

Status of flavor anomalies with Belle & Belle II

Youngjoon Kwon Yonsei Univ.

Outline

- The puzzles
 - Introduction
 - Cram course for *B* decays
- Results and status
 - $\Delta A_{K\pi}$
 - [CKM] Tension in (V_{cb}, V_{ub})
 - $[R(D^{(*)})]$ Inclusive test of LFU for μ vs. e
 - EWP *B* decays for studies related to $R_{K^{(*)}}$
- Honorable mentions
- Closing

Status of flavor anomalies with Belle & Belle II

Status of flavor anomalies with Belle & Belle II

Youngjoon Kwon (Yonsei U.)

The puzzles selected on my personal taste

Penguins, loops

Belle II Physics Mind-map

Image courtesy of Tom Browder

The cram course for B-mesons (a) Belle (II)

See Appendix 0 (p.45-47)

e⁺ (1999-2010) e^+ (since 2019)

Key variables of B decays

Id: low background and matic constraints.

event shape

Full Event Interpretation (FEI)

- FEI algorithm to reconstruct B_{tag}
 - uses ~200 BDT's to reconstruct $\mathcal{O}(10^4)$ different B decay chains
 - assign signal probability of being correct B_{tag}

Comput Softw Big Sci 3, 6 (2019)

arXiv:2008.060965

The $A_{K\pi}$ puzzle — a historic tension

$B \rightarrow K\pi$

- charmless hadronic decays, with $\mathscr{B} \sim \mathcal{O}(10^{-5})$
- Tree (with $V_{\mu b}$) + Penguin \rightarrow "direct CPV" $A_{CP} \neq 0$, observed for both B^+ , B^0
- Not much difference in A_{CP} is expected for B^+ & B^0 extra diagrams for B^+ , but no new weak phase

Status of flavor anomalies with Belle & Belle II

Youngjoon Kwon (Yonsei U.)

LETTERS

Difference in direct charge-parity violation between charged and neutral B meson decays **a** *K*⁻π⁺

Status of flavor anomalies with Belle & Belle II

Youngjoon Kwon (Yonsei U.)

The " $A_{K\pi}$ puzzle"

Current status of $\Delta A_{K\pi}$

		A_{CP}	
Mode	BaBar	Belle	LHCb
$K^+\pi^-$	$-0.107\pm0.016^{+0.006}_{-0.004}$	$-0.069 \pm 0.014 \pm 0.007$	$-0.080 \pm 0.007 \pm 0.003$
$K^+\pi^0$	$0.030 \pm 0.039 \pm 0.010$	$0.043 \pm 0.024 \pm 0.002$	
$K^0\pi^+$	$-0.029 \pm 0.039 \pm 0.010$	$-0.011 \pm 0.021 \pm 0.006$	$-0.022 \pm 0.025 \pm 0.010$
$K^0\pi^0$	$-0.13 \pm 0.13 \pm 0.03$	$0.14\pm0.13\pm0.06$	

Sum rule test for $\Delta A_{K\pi}$ $I_{K\pi} = \mathcal{B}(K^+\pi^-)\mathcal{A}_{K^+\pi^-} + \mathcal{A}_{K^0\pi^+}\mathcal{B}(K^0\pi^+)\mathcal{A}_{K^+\pi^-} + \mathcal{A}_{K^0\pi^+}\mathcal{B}(K^0\pi^+)\mathcal{A}_{K^+\pi^+} + \mathcal{A}_{K^0\pi^+}\mathcal{B}(K^0\pi^+)\mathcal{A}_{K^+}\mathcal{B}(K^0\pi^+)\mathcal{A}(K^0\pi^+)\mathcal{A}_{K^+}\mathcal{B}(K^0\pi^+)\mathcal{A}$ $-2\mathcal{A}_{K^+\pi^0}\mathcal{B}(K^+\pi^0)\frac{\tau_{B^0}}{\tau_{B^+}}-2\mathcal{A}_{K^0\pi^0}\mathcal{B}(K^0\pi^0)$

Status of flavor anomalies with Belle & Belle II

Youngjoon Kwon (Yonsei U.)

M. Gronau, PLB 627, 82 (2005)

$$(\tau^+)rac{ au_{B^0}}{ au_{B^+}}$$

Belle II for $A_{K\pi}$ sum rule test

D

77+

v + 0n+

Status of flavor anomalies with Belle & Belle II

Youngjoon Kwon (Yonsei U.)

Decarr	Signal	Feed-across	Signal	Feed-across	$p_{10}-61$	1
Decay	yield	yield	$\epsilon~[\%]$	$\epsilon~[\%]$	\mathcal{B} [10]	\mathcal{A}_{CP}
$B^0 \rightarrow K^+ \pi^-$	$3868~\pm~71$	$880~\pm~16$	49.91	11.37	$20.67~\pm~0.37~\pm~0.62$	$-0.072~\pm~0.019~\pm~0.007$
$B^0 ightarrow \pi^+\pi^-$	$1187~\pm~43$	$327~\pm~8$	54.31	14.94	$5.83~\pm~0.22~\pm~0.17$	—
$B^+ \rightarrow K^+ \pi^0$	$2052~\pm~57$	$359~\pm~10$	36.91	6.46	$13.93~\pm~0.38~\pm~0.84$	$0.013\ \pm\ 0.027\ \pm\ 0.005$
$B^+ ightarrow \pi^+ \pi^0$	$785~\pm~44$	$136~\pm~8$	37.60	6.50	$5.10~\pm~0.29~\pm~0.32$	$-0.081~\pm~0.054~\pm~0.008$
$B^+ \rightarrow K^0 \pi^+$	$1547~\pm~45$	—	15.89	—	$24.4~\pm~0.71~\pm~0.86$	$0.046~\pm~0.029~\pm~0.007$
$B^0 \rightarrow K^0 \pi^0$	$502~\pm~32$	_	12.67	_	$10.16~\pm~0.65~\pm~0.67$	$-0.06~\pm~0.15~~\pm~0.05$

Status of flavor anomalies with Belle & Belle II

Youngjoon Kwon (Yonsei U.)

D	Sig	nal	Feed-	-across	Signal	Feed-ac
Decay	yie	eld	yi	eld	$\epsilon ~[\%]$	$\epsilon~[\%]$
$r_{r} + -$	0000	1 1 - 4	000	1 1 0	40.01	11 01
$B^0 \rightarrow K^0 \pi^0$ time-integrated	502	± 32		_	12.67	
$B^0 \rightarrow K^0 \pi^0$ time-dependent	415	± 26		_	9.95	
$\hat{B}^0 \rightarrow \bar{K}^0 \pi^0$ combined						

Status of flavor anomalies with Belle & Belle II

Youngjoon Kwon (Yonsei U.)

Tensions in Semileptonic B decays

a quick summary of semileptonic B decays

Precision measurements of CKM UT

• Test of lepton universality in $R(D^{(*)})$

 $g_{\ell} \ (\ell = e, \ \mu, \ \tau)$ Is $g_{\tau} = g_{\mu}$, and/or g_{e} ? $R(D^{(*)}) \equiv \frac{\mathscr{B}(B \to D^{(*)}\tau^{+}\nu)}{\mathscr{B}(B \to D^{(*)}\ell^{+}\mu)}$

a quick summary of semileptonic B decays

$$R(D^{(*)}) \equiv \frac{\mathscr{B}(B \to D^{(*)}\tau^+\nu)}{\mathscr{B}(B \to D^{(*)}\ell^+\nu)}$$

Measurement of the ratios of branching fractions $\mathcal{R}(D^*)$ and $\mathcal{R}(D^0)$ arXiv:2302.02886, submitted to PRL

Figure 1: Distributions of (left) $m_{\rm miss}^2$ and (right) E_{μ}^* in the highest q^2 bin (above 9.35 GeV²/c⁴) of the (top) $D^0\mu^-$ and (bottom) $D^{*+}\mu^-$ signal data, overlaid with projections of the fit model.

- used $\tau^- \rightarrow \mu^- \overline{\nu}_\mu \nu_\tau$ mode
- $R(D^*) = 0.281 \pm 0.018 \pm 0.024$, $R(D^0) = 0.441 \pm 0.060 \pm 0.066$
- 1.9σ away from SM

B semileptonic (1)

 \bigcirc | V_{ch} | from exclusive B decays (Belle, Belle II) • by $B \to D^* \ell^+ \nu$ shape (Belle) • by $B \rightarrow D^* \ell^+ \nu$ shape (Belle II) Simultaneous (incl. & excl.) $|V_{ub}|$ (Belle)

- Full Belle dataset ($\mathscr{L}_{int} = 711 \text{ fb}^{-1}$) \bigcirc

Status of flavor anomalies with Belle & Belle II Youngjoon

Youngjoon Kwon (Yonsei U.)

B semileptonic (2)

• Inclusives $V \rightarrow X \ell \nu$ • inclusives $V \rightarrow X \ell \nu$

- existing $R(D^{(*)})$ are all from exclusive analyses
- one of the unique and high-profile goals of Belle II
- last measured by LEP (!)

Belle T

studies

- very challenging larger bkgd. & much less constrained
- precise modeling of $B \to X \ell \nu$ is critical

Phys. Rev. D 92, 054018 (2015)

• $R(X_{e/\mu})_{SM} = 1.006 \pm 0.001$ K. Vos, M. Rahimi, in progress

LFU te fith inclusive $B \rightarrow X \ell \nu$ Belle Ti

Status of flavor anomalies with Belle & Belle II

Youngjoon Kwon (Yonsei U.)

arXiv:2301.08266 accepted to PRL

slide taken from Belle II ICHEP2022 talk by H. Junkerkalefeld

LFU test with inclusive $B \rightarrow X \ell \nu$

Status of flavor anomalies with Belle & Belle II

Youngjoon Kwon (Yonsei U.)

arXiv:2301.08266 accepted to PRL

Signal extraction by fitting p_{ℓ}^{B}

- continuum bkgd. is Gaussianconstrained by off-resonance data
- fake & 2ndary leptons are Gaussian-constrained by simulatenously fitting the p_{ℓ}^{B} in same-charge sample

LFU test with inclusive $B \rightarrow X \ell \nu$

12500

7500

5000

2500

 $\left(\right)$

2.0

0.0

-2.0

1.4

Normalized

residuals

$R(X_{e/\mu} | p_{\ell}^B > 1.3 \text{ GeV})$ $= 1.007 \pm 0.009 \pm 0.019$

the most precise BF-based LFU test, and consistent with SM

Status of flavor anomalies with Belle & Belle II

Youngjoon Kwon (Yonsei U.)

arXiv:2301.08266 accepted to PRL

Status of R_K(*)

LFU test with $b \rightarrow s\ell^+\ell^-$ at LHCb as of Fall, 2022

Status of flavor anomalies with Belle & Belle II

Youngjoon Kwon (Yonsei U.)

LFU test with $b \rightarrow s\ell^+\ell^-$ at LHCb as of now (updated Dec. 2022)

Other EW-penguin(-like) B decays

Status of flavor anomalies with Belle & Belle II

Youngjoon Kwon (Yonsei U.)

$B \rightarrow K^* \ell^+ \ell^-$ from Belle II Belle II can do independent check of $R_{K^{(*)}}$ with $\mathscr{L}_{int} \sim \mathcal{O}(1)$ ab⁻¹

- Measure $B \to K^* \ell^+ \ell^-$ with $\mathscr{L}dt = 189 \text{ fb}^{-1}$
- charmonium veto; BDT for continuum $(e^+e^- \rightarrow q\bar{q})$ suppression
- similar precision for *ee* and $\mu\mu$ (unlike LHCb)

arXiv:2206.05946

$B \rightarrow X_{s\gamma}$ (inclusive) from Belle II

measure $\mathscr{B}(B \to X_s \gamma)$ (inclusive) with $\int \mathscr{L} dt = 189 \, \text{fb}^{-1}$

- FEI for hadronic B-tagging
 - fit $M_{\rm bc}$ (tag side) for signal yield in bins of E_{γ}
- dominant continuum bkgd. are suppressed with π^0/η veto (BDT)
- use MC to subtract leftover bkgd. in each E_{γ} bin
- $b \rightarrow d\gamma$ is subtracted using $|V_{td}/V_{ts}|$
- The measured E_{γ} spectrum is unfolded to correct for smearing, etc.

arXiv:2210.10220

$B \rightarrow X_s \gamma$ (inclusive) from Belle II

arXiv:2210.10220

Compare with (for $E_{\gamma} > 1.6 \text{ GeV}$) $\mathscr{B}_{\text{th}}(B \to X_{s}\gamma) = (3.40 \pm 0.17) \times 10^{-4} \,^{[1]}$ $\mathscr{B}_{\text{exp}}(B \to X_{s}\gamma) = (3.49 \pm 0.19) \times 10^{-4} \,^{[2]}$

[1] M. Misiak, A. Rehman and M. Steinhauser, Towards $\overline{B} \to X_s \gamma$ at the NNLO in QCD without interpolation in m_c , J. High Energy Phys. 06 (2020) 175 [2002.01548].

[2] HFLAV 2022; experimental results are extrapolated to $E_{\gamma} > 1.6$ by Buchmuller & Flatter, PRD 73, 073008 (2006)

- The result is consistent with theory (SM, NNLO)
- and the uncertainty is compatible with the other hadronic B-tag analysis (BaBar, 2008)

If there is $\overline{}$

LQ

Motivation

• If there is LUV, there is no natural mechanism to prevent LFV

Analysis feature

- hadronic B-tagging (FEI^[1])
- OS vs. SS (very different bkgd.)
- fit for recoil mass for M_{τ}
- use FBDT^[2] to suppress bkgd.

^[1] Keck, T. et al., *The Full Event Interpretation*. Comput Softw Big Sci 3, 6 (2019).

^[2] Keck, T., *FastBDT: A Speed-Optimized Multivariate Classification Algorithm for the Belle II Experiment.* Comput Softw Big Sci 1, 2 (2017).

Status of flavor anomalies with Belle & Bell. ..

arXiv:2212.04128 accepted to PRL

 $B^+ \to K^+ \tau^{\pm} \ell^{\mp}$

No signal excess in any mode!

Status of flavor anomalies with Belle & Belle II

Youngjoon Kwon (Yonsei U.)

arXiv:2212.04128 accepted to PRL

 $^+ \rightarrow K^+ \tau^{\pm} \ell^{\mp}$

- The most stringent limit on $\mathscr{B}(B^+ \to K^+ \tau \ell)$ in all four modes, based on PHSP model
- NP upper limits are also estimated for models that give lowest efficiency
- paper has been accepted to PRL

Status of flavor anomalies with Belle & Belle II

arXiv:2212.04128 accepted to PRL

Mode	$\varepsilon~(\%)$	$\varepsilon^{\mathrm{NP}}$ (%)	$N_{ m sig}$
$B^+ \to K^+ \tau^+ \mu^-$	0.064	0.058	-2.1 ± 2.9
$B^+ \to K^+ \tau^+ e^-$	0.084	0.074	1.5 ± 5.5
$B^+ \to K^+ \tau^- \mu^+$	0.046	0.038	2.3 ± 4.1
$B^+ \to K^+ \tau^- e^+$	0.079	0.058	-1.1 ± 7.4

$$\mathcal{B}(B^+ \to K^+ \tau^+ \mu^-) < 0.59 \times 10^{-5}$$

$$\mathcal{B}(B^+ \to K^+ \tau^+ e^-) < 1.51 \times 10^{-5}$$

$$\mathcal{B}(B^+ \to K^+ \tau^- \mu^+) < 2.45 \times 10^{-5}$$

$$\mathcal{B}(B^+ \to K^+ \tau^- e^+) < 1.53 \times 10^{-5}$$
In (Yonsei U.) PPC 2023 (June 12-16, 2023) 39

Search for $B^+ \to K^+ \nu \overline{\nu}$ at Belle II

- In the SM,
 - $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = (4.6 \pm 0.5) \times 10^{-6} \, [4]$
- sensitive to new physics BSM, e.g. \bigcirc
 - leptoquarks, ullet
 - axions, \bullet
 - DM particles, etc.

Status of flavor anomalies with Belle & Belle II

Youngjoon Kwon (Yonsei U.)

PRL 127, 181802 (2021)

T. Blake, G. Lanfranchi, and D. M. Straub, Prog. Part. Nucl. Phys. 92, 50 (2017).

 $< 4.1 \times 10^{-5}$ @ 90% CL

Closing remarks

- With the original B-factories (Belle & BaBar), we have learned a lot, e.g. CP violations in B systems and confirmation of CKM mechanism, discoveries of many rare decays, and many exotic hadrons.
- Moreover, there have been several anomalies and/or tensions in B meson systems, some historic and others on-going.
- In this talk, we went through the current status of Belle II (and Belle as well) for some of these tensions/anomalies.
- With the Belle II experiment to resume operation around the end of this year, we expect much more to come, and it will be exciting.

https://mohamadalasadi.blogspot.com/2021/09/signs-you-should-quit-a-business.ht/m

Appendix 0 The a

Status of flavor anomalies with Belle & Belle II

Youngjoon Kwon (Yonsei U.)

			h			C	
p	Da	ara	at	US	Se	S	
p	Øð	3 <i>13</i>	at	US	Se :	S	
			at	US	Se :	S	
			at	US	Se :	S	
			at	US			

 $> 1 \text{ ab}^{-1}$ **On resonance :** $Y(5S): 121 \text{ fb}^{-1}$ $Y(4S): 711 \text{ fb}^{-1}$ $Y(3S): 3 \text{ fb}^{-1}$ $Y(2S): 25 \text{ fb}^{-1}$ $Y(1S): 6 \text{ fb}^{-1}$ **Off reson./scan:** $\sim 100 \ fb^{-1}$

~ 550 fb⁻¹ **On resonance:** $Y(4S): 433 \text{ fb}^{-1}$ $Y(3S): 30 \text{ fb}^{-1}$ $Y(2S): 14 \text{ fb}^{-1}$ **Off resonance:** $\sim 54 \ \mathrm{fb}^{-1}$

SuperKEKB

Belle II

Belle II Collected luminosit

Belle II has been in operation through the Pandemic era, with modified working mode in accordance with the anti-pandemic policy.

peak luminosity world record $4.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

Appendix 1 time-dependent CPV in one slide

Status of flavor anomalies with Belle & Belle II

Youngjoon Kwon

(Yonsei U.)	PPC 2	2023 (June 1	2-16, 20)23)	48

ixing-induced time-dependent CPV

Mixing-induced CP asymmetry of B mesons

- B^0 and $\overline{B^0}$ decay to a common CP eigenstate f_{CP} .
- CP violation appears as a decay time difference.

$$A_{CP}(\Delta t) = \frac{\Gamma(\overline{B}^{0}(\Delta t) \rightarrow f_{CP}) - \Gamma(B^{0}(\Delta t) \rightarrow f_{CP})}{\Gamma(\overline{B}^{0}(\Delta t) \rightarrow f_{CP}) + \Gamma(B^{0}(\Delta t) \rightarrow f_{CP})}$$
$$= S \sin(\Delta m \Delta t) + A \cos(\Delta m \Delta t)$$

S = −ξ sin(2 ϕ_1) for B → J/ψ K_S $(\phi_1 = \beta)$

- S: mixing induced CPV
- A: direct CPV (=-C)

measure position instead of time

Appendix 2 Exclusive $B \to D^{(*)} \ell^+ \nu$ for V_{ch}

			10	r v _{cb}					
Status of flav	or anor	nalies with Belle & Belle II	Yc	oungjoon Kwon (Yonsei	U.)	PPC 2023 (June 1	2-16, 20	23)	50

$B \rightarrow D^* \ell^+ \nu \text{ shapes } \& V_{ch}$

Differential shapes (normalized) of $B \rightarrow D^* \ell^+ \nu$

- as input to determine the non-perturbative form factor • once FF shape is known, it can be combined with L-QCD (or other methods)
- for the absolute normalization to determine $|V_{cb}|$

- ternally determined width/ $|V_{cb}|^2$ (theory) • use hadronic *B*-tagging via FEI • L-QCD at zero recoil (w = 1) is used for $|V_{cb}|$ q^2 π, γ Youngjoon Kwon (Yonsei U.) PPC 2023 (June 12-16, 2023) 51

$$w = v \cdot v'$$
$$= \frac{m_B^2 + m_{D^*}^2 - m_B^2}{2m_B m_{D^*}}$$

Status of flavor anomalies with Belle & Belle II

^{1.4} Status of flavor anomalies with Belle & Belle II $^{0.00}$ $^{0.25}$ $^{0.50}$ $^{0.75}$ $^{1.00}$ Youngjoon Kwon (Yonsei U.)

• Bkgd. subtraction, with binned likelihood fits to $M_{\rm miss}^2$

 $B \rightarrow D^* \ell^+ \nu \text{ shapes \& } |V_{ch}|$

$|V_{cb}|$ and other results

Status of flavor anomalies with Belle & Belle II

 $R_{e/\mu} = \frac{\mathcal{B}(B \to D^* e \nu_e)}{\mathcal{B}(\overline{B} \to D^* \mu \overline{\nu}_{\mu})} = 0.990 \pm 0.021 \pm 0.023$ Youngjoon Kwon (Yonsei U.) PPC 2023 (June 12-16, 2023)

arXiv:2301.07529 submitted to PRD

		BGL_{121}	CLN
$h_{A_1}(1)$		40.6 ± 0.9	40.1 ± 0.9
$h_{A_{1}}(w)$		40.2 ± 0.9	40.0 ± 0.9
$h_{A_1}(w), R_2$	$_1(w), R_2(w)$	39.3 ± 0.8	39.4 ± 0.9
	$\Delta A_{ m F}$	$r_{\rm B} = A_{\rm F}^{\mu}$	$_{\rm B} - A^e_{\rm FB}$
			$\Delta A_{ m FI}$
$R_2(w)$	$\bar{B}^0 \to D^*$	$\ell^+\ell\bar{\nu}_\ell = 0.062$	$2 \pm 0.044 \pm 0.01$
$R_2(w)$	$B^- \to D$	$^{*0}\ell\bar{ u}_{\ell}$ -0.003	$3 \pm 0.033 \pm 0.00$
	$B \to D^* \ell$	$2\bar{ u}_\ell \qquad 0.022$	$2 \pm 0.026 \pm 0.00$
21	Δ .	$F_L = F_L^{\mu}$	$L - F_L^e$
			$\frac{\Delta F_L^{D^*}}{\Delta F_L^{D^*}}$
	$\bar{B}^0 \to D$	$D^{*+}\ell\bar{ u}_{\ell} = 0.032$	$\frac{\Delta F_L^{D^*}}{\pm 0.033 \pm 0.010}$
	$\bar{B}^0 \to D$ $B^- \to D$	$D^{*+}\ell \bar{ u}_{\ell} = 0.032$ $D^{*0}\ell \bar{ u}_{\ell} = 0.025$	$ \Delta F_L^{D^*} \\ $

$B \to D^* \ell^+ \nu$ shapes & $|V_{ch}|$ from Belle II

Julus of fluror anomalics with Delle & Delle II

- The yield in 10 (8) bin of w and the three cosine angles is extracted by fitting $\cos \theta_{RY}$ and ΔM for D^*
- Bin-to-bin migration is corrected with SVD unfolding
- main challenges: background modeling, slow-pion tracking, and stat. correlations b/w bins

 $B \to D^* \ell^+ \nu$ shapes & $|V_{cb}|$ from Belle II

Status of flavor anomalies with Belle & Belle II

Youngjoon Kwon (Yonsei U.)

Status of flavor anomalies with Belle & Belle II

Youngjoon Kwon (Yonsei U.)

$\mathscr{B}(B \to K \tau \mu) \sim \mathscr{O}(10^{-6})$ is preferred in a certain VLQ model, for instance.

Calibbi, Crivellin, Li

PHYS. REV. D 98, 115002 (2018)

- **R**(D^(*)) 2σ **R**(D^(*)) 1 σ $C_{9}^{\mu\mu} = -C_{10}^{\mu\mu} 2\sigma$ $C_{9}^{\mu\mu} = -C_{10}^{\mu\mu} 1\sigma$
 - $\begin{pmatrix} q_{iL} \\ O_{iI} \end{pmatrix} \rightarrow \begin{pmatrix} c_{iQ} & -s_{iQ} \\ s_{iO} & c_{iO} \end{pmatrix} \begin{pmatrix} q_{iL} \\ Q_{iL} \end{pmatrix}$ $\begin{pmatrix} \mathscr{C}_{iL} \\ L_{iI} \end{pmatrix} \rightarrow \begin{pmatrix} C_{iL} & -S_{iL} \\ S_{iI} & C_{iI} \end{pmatrix} \begin{pmatrix} \mathscr{C}_{iL} \\ L_{iI} \end{pmatrix}.$

 $|V_{ub}|_{\text{incl.}} = (4.19 \pm 0.12^{+0.11}_{-0.12}) \times 10^{-3}$

 $|V_{ub}|_{\text{excl.}} = (3.51 \pm 0.12) \times 10^{-3}$

$\sim 3\sigma \text{ tension for each} \\ (|V_{cb}|, |V_{ub}|)$

 $|V_{cb}|_{\text{incl.}} = (42.19 \pm 0.78) \times 10^{-3}$

 $V_{cb}|_{\text{excl.}} = (39.10 \pm 0.50) \times 10^{-3}$