LFV2023 Heidelberg, 21.06.2023

Francesco Tenchini on behalf of the Belle II collaboration

Introduction

• CLFV is a powerful probe of NP \rightarrow observation is unambiguous sign of BSM.

A Schöning

- Muon experiments have placed extremely tight constraints on CLFV over the years \rightarrow no discovery yet...
- **Could CLFV be found in tau decays?**
- Also hinted by anomalies e.g. $R(D^{(*)})$
- Not as simple as muons taus are short lived, you cannot form a tau beam.
- Historically done at e^+e^- colliders.

adapted from Ann.Rev.Nucl.Part.Sci. 58 (2008) 315-341

Talk outline

- SuperKEKB and Belle II
- CLFV and precision measurements with τ leptons
- LFU in charged currents ($B \rightarrow X \ell \nu$)
- LFU in neutral currents ($B \rightarrow K^{(*)}\ell\ell$)

SuperKEKB at KEK, Tsukuba

• **B-Factory** colliding $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B}$ at $\sqrt{s} = 10.58$ GeV

• Provides large, relatively clean samples of **B-mesons**, **D-mesons** and τ -leptons.

- Major upgrade to KEKB with unprecedented
 - **x30** of KEKB with higher beam current and new nano-beam collision scheme

Belle II detector

- Successor of Belle with
 - → Upgraded sub-detectors and trigger
 - \rightarrow Improved vertex reconstruction
- Comparable performance in electron and muon reconstruction.
- e- (7 GeV)
- **Vertex detector** Vertex resolution: 15 µm
- Solid angle coverage >90%

 \rightarrow High hermeticity ideal for missing energy measurements

Central Drift Chamber Spatial resolution: 100 µm *dE/dx* resolution: 5% **p**_T resolution: 0.4%

Belle II TDR, <u>arXiv:1011.0352</u>

EM Calorimeter

Energy resolution 4%-1.6% **e-ID**: π,K fake rate 1-0.01% at ϵ =95%

KL and μ detector **μ-ID:** π,K fake rate 2-1% at ϵ =95%

Particle Identification K/ π -ID: π fake rate 1.8% at ϵ (K)=95%

Belle II timeline

- Full detector operation started in 2019.
- Achieved world record luminosity of **4.7x10³⁴ cm⁻² s⁻¹** (June 8th, 2022)
 - **x2** Belle instantaneous luminosity
 - Aiming one order higher
- Collected 424 fb⁻¹ before summer 2022.
 - 189 fb⁻¹ used for the analyses shown here.
- Long Shutdown 1 (LS1) to replace PXD + detector maintenance and improvement \rightarrow aiming to restart in winter 2023.
- thanks to improved reconstruction performance.

LS1 dataset already matches BaBar (~500 fb⁻¹) and challenges Belle (~1 ab⁻¹)

The potential of τ measurements

- B-factories are ideal for missing energy channels.
- Well known initial state: $E^*_{\tau} = E^*_{beam} = \sqrt{s/2}$

- Excellent control over invisible particles: missing energy/mass can be precisely determined.
- Decay products are well separated along the event thrust:

$$\left(\sum_{i} \frac{\overrightarrow{p_i} \cdot \widehat{T}}{|p_i|}\right)$$

- Heaviest lepton and the only one that decays into hadrons.
- Numerous possible LFV and even LNV couplings:

•
$$\tau \rightarrow \ell \gamma$$
 (radiative)

- $\tau \rightarrow \ell \ell \ell \ell$ (leptonic)
- $\tau \rightarrow \ell h(\ldots)$ (semileptonic)
- Many ways to test the SM.

= max

History of CLFV in the τ sector

arXiv:2203.14919

- Bump search over the $\tau \rightarrow \ell \bar{\nu} \nu$ spectrum.

Enhancing statistics: $\tau \rightarrow \ell q$

1.8

2.0

1.9

 $M_{\tau} [GeV/c^2]$

- Channel favored by models with e.g. vector leptoquarks.
- Improve Belle efficiency x2 by not reconstructing the other τ : $\epsilon = 6.5\%(\mu)/6.1\%(e)$
- Reconstruct $\tau \to \ell \phi (\to K^+ K^-)$, suppress background with BDT instead.
- Poisson counting in signal region (SR), expected background from reduced sidebands (RSB) in data, scaled with simulations.

arXiv:2305.04759

Measuring the τ mass

- Precision test of SM properties, important input for LFU tests.
- Reconstruct events into four tracks with $\tau_{tag} \rightarrow \ell \nu \bar{\nu}, \pi(\pi^0) \nu$ and $\tau_{sig} \rightarrow 3\pi \nu$
- Access m_{τ} with pseudo-mass technique:

 $M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} \le m_{\tau}$

 Fit endpoint with empirical function incorporating smearing from ISR and detector resolution effects.

	· · · · · · · · · · · · · · · · · · ·	
$ \begin{bmatrix} -2 \\ 1.7 \\ 1.72 \\ 1.74 \\ 1.76 \\ 1.78 \\ 1.8 \\ 1.8 \\ 1.78 \\ 1.8 \\ 1.78 \\ 1.8 \\ 1.78 \\ 1.78 \\ 1.78 \\ 1.78 \\ 1.78 \\ 1.8 \\ 1.78 \\ 1.8 \\ 1.78 \\ 1.78 \\ 1.78 \\ 1.78 \\ 1.8 \\ 1.8 \\ 1.78 \\ 1.78 \\ 1.8 \\ 1.8 \\ 1.78 \\ 1.78 \\ 1.$.82 1.84	yste
$M_{\rm min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2)}$	$-E_{3\pi}^*$	$(E_{3\pi}^* - \eta)$
Source	Uncertainty $[MeV/c^2]$	
Knowledge of the colliding beams:		
Beam-energy correction	0.07	
Boost vector	< 0.01	
Reconstruction of charged particles:		
Charged-particle momentum correction	0.06	
Detector misalignment	0.03	
Fit model:		
Estimator bias	0.03	
Choice of the fit function	0.02	
Mass dependence of the bias	< 0.01	
Imperfections of the simulation:		
Detector material density	0.03	
Modeling of ISR, FSR and τ decay	0.02	
Neutral particle reconstruction efficiency	≤ 0.01	
Momentum resolution	< 0.01	
Tracking efficiency correction	< 0.01	
Trigger efficiency	< 0.01	
Background processes	< 0.01	
Total	0.11	

World's most precise measurement

Proof of high-precision capabilities of Belle II.

LFU anomalies in B decays

tensions exist:

$$R(D^{(*)}) = \frac{\mathscr{B}(B \to D^{(*)}\tau\nu_{\tau})}{\mathscr{B}(B \to D^{(*)}\ell\nu_{\ell})}$$

• Until December 2022, also in:

$$R_{K^{(*)}} = \frac{BF(B \to K^{(*)}\mu^+\mu^-)}{BF(B \to K^{(*)}e^+e^-)}$$

The latter now essentially disappeared, though other tensions in $b \rightarrow s\ell\ell$ survive.

SM expects lepton coupling to EW gauge bosons to be flavour-universal, but

B decay reconstruction: tagging

• Full Event Interpretation using MVA:

Angular asymmetries in tagged $B \rightarrow D^* \ell \nu$

• Test light lepton LFU in five different angular observables:

$$\mathcal{A}_{x}(w) = \left(\frac{d\Gamma}{dw}\right)^{-1} \left[\int_{0}^{1} - \int_{-1}^{0}\right] dx \frac{d^{2}\Gamma}{dwdx} \text{ where } \begin{array}{c} A_{FB} : x = \cos\theta_{\ell} \\ S_{3} : x = \cos 2\chi \\ S_{5} : x = \cos\chi\cos\theta_{\nu} \\ \vdots \end{array} \qquad \text{recoil paramet} \\ w \equiv \frac{m_{B}^{2} + m_{D^{*}}^{2}}{2m_{B}m_{D}} \end{array}$$

$$Wost \text{ uncertainties cancel in the difference } \Delta\mathcal{A}_{x} = \mathcal{A}_{x}^{\mu} - \mathcal{A}_{x}^{e} \\ \mathbb{A}_{x} = \mathcal{A}_{x}^{\mu} - \mathcal{A}_{x}^{\mu} \\ \mathbb{A}_{x} = \mathcal{A}_{x}^{\mu} - \mathcal{A}_{x}^{\mu} \\ \mathbb{A}_{x} = \mathcal{A}_{x}^{\mu} + \mathcal{A}_{x}^{\mu} + \mathcal{A}_{x}^{\mu} \\ \mathbb{A}_{x} = \mathcal{A}_{x}^{\mu} + \mathcal{A}_{x}^{\mu} + \mathcal{A}_{x}^{\mu} + \mathcal{A}_{x}^{\mu} + \mathcal{A}_{x}^{\mu} + \mathcal{A}_{x}^{\mu} \\ \mathbb{A}_{x} = \mathcal{A}_{x}^{\mu} + \mathcal{A}_{x}^{$$

NEW!

Angular asymmetries in tagged $B \rightarrow D^* \ell \nu$

- Extract signal from fits to M_{miss}^2 for each variable in 3 recoil ranges.
- First dedicated test of LFU using a full set of angular variables.

NEW!

Independent LFU test: $R(X_{e/\mu})$

•
$$R(X_{e/\mu}) = \frac{\mathscr{B}(B \to Xe\nu)}{\mathscr{B}(B \to X\mu\nu)}$$
 with hadronic

- Binned fit on lepton momentum in the B frame.
- Backgrounds fixed from off-resonance data and sidebands, while $X\ell\nu$ floats freely.
- Most precise measurement, in agreement w/SM: $R(X_{e/\mu}) = 1.007 \pm 0.009^{stat} \pm 0.019^{syst}$
- Systematically dominated by lepton ID
- Paves the way for $R(X_{\tau/\ell}) = \mathscr{B}(X\tau\nu)/S$
- $R(D^{(*)})$ cross-check, only possible at Belle II!

arXiv:2301.08266

$\mathcal{B}(X\ell\nu)$	

Source	Uncertainty [%
Sample size	0.9
Lepton identification	1.9
$X \ell \nu$ branching fractions	0.2
$X_c \ell\nu$ form factors	0.1
Total	2.1

LFU in neutral currents: $B \rightarrow J/\frac{3}{2}$

• **Tree level** transition. Control sample for $B \to K^{(*)}\ell\ell$.

•
$$R_{K}(J/\psi)^{SM} = \frac{\mathscr{B}(B \to J/\psi(\mu^{+}\mu^{-})K)}{\mathscr{B}(B \to J/\psi(e^{\mathcal{M}}e^{-})K)^{2}}$$

• Fit $\mathbf{M}_{\mathbf{bc}} = \sqrt{E^{*2}_{\ \ beam} - \mathbf{p}^{*2}_{\ \ B}}$ and $\Delta \mathbf{E} = \frac{\mathbf{Observable}}{R_{K^{+}}(J/\psi)} \frac{\mathbf{Belle II}}{1.009 \pm 0.022 \pm 0.008} \frac{\mathbf{D} + \mathbf{D} +$

- Agrees with unity, still statistically limited.
- Systematics dominated by lepton ID, improved from Belle.

LFU in neutral currents: $B \rightarrow K^*(892)\ell\ell$ • Measure BF reconstructing K^+ $K^0_{\mathcal{K}}\pi^+$ $K^0_{\mathcal{K}}\pi^0$) or $K^{*0} \to K^+\pi^-$

• Mass veto on $J/\psi, \psi(2S) \to \ell^+ \ell^-, \gamma^{\mathbb{S}}_{\mathbb{S}} \xrightarrow{22}_{20}_{\mathbb{S}} \ell^+_{\mathbb{S}} \ell^-_{\mathbb{S}}$

• Remaining background suppressed with BDT $\to K^+\pi^- K^{*+} \to K^+\pi^0 K^{*+} \to K_c^0 \pi^+$ • Fit on M_{bc} , ΔE with PDFs from $B \rightarrow J/\psi(\xi_{2},\xi_{1})K_{5,21}$

arXiv:2206.05946

∽ 24 **F**

N	

Preparing for LFU: *B*

 $\mathcal{B}(B \to K^* \mu^+ \mu^-) = (1.19 \pm 0.31^{+0.08}_{-0.07}) \times 10^{-6},$ $\mathcal{B}(B \to K^* e^+ e^-) = (1.42 \pm 0.48 \pm 0.09) \times 10^{-6},$ $\mathcal{B}(B \to K^* \ell^+ \ell^-) = (1.25 \pm 0.30^{+0.08}_{-0.07}) \times 10^{-6}.$

- Compatible with world averages.
- Comparable performance between e^+e^- and $\mu^+\mu^-$
- Statistically limited, with subleading systematics driven by particle ID.
- Branching fraction measurement of $B \to K \ell \ell$ is also ongoing.
- Ready to provide an independent $R_{K^{(*)}}$ measurement with 5~10 ab⁻¹.

Perspectives for $b \rightarrow s \tau \tau$

- SM suppressed: $\mathscr{B}_{SM}(B \to K^* \tau \tau) \sim \mathcal{O}(10^{-7})$, very sensitive to NP: \rightarrow up to $\times 10^3$ enhancement with LFUV in 3rd generation
- Experimental limits much weaker, $\mathcal{O}(10^{-3})$ at 90% C.L.

$\mathcal{B}(B^0 \to K^{*0} \tau \tau) \text{ (had tag)}$			
ab^{-1}	"Baseline" scenario	"Improved" scenario	\rightarrow
1	$< 3.2 \times 10^{-3}$	$< 1.2 \times 10^{-3}$	
5	$< 2.0 \times 10^{-3}$	$< 6.8 \times 10^{-4}$	
10	$< 1.8 \times 10^{-3}$	$< 6.5 \times 10^{-4}$	
50	$< 1.6 \times 10^{-3}$	$< 5.3 \times 10^{-4}$	Ľ

- "Baseline" follows Belle's analysis (hadronic tag, $\tau \rightarrow \ell \nu \bar{\nu}$) arXiv:2110.03871
- "Improved" incorporates $\tau \rightarrow \pi \nu$.
- Can be improved even further by including $B \to K^{*+} \tau \tau$ and better systematics.
- Similar considerations apply to CLFV searches e.g. $B \rightarrow X \tau e$ and $B \rightarrow X \tau \mu$

Summary

- Belle II offers a unique and fertile environment for LFU and CLFV tests.
- Analyses using 189 fb⁻¹ can already provide world-leading results and access unique observables.
- 424 fb⁻¹ recorded on tape: new analyses with larger statistics incoming! Data-taking soon to restart in winter 2023.

BACKUP

Major upgrade in Long Shutdown 1

Belle II detector upgrade

- Exchange of PXD (pixel detector) with the full 2nd layer
- TOP conventional MCP-PMT replacement (TBD)
- Migration to new back-end readout (COPPER \rightarrow PCIe40)

Beam background mitigation

- Additional shield on the QCS^(*) bellows
- Additional shield for neutron background
- Installation of a non-linear collimator

Protection of machine and Belle II

- Collimator heads of more robust material
- Faster beam abort system

Improvement of beam injection

- Enlarged beam pipe at the HER injection
- Pulse-by-pulse beam control for Linac

QCS: Final focusing system

(from July 2022 until October 2023)

Kodai Matsuoka

Beam channel for injection

Base: Conservative extrapolation from 2021 run parameters Target: Extrapolation from 2021 with expected improvements

26/4/1

