

Karlsruher Institut für Technologie

Dark sectors at flavour experiments FPCP, Lyon, 02.06.2023

Torben Ferber (torben.ferber@kit.edu, he/him) on behalf of Belle II, BaBar, NA62 and BESIII Institute of Experimental Particle Physics (ETP)

KIT – The Research University in the Helmholtz Association

Introduction

"I shall not today attempt further to define the kinds of material, but I know it when I see it." (P. Stewart)

Dark sectors at flavour experiments - Torben Ferber 2

Introduction

Dark sectors at flavour experiments - Torben Ferber 3

- Not excluded (or discovered) yet
- "Light", typically less than 10 GeV
- Very small coupling "<<<1"</p>
 - not charged under SM strong force
 - some parameter space has interactions stronger than the SM weak force
- Often provide viable (often long-lived) mediators to the dark sector
 - Sometimes provide viable dark matter candidates

NA62
$$A' \to e^+ e^-, \mu^+ \mu^-$$

Belle II $e^+ e^- \to \mu^+ \mu^- \tau^+ \tau^-$
Belle II $S \to e^+ e^-, \mu^+ \mu^-, \pi^+ \pi^-, I$

NA62

- Proton fixed target experiment at CERN SPS, 10^{12} p/sec
- Beam-dump data taking:
 - TAXes closed, target removed
 - 1.5 higher beam intensity
 - Better dipole sweeping
- Collected 1.4×10¹⁷ p.o.t. in 10 days of data taking in 2021
- 10× more beam-dump data planned by 2025

NA62: $A' \rightarrow \mu^+ \mu^-$

Dark Photon via:

- Bremsstrahlung: $pN \rightarrow XA'$
- Meson-mediated: $pN \rightarrow XM, M \rightarrow \gamma A'$ with $M = \pi^0, \omega, \rho, \ldots$
- $\mu^+\mu^-$ vertex in fiducial volume, and primary vertex in the direction of the $\mu^+\mu^-$ pair and the proton beam at the TAXes
- Dominant background 0.016±0.002 events from two random muons (combinatorial), negligible background from secondaries of a muon interaction with the traversed material (in-time)

NA62: $A' \rightarrow e^+e^-$

- Re-optimized particle identification and signal projection region
- Tighter veto (halo particle veto (ANTIO) and large angle veto (LAV)) to reject incoming particles
- Negligible combinatorial background, dominant background 0.0094^{+0.0049}_{-0.009} events from in-time interactions in material

[1] S. Ghinescu, Moriond 2023

7 Dark sectors at flavour experiments - Torben Ferber

BES III

- Symmetric e^+e^- collider BEPCII
 - around the charm/tau-pair threshold
- Taking data since 2009
- Total dataset 37 fb⁻¹ at energies between 2 and 4.95 GeV
- Well known initial conditions
- Little/no pile-up clean environment
- Special single photon trigger

2009:	106M <mark>ψ(2S)</mark>
	225Μ J /ψ
2010:	0.98 fb⁻¹ψ(3770) (for D ⁰⁽⁺⁾)
2011:	2.93 fb ⁻¹ ψ (3770) (for $D^{0(+)}$, total)
	0.48 fb ⁻¹ @4.01 GeV
2012:	0.45B <mark>ψ(2S)</mark> (total)
	1.30B J/ ψ (total)
2013:	1.09 fb ⁻¹ @4.23 GeV
	0.83 fb ⁻¹ @4.26 GeV
	0.54 fb ⁻¹ @4.36 GeV
	10×0.05 fb ⁻¹ XYZ scan@3.81-4.42 GeV
2014:	1.03 fb ⁻¹ @4.42 GeV
	0.11 fb ⁻¹ @4.47 GeV
	0.11 fb ⁻¹ @4.53 GeV
	0.05 fb ⁻¹ @4.575 GeV
	0.57 fb ⁻¹ @4.60 GeV (for Λ ⁺ _c)
	0.80 fb ⁻¹ R scan @3.85-4.59 GeV

2015: R-scan 2-3 GeV+2.175 GeV

- 2016: 3.20 fb⁻¹@4.178 GeV (for D_s^+)
- 2017: 7×0.50 fb⁻¹ XYZ scan@4.19-4.27 GeV
- 2018: More J/ψ +tuning new RF cavity
- 2019: 10B J/ψ (total)
 - 8×0.50 fb⁻¹ XYZ scan@4.13, 4.16, 4.29-4.44 GeV
- 2020: 3.8 fb⁻¹ @ 4.61-4.7 GeV (XYZ& Λ_c^+)
- 2021: 2.0 fb⁻¹ @ 4.74-4.946 GeV
- 2021: 2.7B ψ (2S) (total)
- 2022: 2×0.4 fb⁻¹@3.65, 3.682 GeV,
 - 8 fb⁻¹ ψ (3770) (for $D^{0(+)}$, total)

BES III: $A' \rightarrow \text{invisible}$

- Bump hunt in photon energy $1.3 < E_{\gamma} < 1.8 \text{ GeV} (1.5 < m_{A'} < 2.9 \text{ GeV})$
 - Imited by trigger threshold and ECAL saturation
- Background determined directly in data
 - Major background: $e^+e^- \rightarrow \gamma\gamma(\gamma)$ with one photon undetected
 - $e^+e^- \rightarrow e^+e^-(\gamma)$ negligible due to large polar angle requirement $|\cos \theta| < 0.6$
- Dataset with single photon trigger: Center of mass energies from 4.13 to 4.6 GeV (14.9 fb^{-1}

[1] Physics Letters B 839 (2023) 137785 Institute of Experimental Particle Physics (ETP)

BES III: $A' \rightarrow$ invisible

10 Dark sectors at flavour experiments - Torben Ferber Ψ

[1] Physics Letters B 839 (2023) 137785

- Asymmetric e^+e^- collider PEP-II the US
 - running at the Y(4S)
 - 9 GeV electrons, 3 GeV positrons
- Collected 432 fb⁻¹ (until 2008)
- Well known initial conditions
- Little/no pile-up clean environment

BaBar: Search for B-Mesogenesis

- Baryon asymmetry and dark matter abundance explained simultaneously
 - Light unstable dark baryon ψ_D and heavy (TeV-scale) color-triplet boson mediator particle Y
 - Baryogenesis via out-of-thermal-equilibrium decays of heavy scalar $\Phi \rightarrow bb$ that hadronize into *B* and *B* mesons. These mesons oscillate and violate CP before decaying to "visible baryon"/"dark anti-baryon" pairs.
 - matter-antimatter asymmetries are generated in the visible and dark sectors with equal but opposite magnitudes
 - total baryon number conserved
- Model has five new particles ($\Phi, Y, \psi_D, \phi, \xi$) and four different flavour operators $\mathcal{O}_{ud}, \mathcal{O}_{us}, \mathcal{O}_{cd}, \mathcal{O}_{cs}$
 - Three possible ways to write down matrixelements involving the operator that depend on the precise pairing of the spinors (e.g. \mathcal{O}_{ud} : $\mathcal{O}_{ud}^1 = (\psi b)(ud), \mathcal{O}_{ud}^2 = (\psi d)(ub), \mathcal{O}_{ud}^3 = (\psi u)(db).$

[1] Phys. Rev. D 99, 035031 (2019) [2] Phys. Rev. D 104, 035028 (2021) [3] https://arxiv.org/abs/2208.06421

BaBar: Search for

- Dark sector parti detection \rightarrow mis:
- Hadronic Recoil **Reconstruct** B_{tag} signature in the r event (B_{sig})
- Reconstruct ψ_D 1 energy 4-vector (
- Background sup

[1] <u>https://arxiv.org/abs/2302.00208</u> [2] Phys. Rev.D105, L051101 (2022) (Belle)

13 Dark sectors at flavour experiments - Torben Ferber

ETP)

BaBar: Search for B-Mesogenesis

Search for $B^0 \to \Lambda \psi_D$ probes \mathcal{O}_{μ_S}

- Largest local significance at 3.7 GeV at 2.3σ $(0.4\sigma \text{ global})$, all consistent with null hypothesis
- Limits improve over Belle by up to 10 and exclude heavy ψ_D for \mathcal{O}^1 and almost all masses for $\mathcal{O}^{2,3}$
- Search for $B^0 \to p\psi_D$ probes \mathcal{O}_{ud}
 - First direct search!
 - Limits exclude heavy ψ_D for \mathcal{O}^1 and almost all masses for $\mathcal{O}^{2,3}$

Belle II

- Asymmetric e^+e^- collider SuperKEKB in Japan
 - running at the $\Upsilon(4S)$
 - 7 GeV electrons, 4 GeV positrons
- Collected 428 fb⁻¹, currently in LS1
 - Most analyses use a subset of this
- Well known initial conditions
- Little/no pile-up clean environment
- Special triggers for low multiplicity
 - Single photon trigger (not available at Belle)
 - Single muon trigger
 - Single track trigger using neural networks
- Dark sectors at flavour experiments Torben Ferber 15

Belle II: $\mu\mu Z'(\rightarrow invisible)$

- Additional massive gauge boson Z' with $L_{\mu} L_{\tau}$ model
 - Coupling only to second and third generation leptons
- Could explain discrepancies in $(g 2)_{\mu}$ [1]
- Study invisible system recoiling against $\mu\mu$
 - 2d fit in M_{recoil}^2 and $\theta_{\text{recoil}}^{\text{CMS}}$
- Challenging $\tau\tau$ background tackled with neural network simultaneously trained for all Z' masses [2]
- Systematics and corrections from and control samples
- Update of first Belle II analysis [3] with 300x dataset
- $(g-2)_{\mu}$ preferred region excluded for $0.8 < 0.8 < m_{Z'} < 4 \, \text{GeV} [4]$

[1] B. Shuve et al., Phys. Rev. D 89, 113004

[2] F. Abudinén et al., Eur.Phys.J.C 82 (2022) 2, 121

[3] Belle II Collaboration, Phys. Rev. Lett. 124, 141801 (2020)

[4] https://arxiv.org/abs/2212.03066 (accepted by PRL)

Belle II: $\mu\mu Z'(\rightarrow \tau\tau)$

- Four track final-state: one-prong τ decays $\tau^{\pm} \to \pi^{\pm}(\pi^0)\nu, \ell\nu\nu$ with $\ell = e, \mu$
- Challenging backgrounds in final-state with neutrinos
 - Require missing energy $M_{4 \text{ tracks}} < 9.5 \text{ GeV}$
 - Eight classifiers in different mass regions
- Signal extracted in fits to $M_{\text{recoil}}(\mu\mu)$
- Background determined directly in data
- Strongest constraints for $M_S > 6.5$ GeV in leptophilic scalar model [1] [1] B. Batell et. al. PRD 95 (2017) 075003

Belle II: Search for a long-lived spin-0 mediator in $b \rightarrow s$ transitions

- First Belle II long-lived particle (LLP) search!
- Search in eight exclusive visible channels: $B^+ \to K^+S$ and $B^0 \to K^{*0}(\to K^+\pi^-)S$
- Signal B-meson fully reconstructed
- Backgrounds:
 - Combinatorial $ee \rightarrow q\bar{q}$ reduced by requiring kinematics similar to *B*-meson expectations
- K_S^0 window vetoed in $M_{\pi\pi}$
- Further peaking backgrounds suppressed by tighter displacement selection

Institute of Experimental Particle Physics (ETP)

x+

Belle II: Search for a long-lived spin-0 mediator in $b \rightarrow s$ transitions

- Bump hunt in LLP mass distribution using unbinned maximum likelihood fits
- Background determined directly in data (un-modelled non-peaking background are not problematic)
- Challenge: LLP performance
 - Study K_S^0 control sample and derive corrections (efficiency, M_S shape, particle identification)
- Probe lifetimes between $10^{-5} < c\tau < 4 \,\mathrm{m}$

[1] S. Dreyer, Moriond 2023

Summary

- Very active and very diverse program of direct searches at flavour factories
- Searches presented are a subset of the results from the past year
- All searches presented target parameter space with viable DM candidates or they offer solutions to SM anomalies

More results from the last months not covered in this talk:

BaBar:

- "Search for an Axionlike Particle in B-Meson Decays" Phys. Rev. Lett. 128.131802 (2022)
- "Search for Heavy Neutral Leptons Using Tau Lepton Decays at BABAR"
- arXiv:2207.09575 (2022) • Search for Darkonium in e+e– Collisions
- Phys. Rev. Lett. 128 021802 (2022)

Belle II

- "Search for Lepton-Flavor-Violating τ Decays to a Lepton and an Invisible Boson at Belle II" Phys. Rev. Lett. 130, 181803 (2023)
- "Search for a dark photon and an invisible dark Higgs boson in $\mu^+\mu^-$ and missing energy final states with the Belle II experiment"

Phys. Rev. Lett. 130, 071804 (2023)

BES III

- "Search for a CP-odd light Higgs boson in $J/\psi \to \gamma A^{0}$ " Phys. Rev. D 105,012008 (2022)
- "Search for a massless dark photon in $\Lambda_C^+ \to p\gamma'$ decay" Phys. Rev. D 106, 072008 (2022)

