14 \pm 46 \pm 7$	-8.5 ± 8.5	
	WA				
(10^{-6})	24.0 ± 1.9	27.7 ± 1.9	1.59 ± 0.26	5.5 ± 0	
p(%)	-5.0 ± 5.0		33 ± 22	3.0 ± 4	

17

Direct CP violation: $B \rightarrow K\pi$

 $\bullet \text{ Isospin sum rule: } I_{K\pi} = \mathscr{A}^{K^{+}\pi^{-}} + \mathscr{A}^{K^{0}\pi^{+}} \frac{\mathscr{B}_{K^{0}\pi^{+}}}{\mathscr{B}_{K^{+}\pi^{-}}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathscr{A}^{K^{+}\pi^{0}} \frac{\mathscr{B}_{K^{+}\pi^{0}}}{\mathscr{B}_{K^{+}\pi^{-}}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathscr{A}^{K^{0}\pi^{0}} \frac{\mathscr{B}_{K^{0}\pi^{0}}}{\mathscr{B}_{K^{+}\pi^{-}}} \frac{\mathscr{B}_{K^{0}\pi^{0}}}{\mathscr{B}_{K^{+}\pi^{-}}} \frac{\varepsilon_{B^{0}}}{\tau_{B^{+}}} - 2\mathscr{A}^{K^{0}\pi^{0}} \frac{\mathscr{B}_{K^{0}\pi^{0}}}{\mathscr{B}_{K^{+}\pi^{-}}} \frac{\varepsilon_{B^{0}}}{\tau_{B^{+}}} - 2\mathscr{A}^{K^{0}\pi^{0}} \frac{\varepsilon_{B^{0}}}{\mathscr{B}_{K^{+}\pi^{-}}} \frac{\varepsilon_{B^{0}}}{\tau_{B^{+}}} - 2\mathscr{A}^{K^{0}\pi^{0}} \frac{\varepsilon_{B^{0}}}{\varepsilon_{B^{+}\pi^{-}}} \frac{\varepsilon_{B^$

- Exactly zero with isospin symmetry and no EW penguins.
- Theoretical precision $\mathcal{O}(1\%)$, experimental precision $\mathcal{O}(10\%)$, driven by $\mathscr{A}^{K^0\pi^0}$.

Measured all final states: $B^0 \to K^+\pi^-$, $B^+ \to K^0_S\pi^+$, $B^+ \to K^+\pi^-$

	$B^+ \to K^0_S \pi^+$	$B^+ \to K^+ \pi^0$	
$\mathscr{B} \times 10^{-6}$	$24.4 \pm 0.71 \pm 0.86$	$13.93 \pm 0.38 \pm 0.84$	20
$\mathscr{A}(\%)$	$4.6 \pm 2.9 \pm 0.7$	$1.3 \pm 2.7 \pm 0.5$	

 \mathscr{B} and \mathscr{A}_{CP} results in agreements with world averages and competitive with world best

$$E^{0}, B^{0} \to K_{S}^{0}\pi^{0}$$

 $B^{0} \to K^{+}\pi^{-}$
 $0.67 \pm 0.37 \pm 0.62$
 $-7.2 \pm 1.9 \pm 0.7$

 $B^0 \to K^0_{\rm S} \pi^0$

- Independent decay-time integrated analysis.
- Combine with time-dependent analysis.

 $\mathscr{B} = (10.50 \pm 0.62 \pm 0.69) \times 10^{-6}$ $\mathscr{A}_{CP} = -0.01 \pm 0.12 \pm 0.05$

18

Charm-physics

Charm physics

A brief picture

- $e^+e^- \rightarrow$ two charm hadrons + fragmentation
- Main ingredient of CPV/mixing measurement is flavor tagging:
 - exclusive reconstruction of strong decay $D^{*+} \rightarrow D^0 \pi^+$.
 - inclusive charm mesons & baryons samples to study. (semi-)leptonic decays (missing energy), or to invisible final states.

Charm lifetime

- Lifetime measurements:
 - test non-perturbative QCD and provide guidance to describe strong interactions.
 - HQE used to determine heavy-quark hadron lifetime as expansion in $1/m_a$.
 - charm mass is not so heavy \Rightarrow the spectator quark contribution can't be neglected.
- Hierarchy of hadron lifetimes:

PRL, 121, 092003 (2018)

Hierarchy changed by LHCb Ω_c results

LHCb $\tau(\Xi_c^+) > \tau(\Lambda_c^+) > \tau(\Xi_c^0) > \tau(\Omega_c^0)$

 D^0, D^+, D_s^+ , and Λ_c lifetime measurement \Rightarrow world best

Belle II confirmed the new picture

Interest in improving the precision on these SM measurements

Results

 $(\Lambda_c, D^0, D^+, \text{ and } D_s^+)$ and with LHCb value (Ω_c) .

- New lifetime hierarchy by LHCb :

 $\tau(\Xi_c^+) > \tau(\Omega_c^0) > \tau(\Lambda_c^+) > \tau(\Xi_c^0)$ Confirmed by Belle II

τ physics

- High production rate of $e^+e^- \rightarrow \tau^+\tau^-$ events allow:
 - High-precision measurements of τ properties (mass, lifetime, ...)
 - Search for LFV decays.

Precise measurement of τ mass

- τ mass uncertainty enters in precision test of LFU, predictions of τ branching fractions and α_s measurement at τ -mass scale.
- Analysis performed on $e^+e^- \rightarrow \tau^+\tau^-$ events with $\tau^+ \rightarrow \pi^+\pi^-\pi^+\nu$ decays.

•
$$M_{\min} = \sqrt{M_{3\pi}^2 + 2\left(\sqrt{s/2} - E_{3\pi}^*\right)\left(E_{3\pi}^* - p_{3\pi}^*\right)} \le$$

- τ mass is extracted from threshold of this distribution measured using empirical function fit.
- Knowledge of beam energy and its resolution is crucial.

World best τ mass measurement

t physics

Search for $\tau \rightarrow \ell \alpha$ (invisible)

- Search for invisible boson with τ coupling.
- $\bullet \ \tau \to \ell^{\pm} \alpha, \qquad \ell = e, \mu,$ $\alpha = invisible$
- No significant excess found.
- Set upper limit at 95% CL on $\frac{\mathscr{B}(\tau^- \to \ell^- \alpha)}{\mathscr{B}(\tau^- \to \ell^- \nu \bar{\nu})}$

 $m_{\alpha} \in (0 - 1.6) \text{ GeV/c}^2$

Most stringent limits in these channels to date

Search for $\tau\tau$ resonance in $e^+e^- \rightarrow \mu^+\mu^-\tau^+\tau^-$

- Selects τ decays via $\tau^- \to \ell^- \nu \nu$ or $\tau^- \to \pi^- \nu n \pi^0$
- Muons used to compute recoil mass that peaks for signal.
- No significant excess found.
- Set upper limit at 90% CL on $\sigma(e^+e^- \to \mu^+\mu^- X) \times \mathscr{B}(X \to \tau^+\tau^-)$

PRL 130, 181803

$$(9.7) \times 10^{-10}$$

24

Dark sector

- Dark matter is likely to exist.
- Dark sectors solve expt./pheno. puzzles (e.g. strong CP).
- Belle II enjoys sensitivity in the light part of the spectrum (MeV-GeV masses).
- A main challenges is to suppress the large SM background.
 - •Need dedicated low-multiplicity triggers.

Search for $Z' \rightarrow$ invisible

- $L_{\mu} L_{\tau}$ gauge boson Z' couples 2nd and 3rd generation leptons.
 - could explain $(g 2)_{\mu}$ and other flavor anomalies.
- Search performed by $e^+e^- \rightarrow \mu^+\mu^-$ + missing energy.
 - Z' searched in the recoil mass of the di-muon system.
 - high-suppression of SM backgrounds.

No excess was found and set 90% CL limits Most stringent limits to date

invisible h' + A'

• Dark sector Higgs h' can give mass to dark photon A' through usual SSB mechanism. • No mixing of h' with SM Higgs.

25

Quarkonium

- In 2021, collected data at four different E_{CM} to investigate uncharted regions of $b\bar{b}$ exotic states.
- Expand on earlier studies from Belle.

Search for the $e^+e^- \rightarrow \eta_b(1S)\omega$ and $e^+e^- \rightarrow \chi_{b0}(1P)\omega$ decays

See Sen Jia's talk

Observation of $Y(10753) \rightarrow \omega \chi_{b1,2}(1P)$

PRL130 091902 (2023)

Measurement of cross-section, peaks at Y(10753)

First observation of $\omega \chi_{b1,2}(1P)$ signal at s = 10.745 GeV

Summary

- Collected data sample equivalent to that of BABAR or half of Belle.
- Belle II physics program is very broad.
 - B, charm, τ , dark sector, quarkonium ... physics.
- First results confirm the very good detector performance and status of our tools:
 - Precise measurement of τ mass: $m_{\tau} = 1777.0 \pm 0.08 \pm 0.11 \text{ MeV/c}^2$
 - Most precise charm lifetime measurement till date.
 - Most stringent limits on dark matter searches.
- Ready for the New Physics search!
- Will resume data-taking in early 2024.

Stay tuned for more exciting results!

Backup

Luminosity

Status

- First data recorded in April 2019.
- Collected data
 - ~ 362 fb^{-1} at Y(4S).
 - 42 fb⁻¹ off-resonance, 60 MeV below Y(4S).
 - 19 fb⁻¹ energy scan between 10.6 to 10.8 GeV for exotic hadron studies.
- Record-breaking instantaneous luminosity:

 $4.7 \times 10^{34} cm^{-2} s^{-1}$ (last: LHC $2.14 \times 10^{34} cm^{-2} s^{-1}$).

Ramping up toward the target luminosity.

... and roadmap to 50ab⁻¹

- ► Long Shutdown 1 (LS1).
 - ongoing, ends in late 2023.
 - maintenance/upgrade of machine & sub-detectors.
- ▶ Long Shutdown 2 (LS2).
 - to be confirmed (2026 2027).
 - upgrade of the SuperKEKB Interaction Region.

Previous B-factories luminosity

L (fb-1)	Belle	F
Y(5S)	121	
Y(4S)	711	
Y(3S)	3	
Y(2S)	25	
Y(1S)	6	
Off-reso	100	

Untagged $B^0 \to \pi^- \ell \nu$ arXiv:2210.04224

Large background suppressed using BDTs.

 $M_{\rm bc} = \sqrt{E_{\rm beam}^2 - |\vec{p}_{\rm B}|^2}$ $\Delta E = E_{\rm B} - E_{\rm beam},$

Binned fit of ΔE and $M_{\rm bc}$ in six q^2 bins.

Tagged $B \rightarrow \pi e \nu$ arXiv:2206.08102

$$M_{\rm miss}^2 = p_{e^+e^-} - p_{B_{\rm tag}} - p_{\pi} - p_e$$

• Binned fit of M_{miss}^2 in three q^2 bins.

• Combined fit to BCL expansion and form factor LQCD constraints.

$|V_{\mu b}| = (3.55 \pm 0.12 \pm 0.13 \pm 0.17) \times 10^{-3}$

 $|V_{ub}| = (3.88 \pm 0.45) \times 10^{-3}$

V_{cb} : exclusive

Untagged $B \rightarrow D\ell\nu$

arXiv:2210.13143

• Large background from $B \rightarrow D^* \ell \nu$

•
$$cos\theta_{BY} = \frac{2E_B E_Y - m_B^2 - m_Y^2}{2p_B p_Y}, Y = D\ell$$

- Binned fit of $cos\theta_{BY}$ in ten w bins.
- Combined fit to BGL expansion and form factor LQCD constraints.

Tagged $B \to D^* \ell \nu$ arXiv:2301.04716

- Binned fit of M_{miss}^2 in ten w bins.
- Fit CLN parameterized form factor to differential decay rates.

 $|V_{cb}| = (37.9 \pm 2.7_{tot}) \times 10^{-3}$

- $B^+ \rightarrow D^0(K_S h^+ h^-)h^+$ BPGGSZ method
- Fit plots of Belle data

• $\delta \phi_3$ (50 ab⁻¹) = 3° using GGSZ method

