The Belle II Upgrade Program Leo Piilonen, Virginia Tech on behalf of the Belle II Collaboration 31st Lepton-Photon Symposium Melbourne Australia July 2023

Office of Science

SuperKEKB and Belle II: 2nd generation *B* Factory

✓ Phase 1 (2016):

- o no detector, no beam collisions
- test ring operation with single beams
- bake (3 km)·2 of accelerator vacuum chambers
- ✓ Phase 2 (2018):
 - first collisions with complete accelerator
 - incomplete detector: vertex detector replaced by background-characterization detector
- ✓ Phase 3 (2019 ···):
 - Iuminosity run with mostly complete detector
 - partial pixel detector (layer 1 + partial layer 2)
 - + full 4-layer strip detector for B vertexing
 - first physics paper in January 2020
 - challenging operations throughout pandemic
- ✓ Novel and complex accelerator:
 - record peak luminosity of 4.7×10^{34} cm⁻² s⁻¹
 - path to reach 2×10^{35} cm⁻² s⁻¹ identified
 - long march to reach target of 6×10^{35} cm⁻² s⁻¹

Path to the future

Steep path to higher luminosity

- ✓ Accelerator performance and stability:
 - beam blow-up due to beam-beam effects
 - Iower beam lifetime than expected
 - transverse mode coupling instabilities
 - Iow machine stability
 - sudden beam loss
 - injector limitations
 - aging infrastructure
- ✓ Accelerator-induced backgrounds in detector:
 - Single-beam: beam-gas, Touschek
 - Collisions: radiative Bhabha scattering, two-photon processes
 - continuous-injection backgrounds
 - prudent management needed to avoid compromising the physics program

Mitigation measures toward 2×10^{35} cm⁻² s⁻¹

- Consolidate and address accelerator limitations:
 international task force at work to assist
 - many countermeasures deployed
 - more countermeasures in development
- ✓ Consolidate and address detector limitations:
 - complete the installation of full pixel detector
 - complete the installation of more robust time-ofpropagation photomultiplier tubes

Improvements toward 6×10^{35} cm⁻² s⁻¹

✓ Accelerator:

major redesign of interaction region, perhaps
possibility of polarized beams

✓ Detector:

- improve robustness against backgrounds at higher peak luminosity
- improved physics performance

З

Accelerator upgrades during Long Shutdown 1: 2022-2023

- o countermeasures against sudden beam loss
- additional shielding around final-focus magnets and endcaps against beamline neutrons
- more resilient collimators (harder material)
- on non-linear collimator to reduce beam halo
- RF cavity replacement for stability, higher currents
- at injector: faster kicker magnet, new focusing magnet, new large-aperture beam pipe

Lpeak(Target Int Llab-1 LS2 LS1 Peak Luminosity 2029 2034 2019 2024

Detector upgrades during LS1

- installation of complete pixel detector
- replacement of time-of-propagation counter's photomultipliers: increased lifespan, robustness
- o data-acquisition system upgrade to PCIe40
- improved gas distribution, gain stability and monitoring for drift chamber

Leo Piilonen || Lepton-Photon 2023 Melbourne

Life-extended ALD ALD conventional

Accelerator upgrades during Long Shutdown 2: ~2028-2029

in cooperation with the International Task Force to leverage cross-continental expertise

✓ **goal:** higher \mathcal{L} with lower β^* and higher currents

- limit beam-beam effects, preserve beam lifetime
- reposition final-focus (QC) magnets closer to IP
- new design for final-focus magnets
- additional compensating solenoid inside QC magnets near final focus to reduce emittance
- designs will be informed by 2024+ experience

More distant future: ~mid-2030's

✓ Accelerator R&D for significant *L* increase, with possibility of polarized beams [maybe sooner?]
 ✓ ... toward integrated luminosity of 250 ab⁻¹

Detector upgrades during LS2 or beyond

See Snowmass white papers: arXiv:2203.11349 for detector upgrade arXiv:2207.06307 for physics reach arXiv:2203.05731 for backgrounds

ECL: replace crystals with pure Csl; APD readout; add pre-shower detector

IR: accommodate QCS replacement and repositioning

> VXD: all pixels • DMAPS • SOI-DUTIP

> > **CDC:** replace readout ASIC+FPGA to improve radiation tolerance, cross-talk

More distant future: ~mid-2030's

✓ Detector R&D for extreme-*L* environment

Leo Piilonen || Lepton-Photon 2023 Melbourne

KLM: replace RPCs with scintillators in barrel (some with fast timing for K_L time-of-flight); replace readout

TOP: replace readout to reduce size & power; replace all PMTs with extended-lifetime ALDs (or SiPMs?)

STOPGAP: close gaps between TOP quartz bars, provide timing layers for track trigger

ARICH: possible photosensor upgrade

> **TRIGGER:** replace with latest tech to increase bandwidth, allow for new trigger primitives

Central Drift Chamber front-end readout upgrades

the present board	upgrade	
separated chips, ASD and FADC	functions of ASD and FADC are in one chip. -60% reduction is expected in ASD+FADC	
~100mV pulse height induced in neighbor ch with 7pC input	~10mV pulse height induced in neighbor ch with 7pC input + double thresholds	
Virtex-5	Kintex-7 ←	
SFP for DAQ (1kGY) Avago HFBR-7934WZ for TRG (300-400Gy)	QSFP	
SFP for DAQ Avago HFBR-7934WZ for TRG (3.125Mb/s)	one QSFP in stead of two different optical transceivers	

improvements during LS2

- better tracking performance
- reduced power consumption
- reduced cross-talk
- increased output bandwidth

technology implementation

- new ASIC
- new FPGA
- new optical module

Time of Propagation Counter upgrades

✓ requirements

- extended photosensor lifetime
- better radiation tolerance

performance improvements

- better particle-ID performance
- feature extraction inside ASIC
- reduced power consumption

✓ technology implementation in LS2

- all PMTs are lifetime-extended ALDs
- RFSoC (for 5G phones) [default]
- ... or custom TDC ASIC
- redesigned front-end board stack

✓ beyond LS2 …

R&D for SiPM photosensors

Life-extended ALD ALD conventional

Life-extended ALD

K-long & Muon Detector upgrades

✓ during or beyond LS2 ...

- replace remaining RPCs in barrel with scintillator strips
- re-design electronics layout with feature-extraction ASIC inside panel, only digital I/O [optical/ethernet]
- high-resolution timing for K-long momentum via time of flight

Future vertex detector design options

✓ requirements

- o vertexing/tracking equal to current VXD
- o robustness against high-radiation environment

✓ performance improvements

- better vertex resolution
- o better tracking performance for soft tracks
- o possible contribution to the Level 1 trigger

technology options

- CMOS-MAPS pixels [default] ·
 - Tower 180 nm process
 - Extension of TJ-MONOPIX2 \rightarrow OBELIX sensor
 - <40 μ m pitch, 100 ns integration
- SOI pixels [alternate] -----
 - Lapis 200 nm process
 - Dual Time Pixel (DuTiP) sensor
 - 45 μ m pitch, 2×60 ns integration

W. Snoeys et al. https://doi.org/10.1016/j.nima.2017.07.046

Beam polarization & "Chiral Belle" beyond LS2 [or sooner?]

See Snowmass white paper <u>arXiv:2205.12847</u>

e- *spin vector in SuperKEKB*

✓ Polarized electrons (70%)

- Transverse polarization at injection --
- OR Rotate to longitudinal at interaction point --
- Compton polarimeter for 0.5% precision

✓ with polarized electrons ...

- sensitivity to EW neutral vector current
- sensitivity to light Z_{dark} via $\sin^2\theta_W$
- Ieft-right asymmetries with 5 fermions
- tau g-2: sensitivity of $\mathcal{O}(10^{-5})$ w/50 ab⁻¹
- background suppression in $\tau \rightarrow \ell \gamma$ using helicity distributions

Summary and outlook

- Selle II and SuperKEKB have started a successful physics run
- Accelerator improvements are being studied and implemented to reach target luminosity
- - o more robustness against backgrounds and radiation damage
 - better physics performance
 - readiness for accelerator's redesign of interaction region
- The Belle II upgrade organization is in place
 - Output Description of the output of the o and establishing priorities
 - Onceptual Design Report is in preparation
- ✓ Longer term upgrade perspectives past LS2 ... toward 250 ab⁻¹ start planning for even higher peak luminosity
- - evolved detector that can operate at extreme luminosity

✓ Detector upgrade ideas are being explored and R&D is in progress for

Backup

Leo Piilonen || Lepton-Photon 2023 Melbourne

Belle II vs first-generation Belle detector

Leo Piilonen || Lepton-Photon 2023 Melbourne

KLong and muon detector (KLM)

upgrade Resistive Plate Chambers (barrel outer layers) Scintillator + WLSF + SiPM's (end-caps , inner 2 barrel layers)

Particle Identification

TOP detector system (barrel) Prox. focusing Aerogel RICH (fwd)

Backgrounds must be managed for optimal physics extraction

... + neutrons from stray beam particles striking beam-pipe structures

Leo Piilonen || Lepton-Photon 2023 Melbourne

Two-photon processes

Non-linear collimator + sextupoles remove stray beam particles

Detector upgrades and time scale

	Subdetecto	r Function	upgrade idea	time scale
Silicon Pixel Detector	PXD	Vertex Detector	2 layer installation	short-term
			new DEPFET	medium-term
Silicon Strip Detector	SVD	Vertex Detector	thin, double-sided strips, w/ new frontend	medium-term
	PXD+SVD	Vertex Detector	all-pixels: SOI sensors	medium-term
			all-pixels: DMAPS CMOS sensors	medium-term
Central Drift Chamber	CDC	Tracking	upgrade front end electronics	short/medium-term
			replace inner part with silicon	medium/long term
			replace with TPC w/ MPGD readout	long-term
Time of Propagation Counter	ТОР	PID, barrel	Replace conventional MCP-PMTs	short-term
			Replace not-life-extended ALD MCP-PMTs	medium-term
			STOPGAP TOF and timing detector	long-term
Aerogel Ring-Imaging	ARICH	PID, forward	replace HAPD with Silicon PhotoMultipliers	long-term
Cerenkov Counter			replace HAPD with Large Area Picosecond Photodetectors	long-term
Electromagnetic Calorimeter	ECL	γ, <i>e</i> ID	add pre-shower detector in front of ECL	long-term
			Replace ECL PiN diodes with APDs	long-term
			Replace CsI(TI) with pure CsI crystals	long-term
K-long and Muon Detector	KLM	K_{L}, μ ID	replace 13 barrel layers of legacy RPCs with scintillators	medium/long-term
			on-detector upgraded scintillator readout	medium/long-term
			timing upgrade for K-long momentum measurement	medium/long-term
Level 1 Hardware Trigger	Trigger		firmware improvements	continuous
Data Acquisition System +	DAQ		PCIe40 readout upgrade	ongoing
Software High-Level Trigger			add 1300-1900 cores to HLT	short/medium-term

Aerogel Ring-Imaging Cerenkov Counter upgrades

✓ beyond LS2 …

- R&D for SiPM photosensors or MCP-PMTs / LAPPD
- R&D for compatible readout (custom or FASTiC from LHCb)
- R&D for aerogel upgrade

✓ beyond LS2 …

- shorter pulses & less pile-up
- replace PIN-diode sensors with APDs (or SiPMs) for better energy resolution
- front-end readout re-design
- add pre-shower detector

