Renu (On the behalf of Belle II collaboration) Supported by DOE funding

Carnegie Mellon University

Recent highlights from Belle II

1

Beyond the standard model

The SM is the most successful theory that describes elementary particles and interactions. However, there are open questions coming from observations unexplained by the SM.

- ‣ No explanation of matter-antimatter asymmetry
- No explanation dark matter or dark energy
- ‣ Hints of violation of Lepton Flavor Universality

‣ ……..

Physics beyond the SM (New Physics) is likely to exist Precision measurements and high statistics needed to discover New Physics

‣ New Physics is searched for via **very high-precision measurements** to detect deviations from SM

- ‣ Belle II belongs to the Intensity Frontier.
	- predictions.
- Probes New Physics energy scale higher than the one accessed at the Energy Frontier.
- ‣ What is needed at the intensity frontier?
	- ‣ A larger dataset to minimize statistical uncertainty.
	- ‣ Keep systematics under control.

Digging for New Physics

Belle II detector

- ‣ Asymmetric collider *e*+*e*[−]
- **‣ Collected data**
	- $-$ ~ 362 fb⁻¹ at Y(4S)
	- 42 fb-1 off-resonance, 60 MeV below Y(4S).
	- 19 fb-1 energy scan between 10.6 to 10.8 GeV for exotic hadron studies.

- ‣ Near-hermetic detector
- ‣ Excellent vertexing and tracking
- ‣ High-efficiency detection of neutrals $(\gamma, \pi^0, \eta, \eta^{\prime}, \ldots)$
- ‣ Good charged particle reconstruction.

Record-breaking instantaneous luminosity:

Features:

Belle II detector performance

Factor 2 improvement in proper time resolution despite lower boost

4

Efficiency/ π mis-ID rate $\mathbf{\underline{\underline{\mathsf{O}}}}$

Belle II physics program *Showmass White Paper*

Belle II physics program Diversified physics program

‣ **Asymmetric e+e- collision:**

- Collision energy well defined
- Constrained kinematics ⇒

 \sqrt{s} = *m* ($\Upsilon(4S)$) = 10.58 *GeV* \simeq 2 *m*_B

 \blacktriangleright Measurement of Δt (difference between the proper decay times of the B_{sig} and B_{tag}):

- ▶ Boost of center-of-mass
- ‣ Excellent vertex performance
- Excellent [Flavor tagger](https://link.springer.com/content/pdf/10.1140/epjc/s10052-022-10180-9) performance

B **basics** *B* ¯

- ‣ B mixing & searches for new sources of CPV
- ‣ Non-SM probes from radiative & (semi)-leptonic decays
- \rightarrow Tests of LFU, e.g. $\mathcal{R}(X_{e/\mu})$,..
- ‣ Measurements of CKM Unitary Triangle (UT) sides & angles for SM precision test

A very rich program…..

$$
V_{\text{CKM}} = \begin{pmatrix} V_{\text{ud}} & V_{\text{us}} & V_{\text{ub}} \\ V_{\text{cd}} & V_{\text{cs}} & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{pmatrix} \xrightarrow{B \to \pi\pi, \rho\rho, \rho\pi} \begin{matrix} (\bar{\rho}, \bar{\eta}) \\ \frac{V_{ud} V_{ub}^*}{V_{cd} V_{cb}} \end{matrix}
$$

$$
B \to X_u \ell \nu, \pi\ell \nu \xrightarrow{(0,0)}
$$

$$
B^{\pm} \to D^{(*)} K^{(*) \pm}
$$

Unitarity of $V_{CKM} \Rightarrow V_{CKM}^{\dagger} V_{CKM} = 1 \Rightarrow V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^*$

Over constraining the UT is a very powerful test of the SM

$B^0 - \bar{B}^0$ mixing ¯0

Comparable to previous measurements

- ‣ New beam scheme means reduced boost:
	- \triangleright **Belle**: $\beta \gamma = 0.43$, $\Delta z \approx 200 \mu m \rightarrow$ **Belle2**: $\beta\gamma = 0.29$, $\Delta z \approx 130 \mu m$
	- added a pixel detector around the beam pipe (radius ≈ 1.4 cm) to recover precision on Δt .
- Measurement of B^0 , lifetime (τ_{B^0}) and flavor oscillation frequency (Δm_d) :
	- Test QCD theory of strong interactions.
	- ‣ CKM theory of weak interactions.
	- ‣ Crucial for time-dependent CPV analyses.

 $\tau_{B0} = (1.499 \pm 0.013 \pm 0.018) \text{ ps}$ $\Delta m_d = (0.516 \pm 0.008 \pm 0.005) \text{ ps}^{-1}$

Benchmark for time-dependent measurements

[PRD 107, L091102](https://journals.aps.org/prd/pdf/10.1103/PhysRevD.107.L091102)

$$
\mathcal{A} = \frac{N_{B^0\bar{B}^0} - N_{B^0B^0 + \bar{B}^0\bar{B}^0}}{N_{B^0\bar{B}^0} + N_{B^0B^0 + \bar{B}^0\bar{B}^0}}
$$

Asymmetry:

- Semi-leptonic *B* decays are studied to determine the CKM elements $|V_{cb}|$ and $|V_{ub}|$.
	- $|V_{xb}|$ are limiting the global constraining power of UT fits. $|V_{xb}|$
- The determination can be: **exclusive** (single final state) or **inclusive** (sensitive to all final states).
	- **Experimentally clean Theoretically challenging**
- **• Experimental Status:**
	- Determinations of both $|V_{cb}|$ and $|V_{ub}|$ exhibit a discrepancy at the level of \sim 3 σ between exclusive and inclusive. $|V_{cb}|$ and $|V_{ub}|$
	- The current experimental **focus** is on understanding the origin of this discrepancy, as this inconsistency limits the power of precision flavour physics.

Semi-leptonic *B* **decays**

Determination of the CKM elements $|V_{cb}|$ and $|V_{ub}|$

Semi-leptonic *B* **decays**

Determination of the CKM elements $|V_{cb}|$ **and** $|V_{ub}|$

Many new results measured will be very helpful to examine the long-standing $|V_{xb}|$ **puzzle**

- Experimentally clean.
- ‣ High branching fraction, low background.
- ‣ Flavor tagger effective efficiency:

 ϵ_{eff} = ϵ (1 – 2*w*) = (30.0 ± 1.2 ± 0.4) %

 $_{CP} = 0.094 \pm 0.044^{+0.042}_{-0.017}$ w.a $\mathcal{A}_{CP} = 0.000 \pm 0.020$ $_{CP} = 0.72 \pm 0.062 \pm 0.016$ w.a $S_{CP} = 0.695 \pm 0.019$

Direct CP asymmetry $\mathcal{A}_{CP} \approx 0$ in SM

$$
\mathcal{A}^{raw}(\Delta t) = \frac{N(\bar{B}^0 \to f_{CP}) - N(B^0 \to f_{CP})}{N(\bar{B}^0 \to f_{CP}) + N(B^0 \to f_{CP})}(\Delta t) = \mathcal{A}_{CP} \cos(\Delta t)
$$

*ϕ*¹ (*β*) **Mixing phase**

- \triangleright CP-violation occurs with B^0 or \bar{B}^0 decays to CP eigenstate.
- ϕ_1 best-known angle of the UT with ~2.4% precision.

$$
B^0 \to J/\psi K_S^0
$$

ϕ_1^{eff} (β^{eff}) from suppressed penguins

- ▶ **Gluonic penguin** $(b \rightarrow sq\bar{q})$ decays are suppressed in SM, BR ~ 10⁻⁵-10⁻⁶.
	- New Physics expected to have larger impact in these decays.
	- \triangleright Check if \mathcal{A}_{CP} and \mathcal{S}_{CP} deviate from SM expectation in modes with clean theory prediction.
	- **Example 1** Important comparison of $sin2\phi_1$ with the reference favored channels to probe new amplitudes in loops.

 $\mathscr{A}_{\text{penguin}} \approx 0 \text{ (SM)} + \Delta A \text{ (NP)}$

‣ Experimentally challenging:

- ‣ Fully hadronic states with neutrals (Unique to Belle II)
	- ‣ challenging *B* vertex reconstruction
- \blacktriangleright Low purity \Rightarrow dedicated continuum suppression.

Consistent with previous determinations despite of small dataset.

*ϕ*³ (*γ*)

Improved compared to previous Belle analysis $\phi_3 = (78.4 \pm 11.4 \pm 0.5)$ °

- •Combined 711/fb of **Belle** and 128/fb of **Belle II** dataset.
- -
-

- **Multiple approaches**: according to D final state:
	- **Self-conjugate final states (BPGGSZ):** *D*⁰ → *KSh*⁺*h*[−]
	- Singly cabibbo suppressed (GLS): $D^0 \to K_S K^{\pm} \pi^{\mp}$
	- **CP** eigenstates (GLW): $D^0 \rightarrow K^+K^-, K_S^0\pi^0$

 $B^+ \to D^0(K_S h^+ h^-)h^+$ BPGGSZ method

- Appears in $b \rightarrow c$ and $b \rightarrow u$ tree decay interference. • $\supp(B^{-}\to \bar{D}^{0}K^{-})$ fav(*B*[−] → *D*0*K*−) $= r_B e^{i(\delta_B - \phi_3)} \Rightarrow \phi_3$
- Current world average precision Δ*ϕ*³ ∼ 3.5[∘]

- Combined 711/fb of **Belle** and 189/fb of **Belle II** data
- $B^{\pm} \to DK^{\pm}$ with $D \to K^+K^-$ (CP-even) or $D \to K^0\pi^0$ (CP-odd)
- Interference between CP eigenstates:

- •Combined 711/fb of **Belle** and 362/fb of **Belle II** data
- •Cabibbo suppressed decay: $B^{\pm} \to DK^{\pm}$, $D\pi^{\pm}$, $D \to K^{0}K^{\pm}\pi^{\mp}$

$$
\mathcal{R}_{CP+} = 1.164 \pm 0.081 \pm 0.036, \sum_{\text{compare to W.A.}} \text{Range } R_{CP+} \n\mathcal{R}_{CP-} = 1.151 \pm 0.074 \pm 0.019, \sum_{\text{(~2.2 } \sigma)} \text{compare to W.A.} \n\mathcal{A}_{CP+} = (+12.5 \pm 5.8 \pm 1.4)\%, \sum_{\text{in agreement}} \text{in agreement} \n\mathcal{A}_{CP-} = (-16.7 \pm 5.7 \pm 0.6)\%.
$$

$B^{\pm} \rightarrow Dh^{\pm}$ **GLS** method

$$
\bullet \mathcal{R}_{CP_{\pm}} = 1 + r_B^2 \pm 2 r_B \cos \delta_B \cos \phi_3
$$

$$
\bullet \mathcal{A}_{CP_{\pm}} = \pm 2 r_B \sin \delta_B \sin \phi_3 / \mathcal{R}_{CP_{\pm}}
$$

$$
A_{SS}^{DK} = -0.089 \pm 0.091 \pm 0.011,
$$

\n
$$
A_{OS}^{DK} = 0.109 \pm 0.133 \pm 0.013,
$$

\n
$$
A_{SS}^{D\pi} = 0.018 \pm 0.026 \pm 0.009,
$$

\n
$$
A_{OS}^{D\pi} = -0.028 \pm 0.031 \pm 0.009,
$$

\n
$$
R_{SS/OS}^{D\pi} =
$$

\n
$$
B_{SS/OS}^{D\pi} =
$$

 $= 0.122 \pm 0.012 \pm 0.004,$ $= 0.093 \pm 0.013 \pm 0.003,$ $= 1.428 \pm 0.057 \pm 0.002,$

Results are consistent with LHCb results.

*ϕ*² (*α*)

- ϕ_2 is least known angle in UT with 4° precision.
- $B \to \pi\pi/\rho\rho = [b \to u\bar{u}d] + [d \text{ or } u]$
- $b \rightarrow u\bar{u}d$: Tree and Penguin processes interfere.
- Need to eliminate the contribution of the penguin process → **Isospin analysis**

$$
A^{+0} = A^{+-}/\sqrt{2} + A^{00},
$$

$$
A^{-0} = \overline{A}^{+-}/\sqrt{2} + \overline{A}^{00}
$$

The measured results are in good agreement with world averages $\frac{1}{17}$

Penguin (new-physics sensitive)

Direct CP violation: $B \to K\pi$

Sospin sum rule: $I_{K\pi} = \mathscr{A}^{K^+\pi^-} + \mathscr{A}^{K^0}$ *^π*⁺ ℬ*K*0*π*⁺ $\mathscr{B}_{K^+\pi^-}$ *τB*0 *τB*⁺ $-2\mathscr{A}^{K^{+}\pi^{0}}\frac{\mathscr{B}_{K^{+}\pi^{0}}}{\mathscr{B}_{K^{+}\pi^{0}}}$

- Exactly zero with isospin symmetry and no EW penguins.
- Theoretical precision $\mathcal{O}(1\%)$, experimental precision $\mathcal{O}(10\%)$, driven by $\mathscr{A}^{K^0\pi^0}$.

Measured all final states: $B^0 \to K^+\pi^-, B^+ \to K^0_S\pi^+, B^+ \to K^+\pi^0$

$\mathscr B$ and $\mathscr A_{CP}$ results in agreements with world averages and competitive with world best

- Independent decay-time integrated analysis.
- ‣ Combine with time-dependent analysis.

 $\mathcal{B} = (10.50 \pm 0.62 \pm 0.69) \times 10^{-6}$ $\mathcal{A}_{CP} = -0.01 \pm 0.12 \pm 0.05$

$$
\frac{\mathscr{B}_{K^+\pi^0}}{\mathscr{B}_{K^+\pi^-}} \frac{\tau_{B^0}}{\tau_{B^+}} = 2\mathscr{A}^{K^0\pi^0} \frac{\mathscr{B}_{K^0\pi^0}}{\mathscr{B}_{K^+\pi^-}}
$$

$$
F^0, B^0 \to K_S^0 \pi^0
$$

$$
B^0 \to K^+ \pi^-
$$

0.67 ± 0.37 ± 0.62

$$
-7.2 \pm 1.9 \pm 0.7
$$

 $B^0 \rightarrow K_S^0 \pi^0$

18

Charm-physics

A brief picture

- ‣ **Lifetime measurements**:
	- test non-perturbative QCD and provide guidance to describe strong interactions.
	- \rightarrow HQE used to determine heavy-quark hadron lifetime as expansion in $1/m_q$.
	- A charm mass is not so heavy \Rightarrow the spectator quark contribution can't be neglected.

 $\tau(\Xi_c^+) > \tau(\Lambda_c^+) > \tau(\Xi_c^0) > \tau(\Omega_c^0)$

Hierarchy of hadron lifetimes:

Charm physics

- $e^+e^- \rightarrow$ two charm hadrons $+$ **fragmentation**
- Main ingredient of CPV/mixing measurement is flavor tagging:
	- exclusive reconstruction of strong decay $D^{*+} \to D^0 \pi^+$.
	- inclusive charm mesons & baryons samples to study. (semi-)leptonic decays (missing energy), or to invisible final states.

Hierarchy changed by LHCb $Ω_c$ **results**

Belle II confirmed the new picture

 D^0, D^+, D_s^+ , and Λ_c lifetime $measurement \Rightarrow world best$

Charm lifetime

Interest in improving the precision on these SM measurements

PRL, 121, 092003 (2018) LHCb

Results

Confirmed by Belle II

-
- **• New lifetime hierarchy by LHCb :**

 $\tau(\Xi_c^+) > \tau(\Omega_c^0) > \tau(\Lambda_c^+) > \tau(\Xi_c^0)$

τ **physics**

- High production rate of $e^+e^- \to \tau^+\tau^-$ events allow:
	- High-precision measurements of τ properties (mass, lifetime, ...)
	- Search for LFV decays.

World best *τ* **mass measurement**

- τ mass uncertainty enters in precision test of LFU, predictions of τ branching fractions and α_s measurement at τ -mass scale.
- Analysis performed on $e^+e^- \to \tau^+\tau^-$ events with $\tau^+ \to \pi^+\pi^-\pi^+\nu$ decays.

- τ mass is extracted from threshold of this distribution measured using empirical function fit.
- Knowledge of beam energy and its resolution is crucial.

•
$$
M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*) (E_{3\pi}^* - p_{3\pi}^*)} \le
$$

Precise measurement of *τ* **mass**

24

τ **physics**

Search for $\tau \to \ell \alpha$ (invisible)

- Search for invisible boson with τ coupling.
- $\rightarrow \ell^{\pm} \alpha$, $\ell = e, \mu$, $\alpha = \text{invisible}$
- ‣ No significant excess found.
- ‣ Set upper limit at 95% CL on

Most stringent limits in these channels to date

Search for $\tau\tau$ resonance in $e^+e^- \rightarrow \mu^+\mu^-\tau^+\tau^-$

- Selects τ decays via $\tau^- \to \ell^- \nu \nu$ or $\tau^- \to \pi^- \nu n \pi^0$
- ‣ Muons used to compute recoil mass that peaks for signal.
- No significant excess found.
- ‣ Set upper limit at 90% CL on $\sigma(e^+e^- \rightarrow \mu^+\mu^-X) \times \mathcal{B}(X \rightarrow \tau^+\tau^-)$

[PRL 130, 181803](https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.130.181803)

$$
9.7) \times 10^{-7}
$$

 $m_{\alpha} \in (0 - 1.6) \text{ GeV}/c^2$

arXiv:2212.03066 Expected $\pm 1\sigma$ Expected $\pm 2\sigma$ $M_{Z'}$ [GeV/ c^2]

- $L_\mu L_\tau$ gauge boson Z' couples 2nd and 3rd generation leptons.
	- could explain $(g 2)_{\mu}$ and other flavor anomalies.
- Search performed by $e^+e^- \rightarrow \mu^+\mu^-$ + missing energy.
	- Z' searched in the recoil mass of the di-muon system.
	- high-suppression of SM backgrounds.

Dark sector

- Dark matter is likely to exist.
- Dark sectors solve expt./pheno. puzzles (e.g. strong CP).
- Belle II enjoys sensitivity in the light part of the spectrum (MeV-GeV masses).
- A main challenges is to suppress the large SM background.
	- •Need dedicated low-multiplicity triggers.

Search for $Z' \rightarrow$ invisible

• Dark sector Higgs h' can give mass to dark photon A' through usual SSB mechanism. • No mixing of h' with SM Higgs.

No excess was found and set 90% CL limits Most stringent limits to date

invisible h' + A'

- In 2021, collected data at four different E_{CM} to investigate uncharted regions of $b\bar{b}$ exotic states.
- Expand on earlier studies from Belle.

Search for the $e^+e^- \to \eta_b(1S)\omega$ and $e^+e^- \to \chi_{b0}(1P)\omega$ decays

Quarkonium

[PRL130 091902 \(2023\)](https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.130.091902)

Measurement of cross-section, peaks at Y(10753)

First observation of $\omega \chi_{b1,2}(1)$ **signal at s = 10.745 GeV**

See Sen Jia's talk

- Collected data sample equivalent to that of BABAR or half of Belle.
- Belle II physics program is very broad.
	- B, charm, τ, dark sector, quarkonium ... physics.
- First results confirm the very good detector performance and status of our tools:
	- Precise measurement of τ mass: m_{τ} $= 1777.0 \pm 0.08 \pm 0.11$ MeV/c²
	- Most precise charm lifetime measurement till date.
	- Most stringent limits on dark matter searches.
- Ready for the New Physics search!
- Will resume data-taking in early 2024.

Summary

Stay tuned for more exciting results!

Backup

- ‣ First data recorded in April 2019.
- **‣ Collected data**
	- $-$ ~ 362 fb⁻¹ at Y(4S).
	- 42 fb⁻¹ off-resonance, 60 MeV below $Y(4S)$.
	- 19 fb⁻¹ energy scan between 10.6 to 10.8 GeV for exotic hadron studies.
- **‣ Record-breaking instantaneous luminosity:**

 4.7×10^{34} cm⁻²s⁻¹ (last: LHC 2.14 × 10³⁴ cm⁻²s⁻¹).

‣ Ramping up toward the target luminosity.

Luminosity

- ‣ Long Shutdown 1 (LS1).
	- ongoing, ends in late 2023.
	- maintenance/upgrade of machine & sub-detectors.
- ‣ Long Shutdown 2 (LS2).
	- to be confirmed (2026 2027).
	- upgrade of the SuperKEKB Interaction Region.

Status

... and roadmap to 50ab-1

Previous B-factories luminosity

• Large background suppressed using BDTs.

 $\Delta E = E_{\rm B} - E_{\rm beam}$, $\bar{p}_{\text{beam}} - |\vec{p}_{\text{B}}|$ ⃗ 2

• Binned fit of ΔE and M_{bc} in six q^2 bins.

Untagged $B^0 \rightarrow \pi^- \ell \nu$ **[arXiv:2210.04224](https://arxiv.org/pdf/2210.04224.pdf)**

Tagged *B* → *πeν* **[arXiv:2206.08102](https://arxiv.org/pdf/2206.08102.pdf)**

$$
M_{\text{miss}}^2 = p_{e^+e^-} - p_{B_{\text{tag}}} - p_{\pi} - p_e
$$

• Binned fit of $M_{miss}²$ in three $q²$ bins.

• Combined fit to BCL expansion and form factor LQCD constraints.

$|V_{ub}| = (3.55 \pm 0.12 \pm 0.13 \pm 0.17) \times 10^{-3}$

 $|V_{ub}| = (3.88 \pm 0.45) \times 10^{-3}$

Untagged *B* → *Dℓν*

• Large background from *B* → *D***ℓν*

$$
\bullet \quad \cos\theta_{\rm BY} = \frac{2E_B E_Y - m_B^2 - m_Y^2}{2p_B p_Y}, \quad Y = D\ell
$$

- Binned fit of $cos\theta_{BY}$ in ten w bins.
- Combined fit to BGL expansion and form factor LQCD constraints.
- Tagged *B* → *D***ℓν* **[arXiv:2301.04716](https://arxiv.org/pdf/2301.04716.pdf)**
- Binned fit of $M²_{miss}$ in ten w bins. miss
- Fit CLN parameterized form factor to differential decay rates.

|*V* **: exclusive** *cb* |

[arXiv:2210.13143](https://arxiv.org/pdf/2210.13143.pdf)

 $|V_{cb}| = (37.9 \pm 2.7_{\text{tot}}) \times 10^{-3}$

• $\delta\phi_3$ (50 ab⁻¹) = 3° using GGSZ method

- \bullet *B*⁺ → *D*⁰(*K_Sh⁺h[−])h⁺ BPGGSZ* **method**
- Fit plots of Belle data

