DARK MATTER AND TAU RESULTS AT BELLE II

The 21st International Conference on B-Physics at Frontier Machines BEAUTY 2023 Clermont-Ferrand, France

Thrusday 6th July 2023

Robin Leboucher on behalf of the Belle II collaboration

Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

Dark matter • 00000	au lepton physics 000000	Summary Back	aps OO
Dark matter			рб Internet
		ĊPF	M

Dark matter (DM) existence has been proved in astrophysics and cosmological observations

- Galaxy rotation curves
- Cosmic microwave background
- and no candidate in the Standard Model (SM)

DM is one of the most convincing indications of new physics

SM sector A', Z', S, a,...

It sub-GeV scale scen lifferent light mediate	ario: Light dark sector weakly couples to SM through ors (portals)
Vector portal	Dark Photons, Z' bosons
Pseudo-scalar portal	Axion Like Particles (ALPs)
Scalar portal	Dark Higgs, Dark Scalar
Neutrino portal	Sterile Neutrinos

B factories at e^+e^- collider can access the mass range favoured by light dark sectors

Belle II results presented here

- Search for long-lived (pseudo)scalar in $b \rightarrow s$ transitions
- Search for invisibly decaying Z' boson

Belle II as Dark matter and au physics experiment

SuperKEKB:

- e^+e^- collider with $E_{CM} = \sqrt{s} = 10.58$ GeV, $\Upsilon(4S)$ resonance
- Currently hold world highest instantaneous luminosity $4.7 \times 10^{34} \ cm^{-2} s^{-1}$

Belle II advantages for Dark sector and au physics:

- e^+e^- collision:
 - Well-defined kinematics of initial state
 - Clean environment; small pile-up
- Hermetic detector: good missing energy reconstruction, neutral reconstruction
- Special triggers dedicated to low-multiplicity events
- Excellent vertexing and tracking capabilities

Status: First long shutdown since July 2022 with 424 fb⁻¹ collected data since 2019 \rightarrow including 362 fb⁻¹ @ $\Upsilon(4S)$

Dark matter	au lepton physics	Summary O	Backups 0000
			ø

Search for long-lived (pseudo)scalar in b ightarrow s transitions

Results

No significant excess found in 189 fb⁻¹

- First model-independent 95% CL upper-limit on $\mathcal{B}(B \to KS) \times \mathcal{B}(S \to x^+x^-)$
 - ightarrow first limit set on S decaying to hadrons
- Translate into model dependent limits on m_S vs $sin\theta_S$, with lifetime $c\tau_S = f(m_S, \theta_S)$
 - \rightarrow Dark Higgs-like scalar S model interpretation [1]

arXiv.2306.02830. 2023

CPPM

- $\blacksquare e^+e^- \rightarrow e^+e^-\mu^+\mu^-$
- $\varepsilon_{\rm sig} \sim 5\%$
- Systematics and corrections estimated from *ee*, $\mu\mu$ and $\mu\mu\gamma$ control samples

40

 $M_{\rm recoil}^2$ [GeV²/c⁴]

60

80

20

10-

Dark matter
000000T lepton physics
000000Summary
000000Backups
00000Search for invisibly decaying Z' bosonPhys. Rev. Lett. 2020. 124. P. 141801Image: Comparison of the physics
OPPM

Results

No significant excess observed in 79.7 fb $^{-1}$

• 90% CL upper limits on the cross section $\sigma(e^+e^- \rightarrow \mu^+\mu^-[Z' \rightarrow invisible])$ and on the coupling constant g' [1]

 $(g-2)_{\mu}$ favored region excluded for $0.8 < M_{Z^{\prime}} < 5$

Dark matter 000000	au lepton physics	Summary O	Backups 0000
au lepton physics			CPPM
SuperKEKB as a $ au$ factory:		au decays:	
• e^+e^- collider produce τ leps e^-	tions by pairs τ^-	 Massive enough to decay in Mostly one or three charge Challenging reconstruction 	to lighter lepton & hadrons d particles in final states with neutrinos in the final state
well known initial state			
cross section equivalent to E	BB process:	Example of Belle II studies:	
$\sigma(e^+e^- ightarrow$	$ au^+ au^-$)= 0.92 nb	Cover in this talk. SM properties:	Direct BSM searches:
$\sigma(e^+e^-$	$ ightarrow$ B $ar{B}$) $=$ 1.05 nb	 <i>τ</i> mass measurement <i>τ</i> lifetime measurement 	• Lepton flavour violating (LFV) decays: $ au o \ell \phi$
1st 2nd 3rd	2,796 µµµ evv	 τ electric/magnetic dipole moments 	• LFV decay with new particles: $ au o \ell lpha$

10.8%

 $\pi^{\pm}\nu$

25.5%

- CP violation $au \to K_{\rm S}^{\rm o} \pi \nu$
 - V_{us} determinations

Leptons

9,0%

7,5% **x**±2

τ

Between 2 to 14 times more stringent than previous limits, ARGUS [2]
 Dark matter and tau results at Belle II - BEAUTY 2023 - R. Leboucher

M_a [GeV/c²]

Dark matter 7	lepton physics	Summary O	Backups 0000
Search for $ au o \ell arphi$ Lepton Flavou	violation decay	arXiv.2305.04759. 202	B CPPM
Motivations:		Muon mode: $ au ightarrow \mu \Phi$	
New mediators (vector leptoquark [1]) may en accommodate for flavour anomalies in LFU te	hance such decay, up to $\mathcal{O}(10^{-10})$ and its	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	B
 Signal efficiency challenge: Untagged reconstruction: drop any requirement on tag side BDT classifier: Continuum background rejection using signal and kinematic features Expected background evaluated from data reduced sidebands with scaling from simulatic Poisson counting in signal peaking region: M_τ and ΔE_τ = E_{sig} - √s/2 	ints ROE τ_{tag} r_{sig} $\phi \rightarrow K^+K^-$ in: $e_{sig} \simeq 6.1\%(6.5\%)$ for $e(\mu)$ modes, $2 \times$ Belle [2]	$\begin{array}{c} 0.2\\ 0.0\\ -0.2\\ -0.4\\ 1.675 1.700 1.725 1.750 1.775 1.800 1.825 1.850 1.82\\ M_{T} [GeV/\\ \hline \\ 5^{1.00} \\ $	• • • • • • • • • • • • • • • •
Results:		0.75 $\pm 1\sigma CL_{s,exp}$ $\alpha = 10\%$	
• No significant excess in 189 fb ^{-1}		0.50	

0.25

0.00

2

[1]Phys. Rev. D. 2021. 104. P. 055017 [2]Phys. Lett. B. 2011. 699. Pp. 251-257

 $\times 10^{-7}$

10/18

Upper limit on $\mathcal{B}(\tau \rightarrow \mu \phi)$

Set 90% CL upper-limit on the BF with CL_s method

$${\cal B}_{
m UL}(au o e \phi)$$
= 23 $imes$ 10 $^{-8}$

$${\cal B}_{
m UL}(au o \mu \phi)$$
= 9.7 $imes$ 10 $^{-8}$

First successful application of untagged approach in τ -pair analysis at Belle II Dark matter and tau results at Belle II - BEAUTY 2023 - R. Leboucher

Dark matter 000000	τ lepton physics		Summary O	Backups 0000
au mass measuremen	t		arXiv.2305.19116. 2023	CPPM
Motivations: Lepton masses are function Current precision on τ Its precision impacts LF	damental parameters of the SM mass is 10 ³ worse than muon mass FU tests analysis		$\begin{array}{c} x10^{3} \\ \hline \textbf{Belle II Simulation} \\ \hline \textbf{J} \ 140 \\ \hline \textbf{J} \ Ldt = 190 \text{ fb}^{-1} \\ \hline \textbf{J} \ 120 \\ \hline \textbf{J} \ 120 \\ \hline \textbf{J} \ 120 \\ \hline \textbf{J} \ 100 \\ \hline \textbf{J} \ 00 \ $	
$e^+e^- ightarrow [au_{sl}]$ Pseudomass technique developed by ARGUS [1]	$g ightarrow \pi \pi \pi u_{ au}][au_{tag} ightarrow \ell u u / \pi (\pi^{o}) u]$ $e, \mu, \pi \qquad \stackrel{\hat{T}}{\longleftarrow}$	π	Step 40 20	

- Exploit the kinematics of the 3π system with only four tracks and no additional high-energy photons
- Pseudomass M_{min}:

$$M_{min} = \sqrt{M_{3\pi}^2 + 2\left(\sqrt{s}/2 - E_{3\pi}^*\right)\left(E_{3\pi}^* - P_{3\pi}^*\right)} \le M_{ au}$$

- - $\blacksquare \quad \text{Detector resolution} \Rightarrow \text{smeared edges}$
 - $\blacksquare \ \mathsf{ISR} \Rightarrow \mathsf{tail} \ \mathsf{at} \ \mathsf{M}_{\min} > \mathsf{M}_{\tau}$

Dark matter and tau results at Belle II - BEAUTY 2023 - R. Leboucher

Dark matter	τ lepton physics	Summary O	Ba	ickups 000
au mass measurement			arXiv.2305.19116. 2023	PPM
Measurement dominated by s Source	Systematics uncertai	inties: $M_{min} = \sqrt{M_{3\pi}^2 + 2\left(\sqrt{5/2} - E_{3\pi}^*\right)}$	$\pi \left(E_{3\pi}^{*} - P_{3\pi}^{*} \right)$	
Knowledge of the colliding beams: Beam energy correction Boost vector Reconstruction of charged particles: Charged particle momentum correction Detector misalignment	0.07 ≤ 0.01 0.06 0.03	Beam energy callibration Use B meson hadronic decays method and $\Upsilon(4S)$ lineshape measurement to get \sqrt{s}	3 10.585 10.585 10.585 10.58	
Fitting procedure: Estimator bias Choice of the fit function	0.03 0.02	Momentum scale factor	10.57 - 20 200 300 400 550 Chronologically ordered events	<10 ³
Mass dependence of the bias Imperfections of the simulation: Detector material budget Modeling of ISR and FSR Momentum resolution Neutral particle reconstruction efficiency Tracking efficiency correction Trigger efficiency	$ \leq 0.01 0.03 0.02 \leq 0.01 \leq 0.01 \leq 0.01 \leq 0.01 $	Cure bias due to imperfect magnetic field Extract polar angle $cos\theta_{track}$ dependant correction: comparing $D^{o} \rightarrow K\pi$ mass peak w.r.t PDG mass	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	on ,
Background processes Total			$-\frac{1}{1} - \frac{1}{1} - \frac{1}{28} - \frac{1}{26} - \frac{1}{24} - \frac{1}{22} - \frac{1}{22} - \frac{1}{22} - \frac{1}{24} - \frac{1}{26} - \frac{1}{24} - \frac{1}{26} - \frac{1}{24} - \frac{1}{26} -$	

Dark matter and tau results at Belle II - BEAUTY 2023 - R. Leboucher

• World's most precise M_{τ} measurement:

 $M_{\tau} = 1777.09 \pm 0.08_{\text{stat}} \pm 0.11_{\text{sys}} \text{ MeV}/c^2$

Demonstration of Belle II capability to provide high precision measurement

Dark matter 000000	au lepton physics	Summary	Backups 0000
Summary			

Belle II has unique sensitivity for light dark sectors searches and is complementary to high energy collider and beam dump experiments Confirms world's leading precision capabilities:

Search for a long-lived (pseudo-)scalar in $b ightarrow s$ transitions	on 189 fb $^{-1}$	Submitted to journal:arXiv.2306.02830. 2023
Search for invisible Z' in $ee ightarrow \mu \mu$ Z'	on 79.7 fb $^{-1}$	Phys. Rev. Lett. 2020. 124. P. 141801
Search for invisible LFV scalar in $ au\elllpha$	on 62.8 fb $^{-1}$	Phys. Rev. Lett. 2023. 130. P. 181803
Search for LFV $ au o \ell \phi$ decays	on 189 fb $^{-1}$	Conference paper: arXiv.2305.04759. 2023
Measurement of the $ au$ lepton mass	on 189 fb $^{-1}$	Submitted to journal:arXiv.2305.19116. 2023

With 428 fb $^{-1}$ sample collected, more exciting results are coming!

Thank you!

Backups

Summary

CPPM

Belle II Luminosity and LS1 plans

LS1 plans:

Belle II stopped taking data in Summer 2022 for a long shutdown

- replacement of beam-pipe
- replacement of photomultipliers of the central PID detector (TOP)
- o installation of 2-layered pixel vertex detector
- o improved data-quality monitoring and alarm system
- complete transition to new DAQ boards (PCIe40)
- replacement of aging components
- additional shielding and increased resilience against beam backgrounds

Currently working on pixel detector installation:

- > shipping to KEK in mid March
- > final test at KEK scheduled in April

Dark matter	au lepton physics 000000	Summary	Backups
000000		O	○○●○
$ au o \ell lpha$			

 $au
ightarrow m{e} lpha$:

