

Determination of the Cabibbo-Kobayashi-Maskawa matrix elements $|V_{cb}|$ and $|V_{ub}|$ Christoph Schwanda (Austrian Academy of Sciences) On behalf of the Belle and Belle II collaborations

International Conference on Precision Physics and Fundamental Physical Constants (FFK2023), May 22-26, 2023, Vienna

The Cabibbo-Kobayashi-Maskawa mechanism

Cabibbo-Kobayashi-Maskawa quark mixing

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \mathbf{V} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$
$$\mathbf{u} \quad \mathbf{C} \quad \mathbf{t}$$
$$\mathbf{d} \quad \mathbf{s} \quad \mathbf{b}$$

$$-\mathcal{L}_{W^{\pm}} = \frac{g}{\sqrt{2}} \ \overline{u_{Li}} \ \gamma^{\mu} \ (V_{\text{CKM}})_{ij}$$

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

 $\mathbf{V}\mathbf{V}^{\dagger} = \mathbf{V}^{\dagger}\mathbf{V} = 1$

The weak interaction down-type doublet partners are a mixture of the mass (flavour) eigenstates described by the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix

The CKM element magnitudes squared determine the rate of quark flavour transitions in charged current processes

$$d_{Lj} W^+_{\mu} + \text{h.c.}$$

CP violation

$$V_{\rm CKM} = \begin{pmatrix} 1 - \lambda^2/2 \\ -\lambda \\ A\lambda^3 (1 - \rho - i\eta) \end{pmatrix}$$

- However, $V_{\rm CKM}$ also contains a complex phase, responsible for all CP-violating and B meson decays so far
- New physics would typically disturb the SM pattern of CPV

Wolfenstein parametrization of $V_{\rm CKM}$

$$\begin{array}{ccc} \lambda & A\lambda^{3}(\rho - i\eta) \\ 1 - \lambda^{2}/2 & A\lambda^{2} \\ -A\lambda^{2} & 1 \end{array} + \mathcal{O}(\lambda^{4}) \end{array}$$

phenomena in the quark sector of the SM, and consistent with observations in K, D

The CKM unitarity triangle ...and how to probe it with B mesons

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

Semileptonic *B* decays **Determination of the CKM elements** $|V_{cb}|$ and $|V_{ub}|$

- SL B decays are studied to determine the CKM elements $|V_{ch}|$ and $|V_{\mu h}|$
 - $|V_{xb}|$ are limiting the global constraining power of UT fits
 - Important inputs in predictions of SM rates for ultrarare decays such as $B_s \rightarrow \mu \nu$ and $K \rightarrow \pi \nu \nu$
- The determinations can be
 - *Exclusive* from a single final state
 - *Inclusive* sensitive to all SL final states

C	
J	

	Experiment	Theory
Exclusive V _{cb}	$B \rightarrow Dlv, D^*lv$ (low backgrounds)	Lattice QC light cone s rules
Inclusive V _{cb}	B → Xlv (higher background)	Operator pro expansio

Experimental status $|V_{ch}|$ and $|V_{uh}|$

- Determinations of both $|V_{ch}|$ and $|V_{ub}|$ exhibit a discrepancy at the level of ~3 σ between exclusive and inclusive
- The current experimental focus is on understanding the origin of this discrepancy, as this inconsistency limits the power of precision flavour physics

[PRD 107, 052008 (2023)]

The facilities

1999 – 2010: B factory at KEK (Japan)

KEKB double ring e+e- collider

$e^+e^- \to \Upsilon(4S) \to B\bar{B}$

Belle detector

Aerogel Cherenkov cnt.

n=1.015~1.030 **3.5 GeV** *e*+

Central Drift Chamber

small cell +He/C₂H₅

 μ / K_L detection 14/15 lyr. RPC+Fe

Comparison of B factories (1999-2010)

 $> 1 ab^{-1}$ **On resonance:** $Y(5S): 121 \text{ fb}^{-1}$ $Y(4S): 711 \text{ fb}^{-1}$ $Y(3S): 3 \text{ fb}^{-1}$ $Y(2S): 24 \text{ fb}^{-1}$ $Y(1S): 6 \text{ fb}^{-1}$ **Off reson./scan:** $\sim 100 {\rm ~fb}^{-1}$

~ 550 fb⁻¹ **On resonance:** $Y(4S): 433 \text{ fb}^{-1}$ $Y(3S): 30 \text{ fb}^{-1}$ $Y(2S): 14 \text{ fb}^{-1}$ **Off resonance:** $\sim 54 \text{ fb}^{-1}$

From KEKB to SuperKEKB

Take advantage of existing items (KEKB tunnel, KEKB components)

$L = 8 \times 10^{-35} \left[cm^{-2} s^{-1} \right] \propto \frac{I_{e\pm} \xi_{\pm y}}{\beta_{y}^{*}}$

narauatara	KE	KB	Super			
parameters	LER	HER	LER	HER	UNITS	
Beam energy	Eb	3.5	8	4	7	GeV
Half crossing angle	ф	11		41.5		mrad
Horizontal emittance	٤x	18	24	3.2	4.3-4.6	ทพ
Emittance ratio	K	0.88	0.66	0.27	0.25	7.
Beta functions at IP	β_X^*/β_Y^*	120	0/5.9	32/0.27	25/0.31	mm
Beam currents	l _b	1.64	1.1 9	<u>3.60</u>	2.60	A
beam-beam parameter	ξy	0.1 29	0.090	0.0886	0.0830	
Luminosity	L	2.1 x 10 ³⁴		8 x 10 ³⁵		cm ⁻² s ⁻¹

- Small beam size & high current to increase luminosity
- Large crossing angle
- Change beam energies to solve the problem of LER short lifetime

(Final parameters)

The Belle II detector

Belle II timeline Luminosity projection

• Super-KEKB already delivered the world highest instantaneous luminosity at an e^+e^- machine (4.71 × 10³⁴ cm⁻²s⁻¹ in June 2022)

Untagged vs. Tagged

Untagged: only $B_{\rm sig}$ is reconstructed

high signal yield (+) high backgrounds (-) poor neutrino reconstruction (-)

Tagged:

 $B_{\rm sig}$ and $B_{\rm tag}$ are reconstructed

signal yield O(10³) lower (-) low backgrounds (+) good neutrino reconstruction (+) tag calibration (-)

Hadronic tagging at Belle II

Comput Softw Big Sci (2019) 3: 6.

- The hadronic FEI employs over 200 boosted decision trees to reconstruct 10000 B decay chains
 - $\epsilon_{B^+} \approx 0.5 \%$, $\epsilon_{B^0} \approx 0.3 \%$ at low purity (about 50% increase with respect to the Belle tag)

$$M_{bc} = \sqrt{E_{beam}^2 / 4 - (p_{B_{tag}}^{cm})^2} > 5.27 \; {
m GeV}/c^2$$

Exclusive measurements

$B^0 \rightarrow D^{*-} \ell^+ \nu$ untagged (189/fb) preliminary [to be submitted to Phys. Rev. D]

Parameterisation of $B \rightarrow D^* \ell \nu$

Three form-factors as function of $w = v_B \cdot v_{D^*}$ parameterise the non-perturbative physics

 $d^4\Gamma$ $\frac{1}{dwd\cos\theta_{\ell}d\cos\theta_{V}d\chi} \propto |V_{cb}|^{2}F^{2}(w,\cos\theta_{\ell},\cos\theta_{V},\chi)$

- Form factor parameterisations
 - Boyd, Grinstein, Lebed (BGL) ullet[Phys. Rev. D56, 6895 (1997)]:

Caprini, Lellouch, Neubert (CLN) [Nucl. Phys. B530, 153 (1998)]

$$g(z) = \frac{1}{P_g(z)\phi_g(z)} \sum_{n=0}^{n_a-1} a_n z^n,$$

$$f(z) = \frac{1}{P_f(z)\phi_f(z)} \sum_{n=0}^{n_b-1} b_n z^n, \qquad z = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}}$$

$$\mathcal{F}_1(z) = \frac{1}{P_{\mathcal{F}_1}(z)\phi_{\mathcal{F}_1}(z)} \sum_{n=0}^{n_c-1} c_n z^n,$$

$$h_{\mathcal{F}_2}(z) = h_{\mathcal{F}_2}(w = 1) \left(1 - 8c^2 z + (53c^2 - 15)z^2 - (231c^2 - 01)\right)$$

$$h_{A_1}(z) = h_{A_1}(w = 1) \left(1 - 8\rho^2 z + (53\rho^2 - 15)z^2 - (231\rho^2 - 91)z^3 \right)$$

$$R_1(w) = R_1(1) - 0.12(w - 1) + 0.05(w - 1)^2$$

$$R_2(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2$$

Measurement

- $D^{*+} \rightarrow D^0(\rightarrow K^-\pi^+)\pi^+$ is reconstructed and combined with an appropriately charged lepton (*e* or μ)
- The neutrino direction is reconstructed inclusively using the known angle $\cos \theta_{BY}$ between the B and the $Y = D^* + \ell$ direction

$$\cos \theta_{BY} = \frac{2E_B^{\rm CM} E_Y^{\rm CM} - m_B^2 c^4 - m_Y^2 c^4}{2|\vec{p}_B^{\rm CM}||\vec{p}_Y^{\rm CM}|c^2}$$

- The yield in 10 (8) bins of w, $\cos \theta_{\ell}$, $\cos \theta_{V}$ and χ is extracted by fitting $\cos \theta_{BY}$ and $\Delta M = M(K\pi\pi) M(K\pi)$
- Bin-to-bin migration is corrected with SVD unfolding [arXiv:hep-ph/9509307]
- Main challenges: accurate background model, slow pion tracking and statistical correlations between bins

BGL fit result

BGL truncation order determined by Nested Hypothesis Test [Phys. Rev. D100, 013005]

	Values		Correl	ations		χ^2/nd
$\tilde{a}_0 \times 10^3$	0.89 ± 0.05	1.00	0.26	-0.27	0.07	
$\tilde{b}_0 imes 10^3$	0.54 ± 0.01	0.26	1.00	-0.41	-0.46	10/31
$\tilde{b}_1 \times 10^3$	-0.44 ± 0.34	-0.27	-0.41	1.00	0.56	40/31
$\tilde{c}_1 \times 10^3$	-0.05 ± 0.03	0.07	-0.46	0.56	1.00	

Belle II 60 GeV 20 10^{-15} 40 × 30 20 20 10 0 _____ **Belle II** 21 F [18] GeV $d\Gamma/d\cos\theta_V$ [×10⁻¹⁵ (w 9 6 7 51 15

Preliminary

Relative uncertainty (%)	Pre	liminary		
	\tilde{a}_0	$ ilde{b}_0$	${ ilde b}_1$	\tilde{c}_1
Statistical	3.3	0.7	44.8	35.4
Finite MC samples	3.0	0.7	39.4	33.0
Signal modelling	3.0	0.4	40.0	30.8
Background subtraction	1.2	0.4	24.8	18.1
Lepton ID efficiency	1.5	0.3	3.1	2.5
Slow pion efficiency	1.5	1.5	18.4	22.0
Tracking of K, π, ℓ	0.5	0.5	0.6	0.5
$N_{B\overline{B}}$	0.8	0.8	1.1	0.8
$f_{+-}/f00$	1.3	1.3	1.7	1.3
$\mathcal{B}(D^{*+} \to D^0 \pi^+)$	0.4	0.4	0.5	0.4
$\mathcal{B}(D^0 \to K^- \pi^+)$	0.4	0.4	0.5	0.4
B^0 lifetime	0.1	0.1	0.2	0.1
Total	6.1	2.5	78.3	64.1

LQCD used only for normalisation at zero recoil (w = 1)

Adding LQCD at w > 1

LQCD constraints on $h_{A_1}(w)$ at w = 1.03, 1.10, 1.17[Eur. Phys. J. C 82, 1141 (2022)] Preliminary

$ V_{cb} imes 10^3$	40.4 ± 1.2	1	-0.31	-0.57	-0.1	0.02	-0.26
$a_0 imes 10^3$	22.0 ± 1.4	-0.31	1	0.27	0.1	-0.18	0.31
$b_0 imes 10^3$	13.2 ± 0.2	-0.57	0.27	1	-0.18	0.13	-0.12
$b_1 imes {10}^3$	9.0 ± 14.5	-0.1	0.1	-0.18	1	-0.88	0.52
b_2	-0.5 ± 0.4	0.02	-0.18	0.13	-0.88	1	-0.36
$c_1 imes 10^3$	-0.7 ± 0.8	-0.26	0.31	-0.12	0.52	-0.36	1

LQCD constraints on $h_{A_1}(w)$, $R_1(w)$ and $R_2(w)$ at w = 1.03, 1.10, 1.17[Eur. Phys. J. C 82, 1141 (2022)] Preliminary

	Values		Correlations					
$ V_{cb} imes 10^3$	40.0 ± 1.2	1	-0.16	0.02	-0.09	-0.61	-0.17	0.1
$a_0 imes 10^3$	28.3 ± 1.0	-0.16	1	-0.08	-0.19	0.17	0.12	-0.0
$a_1 imes 10^3$	-31.5 ± 66.6	0.02	-0.08	1	-0.85	-0.04	-0.07	0.1
a_2	-5.8 ± 2.5	-0.09	-0.19	-0.85	1	0.1	0.1	-0.1
$b_0 imes 10^3$	13.3 ± 0.2	-0.61	0.17	-0.04	0.1	1	0.11	-0.1
$c_1 imes 10^3$	-3.2 ± 1.4	-0.17	0.12	-0.07	0.1	0.11	1	-0.9
$c_2 imes 10^3$	59.1 ± 31.1	0.1	-0.03	0.11	-0.13	-0.13	-0.9	1

24

03 l13

Summary of the measurement Branching fraction Preliminary • $\mathcal{B}(B^0 \to D^{*+}\ell^-v) = (4.94 \pm 0.02_{stat} \pm 0.22_{syst})\%$ • Value of $|V_{ch}|$ Preliminary $|V_{cb}|_{BGL} = (40.9 \pm 0.3_{stat} \pm 1.0_{syst} \pm 0.6_{theo}) \times 10^{-3}$ $|V_{cb}|_{CLN} = (40.4 \pm 0.3_{stat} \pm 1.0_{syst} \pm 0.6_{theo}) \times 10^{-3}$ Lepton flavour universality tests Preliminary $R_{e/\mu} = 1.001 \pm 0.009_{stat} \pm 0.021_{syst}$ $\Delta AFB = (-4 \pm 16_{stat} \pm 18_{syst}) \times 10^{-3}$ $\Delta FL = 0.013 \pm 0.007_{stat} \pm 0.007_{syst}$

$B \rightarrow D\ell^+ \nu \text{ untagged (189/fb)}$ preliminary [arXiv:2210.13143]

Measurement

- $D\ell\nu$ kinematics are described by w only and the decay form factor contains a single function $f_+(w)$
- $D^+ \to K^- \pi^+ \pi^+$ and $D^0 \to K^- \pi^+$ are reconstructed and combined with an appropriately charged lepton (e or μ)
- Yields are extracted in 10 bins of w by fitting the $\cos \theta_{BY}$ distributions
- Main challenges: background model, in particular $B \to D^* \ell \nu$ downfeed (significant despite active D^* veto)

• Together with LQCD data by FNAL/MILC [Phys. Rev. D92, 034506] and HPQCD [Phys. Rev. D92, 054510]

Average over B^0 and B^+ , and e and μ

28

 $B \rightarrow \pi \ell \nu$

The golden mode for $|V_{\mu b}|$ exclusive

- Differential rate in terms of $q^2 = (p_{\ell} + p_{\nu})^2$ $\frac{d\Gamma(B^0 \to \pi^- \ell^+ \nu)}{da^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 |p_\pi|^3 |f_+(q^2)|^2$
- BCL extraction of $|V_{\mu b}|$ [Phys.Rev.D79, 013008; Erratum-ibid. D82, 099902]
 - Measure the differential rate in bins of q^2
 - Theory calculates $f_+(q^2)$ at values of q^2
 - Combined fit to the BCL expansion to determine $|V_{ub}|$ and b_k (z is a map of q^2)

$$f_{+}(q^{2}) = \frac{1}{1 - q^{2}/m_{B^{*}}^{2}} \sum_{k=0}^{K-1} b_{k} \left[z^{k} - (-1)^{k-K} \frac{k}{K} z^{K} \right]$$

Measurement

- The yield in 6 bins of q^2 is determined from $\Delta E = E_B^* - E_{\text{beam}}^*$
- Bin-by-bin unfolding to correct migration

• Charged π mesons are combined with e or μ , the neutrino direction is reconstructed inclusively

a fit to
$$M_{bc} = \sqrt{E_{\text{beam}}^{*2} - |\vec{p}_B^*|^2} \text{ vs}$$

BCL fit result

LQCD input from FNAL/MILC [Phys. Rev. D92, 014024]

$\mathcal{B}(B^0 \to \pi^- \ell^+ \nu_\ell) = (1.426 \pm 0.056(\text{stat}) \pm 0.125(\text{syst})) \times 10^{-4}$ $|V_{ub}|_{B^0 \to \pi^- \ell^+ \nu_\ell} = (3.55 \pm 0.12 (\text{stat}) \pm 0.13 (\text{syst}) \pm 0.17 (\text{theo})) \times 10^{-3}$

Preliminary	Systematic uncertainties on the yield										
Source		В	$^{0} \rightarrow c$	$\pi^- e^+$	$ u_e$			B^{0}	$r^{0} \rightarrow \tau$	$\overline{r^-\mu^+}$	$ u_{\mu}$
	q1	q2	q3	q4	q5	q6	q1	q2	q3	q4	q5
Detector	1.2	1.0	1.1	1.4	2.3	2.4	2.3	3.2	3.3	1.2	1.9
MC sample size	4.0	2.0	2.4	2.8	3.9	5.6	3.9	2.0	2.3	2.7	3.4
Continuum	13.1	5.5	4.4	7.8	10.5	33.9	53.3	8.8	3.2	4.5	8.0
$B o ho \ell u$	9.5	12.5	9.7	6.9	3.4	12.9	8.7	11.6	8.6	6.3	3.3
$B\to X_u\ell\nu$	3.3	1.9	2.1	2.1	1.8	3.7	3.4	2.3	2.0	2.3	2.1
$B\to X_c\ell\nu$	2.3	3.0	1.1	0.8	0.5	2.4	2.4	1.5	1.5	0.8	0.5
Total syst.	17.2	14.3	11.2	11.1	12.0	37.0	53.4	15.2	10.3	8.7	9.7
Stat.	10.2	6.01	6.86	8.08	10.3	13.2	10.4	6.0	6.4	7.8	9.1
Total	20.2	15.5	13.2	13.7	15.9	39.2	54.5	16.4	12.2	11.6	13.

Belle II $|V_{cb}|$ and $|V_{ub}|$

• Recent Belle II results on exclusive decays

	$ V_{cb} \times 10^3$	Reference
Belle II $B^0 \to D^{*-} \ell^+ \nu$ untagged	40.9 ± 1.2 (BGL)	Preliminary To be submitted to PRD
Belle II $B^0 \to D^{*-} \ell^+ \nu$ tagged	37.9 ± 2.7 (CLN)	Preliminary [arXiv:2301.04716]
Belle II $B \to D\ell\nu$ untagged	38.28 ± 1.16 (BGL)	Preliminary [arXiv:2210.13143]
	$ V_{ub} \times 10^3$	Reference
Belle II $B \rightarrow \pi e \nu$ tagged	3.88 ± 0.45	Preliminary [arXiv:2206.08102]
Belle II $B \to \pi \ell \nu$ untagged	3.55 ± 0.25	Preliminary [arXiv:2210.04224]

WA values [HFLAV 2021] $|V_{cb}|_{excl} = (39.10 \pm 0.50) \times 10^{-3}$ $|V_{ub}|_{excl} = (3.51 \pm 0.12) \times 10^{-3}$

Inclusive measurements

$|V_{ch}|$ from inclusive decays

$$\mathbf{B} \rightarrow \mathbf{X} | \mathbf{v} \qquad \Gamma = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 (1 + 1)^{1/2} |V_{cb}|^2 (1 + 1)^{1/2} |V_{cb}|^2 (1 + 1)^{1/2} |V_{cb}|^2 |V_{cb}$$

- Based on the Operator Product Expansion (OPE)
- <O_i>: hadronic matrix elements (non-perturbative) **C**_i: coefficients (perturbative)

	Kinetic	1S
	[JHEP 1109 (2011) 055]	[PRD70, 094017 (2004)]
O(1)	m _b , m _c	m _b
O(1/m² _b)	$μ^2_π$, $μ^2_G$	λ_1, λ_2
O(1/m³ _b)	$ρ^3$ _D , $ρ^3$ _{LS}	ρ ₁ , τ ₁₋₃

$+\frac{c_5(\mu)\langle O_5\rangle(\mu)}{m_{\scriptscriptstyle L}^2}+\frac{c_6(\mu)\langle O_6\rangle(\mu)}{m_{\scriptscriptstyle L}^3}+\mathcal{O}(\frac{1}{m_{\scriptscriptstyle L}^4}))$

• Parton-hadron duality \rightarrow the hadronic ME depend only on the initial state

HFLAV fit (kinetic scheme)

	$ V_{cb} \ [10^{-3}]$	$m_b^{ m kin}~[{ m GeV}]$	$m_c^{\overline{ ext{MS}}}$ [GeV]	$\mu_{\pi}^2 \; [\text{GeV}^2]$	$ ho_D^3 ~[{ m GeV^3}]$	$\mu_G^2 \; [{ m GeV^2}]$	$ ho_{LS}^3$ [GeV ³]
value	42.19	4.554	0.987	0.464	0.169	0.333	-0.153
error	0.78	0.018	0.015	0.076	0.043	0.053	0.096
$ V_{cb} $	1.000	-0.257	-0.078	0.354	0.289	-0.080	-0.051
$m_b^{ m kin}$		1.000	0.769	-0.054	0.097	0.360	-0.087
$m_c^{\overline{ ext{MS}}}$			1.000	-0.021	0.027	0.059	-0.013
μ_π^2				1.000	0.732	0.012	0.020
$ ho_D^3$					1.000	-0.173	-0.123
μ_G^2						1.000	0.066
$ ho_{LS}^3$							1.000

[PRD 107, 052008 (2023)]

- Global fit to Γ_{SL} and other inclusive observables
- At different lepton energy thresholds

BaBar Belle ▲ Other

$q^{2} = (p_{\ell} + p_{\nu})^{2}$ $q^{2} \text{ moments in } B \to X_{c} \ell \nu$ arXiv:2205.06372, submitted to PRD

- Motivated by JHEP 02 (2019) 177 [arXiv:1812.07472]
- Semileptonic *B* decays are reconstructed in 62.8/fb of hadronic tagged Belle II events
- Signal weight w as a function of q^2 determined from fitting the hadronic mass M_X
- q^2 spectra are calculated as event-wise average
- Leading systematics: background, moment calibration

q^2 moments in $B \to X_c \ell \nu$ arXiv:2205.06372, submitted to PRD

- Belle II q^2 moments compared to Belle q^2 moments PRD 104, 112011 (2021) [arXiv:2109.01685]
- And fit by Bernlochner et al. [arXiv:2205.10274]
- This fit gives $|V_{cb}| = (41.69 \pm 0.63) \cdot 10^{-3}$

$B \rightarrow X_{\mu} \ell \nu$ and $|V_{\mu h}|$ inclusive PRD 104, 012008 (2021), PRL 127, 261801 (2021)

Unfolded + acceptance corrected distributions with total Error / Stat. Error

39

Summary and conclusion

- The Cabibbo-Kobayashi-Maskawa magnitudes $|V_{cb}|$ and $|V_{ub}|$ are constraining the mechanism of quark-mixing/CP violation
- $|V_{ch}|$ and $|V_{\mu h}|$ are currently known to the level of <2% and <4% (respectively) but there is a discrepancy at the level of 3σ between exclusive and inclusive determinations
- The aim of ongoing measurements is to understand/identify the origin of this discrepancy

fundamental parameters of the Standard Model that play an important role in

[PRD 107, 052008 (2023)]

Backup

From Belle to Belle II

CsI(TI) EM calorimeter: waveform sampling electronics, pure CsI for endcaps

4 layers DSSD vertex detector → 2 layers PXD (DEPFET) + 4 layers DSSD

Central Drift Chamber: smaller cell size, long lever arm

RPC μ & K_L counter: scintillator + Si-PM for end-caps

Time-of-Flight, Aerogel Cherenkov Counter → Time-of-Propagation (barrel), proximity focusing Aerogel RICH (forward)