Portorož 2023: Particle Physics from Early Universe to Future Colliders, April 11-14, 2023

B flavour physics experimental status **Christoph Schwanda (Austrian Academy of Sciences)**

Anomaly hunting

- Presently the interest in heavy flavour physics, *i.e.*, the physics of b, c and τ weak decays, is mainly triggered by 'anomalies' or otherwise probing models beyond the SM
- Anomalies, significant differences between the SM theory expectation and the experiment, can hint at new physics of higher scales (BSM)
- However, to be weighted by
 - how challenging is to perform experimental measurement
 - role of theoretical predictions

The facilities (I will cover here)

1999 – 2010: B factory at KEK (Japan)

KEKB double ring e+e- collider

$e^+e^- \to \Upsilon(4S) \to B\bar{B}$

Belle detector

Comparison of B factories (1999-2010)

 $> 1 ab^{-1}$ **On resonance:** $Y(5S): 121 \text{ fb}^{-1}$ $Y(4S): 711 \text{ fb}^{-1}$ $Y(3S): 3 \text{ fb}^{-1}$ $Y(2S): 24 \text{ fb}^{-1}$ $Y(1S): 6 \text{ fb}^{-1}$ **Off reson./scan:** $\sim 100 {\rm ~fb}^{-1}$

~ 550 fb⁻¹ **On resonance:** $Y(4S): 433 \text{ fb}^{-1}$ $Y(3S): 30 \text{ fb}^{-1}$ $Y(2S): 14 \text{ fb}^{-1}$ **Off resonance:** $\sim 54 \text{ fb}^{-1}$

The Belle II detector

Belle II timeline Luminosity projection

• Super-KEKB already delivered the world highest instantaneous luminosity at an e^+e^- machine (4.71 × 10³⁴ cm⁻²s⁻¹ in June 2022)

The LHCb experiment LHCb @ LHC (CERN): pp collisions

Run 1-2 detector

- Huge *b* cross-section
- Events with high multiplicity, reconstruction of neutrals is more difficult
- Excellent vertex resolution (separation of weak decay products) and particle identification (RICH)
- 9/fb accumulated during Run 1-2 (2010-2018)
- Run 3 started in 2022 with an upgraded LHCb detector

LHCb integrated luminosity

Test of lepton flavour universality

$LFU in B \to K^{(*)}\ell\ell$

- In the SM, all lepton flavours couple identically to the weak interaction
 - Up to phase space effects, branching fractions $b
 ightarrow e, \mu$ and au should be identical
- Pre-December 2022 situation 3.1σ anomaly in R_K :

$$R_{K} = \frac{\mathscr{B}(B \to K \mu \mu)}{\mathscr{B}(B \to K e e)}$$

Signature of New Physics?

New LHCb analysis of R_K and R_{K^*} (9/fb) Method

$$R_{K,K^*}(q_a^2, q_b^2) = \frac{\int_{q_a^2}^{q_b^2} \frac{\mathrm{d}\Gamma(B^{(+,0)} \to K^{(+,*0)}\mu^+\mu^-)}{\mathrm{d}q^2} \mathrm{d}q^2}{\int_{q_a^2}^{q_b^2} \frac{\mathrm{d}\Gamma(B^{(+,0)} \to K^{(+,*0)}e^+e^-)}{\mathrm{d}q^2} \mathrm{d}q^2}$$

- Simultaneous measurement of R_K and R_{K^*} in two q^2 bins with full available dataset
- LHCb uses a double ratio to measure the *R*-ratio quantity to cancel out efficiency-related systematics

New LHCb analysis of R_K and R_{K^*} (9/fb) Low q^2 region (0.1 to 1.1 GeV²)

New LHCb analysis of R_K and R_{K^*} (9/fb) **Results**

$$\log^2 \begin{cases} R_K = 0.994 + 0.090 + 0.029 + 0.029 + 0.029 \\ R_{K^*} = 0.927 + 0.093 + 0.036 + 0.036 \\ -0.087 + 0.087 + 0.035 + 0.036 + 0.035 \\ -0.035 + 0.035 + 0.035 \\ -0.035 + 0.035 + 0.022 \\ R_{K^*} = 0.949 + 0.042 + 0.041 + 0.022 \\ -0.041 + 0.022 + 0.022 \\ R_{K^*} = 1.027 + 0.072 + 0.072 \\ -0.068 + 0.027 + 0.026 \\ -0.02$$

low-
$$q^2$$
 : $q^2 \in [0.1, 1.1] \text{ GeV}^2/c^4$
central- q^2 : $q^2 \in [1.1, 6.0] \text{ GeV}^2/c^4$

- Most precise LFU test, all four measurements are consistent with the SM (at the 0.2σ level) - the $R_{K^{(*)}}$ anomaly is gone
- Note that LHCb still sees significant anomalies in $b \rightarrow s \mu \mu$ (branching fractions and angular distributions) [LHCb-PAPER-2020-041, LHCb-PAPER-2021-014]

LFU test in $B \rightarrow D^{(*)}\tau D$

- Long-standing 3σ tension in $R(D^*)$ and R(D)
- New LHCb results in both muonic [LHCb-PAPER-2022-039] and hadronic tau decays [LHCb-PAPER-2022-052] (in preparation) reported in Dec/2 and March/23
- This anomaly is still alive, waiting for the word of Belle II, however

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)}$$

$$(\ell = e \text{ or } \mu)$$

$$Ax^{2} = 1.0 \text{ contours}$$

$$Ax^{2} = 1.0 \text{ contours}$$

$$Belle 15$$

$$Belle 17$$

$$Belle 17$$

$$Belle 19$$

$$Belle$$

Other tests of LFU Light lepton flavour universality

$$R(X_{e/\mu}) = \frac{\mathcal{B}(\overline{B} \to Xe^- \overline{\nu}_e)}{\mathcal{B}(\overline{B} \to X\mu^- \overline{\nu}_\mu)} = 1.033 \pm 0.010 \text{ (stat)} \pm 0.019 \text{ (syst)}$$

Submitted to PRL [arXiv:2301.08266]

- Most precise $e \mu$ universality test using inclusive semileptonic B decays in the region $p_{\ell}^B > 1.3 \text{ GeV/}c$
- Consistent with SM expectation within 1.2σ [JHEP 11, 007 (2022)]

Other tests of LFU

 $\sin \chi \cos \theta_V$ for S_7 , and $\sin 2\chi$ for S_9

To be submitted to PRL

Search for lepton flavour violation all limits presented at 90% CL New Belle results for the LFV modes $\tau \to \ell \gamma, B \to K \tau \ell$ and $B_s \to \ell \tau$

Other recent LHCb LFV test results: [LHCb-PAPER-2022-021, LHCb-PAPER-2022-008, LHCb-PAPER-2022-008]

 $B_s \rightarrow \tau$ [arXiv:2301.10989] 121 fb⁻¹@ $\Upsilon(5S)$: 16 M B_sB_s

• Tag B_s with $B_s \rightarrow D_s X I_V$

- First measurement of $B_s \rightarrow e\tau$
- $B(B_s \rightarrow \mu \tau) < 3.4 \times 10^{-5} @LHCb$ [PRL 123, 211801(2019)]

Test of the Cabibbo-Kobayashi-Maskawa mechanism

Cabibbo-Kobayashi-Maskawa quark mixing

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \mathbf{V} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$
$$\mathbf{u} \quad \mathbf{C} \quad \mathbf{t}$$
$$\mathbf{d} \quad \mathbf{s} \quad \mathbf{b}$$

$$-\mathcal{L}_{W^{\pm}} = \frac{g}{\sqrt{2}} \ \overline{u_{Li}} \ \gamma^{\mu} \ (V_{\text{CKM}})_{ij}$$

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

 $\mathbf{V}\mathbf{V}^{\dagger} = \mathbf{V}^{\dagger}\mathbf{V} = 1$

The weak interaction down-type doublet partners are a mixture of the mass (flavour) eigenstates described by the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix

The CKM element magnitudes squared determine the rate of quark flavour transitions in charged current processes

$$d_{Lj} W^+_{\mu} + \text{h.c.}$$

CP violation

$$V_{\rm CKM} = \begin{pmatrix} 1 - \lambda^2/2 \\ -\lambda \\ A\lambda^3 (1 - \rho - i\eta) \end{pmatrix}$$

- However, $V_{\rm CKM}$ also contains a complex phase, responsible for all CP-violating and B meson decays so far
- New physics would typically disturb the SM pattern of CPV

Wolfenstein parametrization of $V_{\rm CKM}$

$$\begin{array}{ccc} \lambda & A\lambda^{3}(\rho - i\eta) \\ 1 - \lambda^{2}/2 & A\lambda^{2} \\ -A\lambda^{2} & 1 \end{array} + \mathcal{O}(\lambda^{4}) \end{array}$$

phenomena in the quark sector of the SM, and consistent with observations in K, D

The CKM unitarity triangle ...and how to probe it with B mesons

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

Mixing-induced CP violation in B decays • B^0 and \overline{B}^0 decay to a common CP eigenstate f_{CP} B⁰ f_{CP} • There is a non-vanishing CP asymmetry as a function of the decay time difference Δt , **B**⁰ S: mixing induced CPV S sin(∆m∆t) + A cos(∆m∆t) A : direct CPV (=-C)

$$A_{CP}(\Delta t) = \frac{\Gamma(\overline{B^{0}}(\Delta t) \rightarrow f_{CP}) - \Gamma(B^{0}(\Delta t) \rightarrow f_{CP})}{\Gamma(\overline{B^{0}}(\Delta t) \rightarrow f_{CP}) + \Gamma(B^{0}(\Delta t) \rightarrow f_{CP})} = S$$

• For $B^0 \to J/\psi K_S$, $S = -\xi \sin(\phi_1)$ and A = 0

measure position instead of time

CP violation in $B^0 \rightarrow J/\psi K_S$

• Belle result

$sin(2\phi_1) = 0.667 \pm 0.023 \pm 0.012$ A = 0.006 ± 0.016 ± 0.012

[PRL 108, 171802 (2012)]

• First measurement by Belle II is done with 189/fb

• Statistically limited

- In the SM, $S = -\xi \sin(2\phi_1)$ for $b \to s$
- However, NP could cause this to shift
- The theoretical uncertainty in the SM depends on the final state ($K_S K_S K_S$, ϕK^0 , $\eta' K^0$) are cleanest

$$\phi_s^{s\bar{s}s} = (-0.074 \pm 0.069)$$
 rad
 $|\lambda| = 1.009 \pm 0.030$

$B \rightarrow K\pi$ **Gronau sum rule**

- Rare decay with relatively high branching fraction ($\approx 10^{-5}$)
- Tree and penguin contributions (direct *CP* violation)
- The sum-rule provides precise prediction of the relation of the branching fractions and A_{CP} [M.Gronau, PLB627 (2005) 82]

$$I_{K\pi} = \mathcal{A}_{CP}^{K^{+}\pi^{-}} + \mathcal{A}_{CP}^{K^{0}\pi^{+}} \frac{\mathcal{B}_{K^{0}\pi^{+}}}{\mathcal{B}_{K^{+}\pi^{-}}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{CP}^{K^{+}\pi^{0}} \frac{\mathcal{B}_{K^{+}\pi^{0}}}{\mathcal{B}_{K^{+}\pi^{-}}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{CP}^{K^{0}\pi^{0}} \frac{\mathcal{B}_{K}}{\mathcal{B}_{K^{+}\pi^{-}}} + 2\mathcal{A}_{CP}^{K^{0}\pi^{0}} \frac{\mathcal{B}_{K}}{\mathcal{B}_{K^{+}\pi^{-}}} + 2\mathcal{A}_{CP}^{K^{0}\pi^{0}} \frac{\mathcal{B}_{K}}{\mathcal{B}_{K^{+}\pi^{-}}} + 2\mathcal{A}_{CP}^{K^{0}\pi^{0}} \frac{\mathcal{B}_{K^{+}\pi^{-}}}{\mathcal{B}_{K^{+}\pi^{-}}} + 2\mathcal{B}_{K^{+}\pi^{-}} + 2\mathcal{B}_{K^{+}\pi$$

• $I_{K\pi}$ is predicted to be 0 within 1%, Belle II can measure all observables

- Competitive with current world average (-0.13 ± 0.11)

Combination of results on $B \rightarrow DK$ processes to constraint ϕ_3/γ

LHCb combination: [LHCb-CONF-2022-002] $\gamma = (63.8^{+3.5}_{-3.7})^{\circ}$

CKM angle ϕ_3/γ BPGGSZ method (binned model-independent) [Phys.Rev.D68, 054018]

- ϕ_3/γ is the phase between $b \to u$ and $b \to c$ transitions
- The interference between these two diagrams gives access to the amplitude ratio, which contains ϕ_3/γ

$$B^{-} \rightarrow \overline{D}^{\theta} K^{-}$$

CKM angle ϕ_3/γ BPGGSZ method (binned model-independent) [Phys.Rev.D68, 054018]

- To observe interference, we need to reconstruct D^0 in a self-conjugate mode
- To avoid model dependence, the strong phase difference between the D^0 and \bar{D}^0 decays is taken from CLEO/BES III measurements

$$\begin{bmatrix} z_{\pm}, y_{\pm} \\ z_{\pm}, y_{\pm} \\ z_{i}, s_{i} \\ D^{0} - \overline{D^{0}} \\ F_{i} \\ F_$$

Belle+Belle II measurement of $B \rightarrow DK$ JHEP 02, 063 (2022) [arXiv:2110.12125]

- 711/fb of Belle and 128/fb of Belle II data
- Using both $D^0 \to K^0_S \pi^+ \pi^-$ and $D^0 \to K^0_S K^+ K^-$
- Yields extracted in simultaneous fit to $B \rightarrow DK$ and $B \rightarrow D\pi$ (misID rate determined from data)

Signal yields:Belle:Belle II :
$$K_S^0 \pi \pi$$
: 1467 ± 53 $K_S^0 \pi \pi$: 280 ± 21 $K_S^0 KK$: 194 ± 17 $K_S^0 KK$: 34 ± 7

Belle+Belle II measurement of $B \rightarrow DK$ JHEP 02, 063 (2022) [arXiv:2110.12125]

• Simultaneous fit in Dalitz bins to extract CP observables (x_+, y_+) which contain r_B , δ_B and ϕ_3/γ

 $\delta_{\rm B}[^{\circ}] = 124.8 \pm 12.9 \text{ (stat) } \pm 0.5 \text{ (syst) } \pm 1.7 \text{ (ext)}$

 $r_{\rm B}^{\rm DK} = 0.129 \pm 0.024 \text{ (stat)} \pm 0.001 \text{ (syst)} \pm 0.002 \text{ (ext)}$

 γ [°] = 78.4 ± 11.4 (stat) ± 0.5 (syst) ± 1.0 (ext)

 To be compared to LHCb's result using the same method and channels [JHEP 02 (2021) 169]

Semileptonic *B* decays **Determination of the CKM elements** $|V_{cb}|$ and $|V_{\mu b}|$

- SL B decays are studied to determine the CKM elements $|V_{ch}|$ and $|V_{\mu h}|$
 - $|V_{xb}|$ are limiting the global constraining power of UT fits
 - Important inputs in predictions of SM rates for ultrarare decays such as $B_s \rightarrow \mu \nu$ and $K \rightarrow \pi \nu \nu$
- The determinations can be
 - *Exclusive* from a single final state
 - *Inclusive* sensitive to all SL final states

	Experiment	Theory
Exclusive V _{cb}	$B \rightarrow Dlv, D^*lv$ (low backgrounds)	Lattice QC light cone s rules
Inclusive V _{cb}	B → Xlv (higher background)	Operator pro expansio

Experimental status $|V_{cb}|$ and $|V_{ub}|$

- Determinations of both $|V_{ch}|$ and $|V_{ub}|$ exhibit a discrepancy at the level of ~3 σ between exclusive and inclusive
- The current experimental focus is on understanding the origin of this discrepancy, as this inconsistency limits the power of precision flavour physics

$B^0 \rightarrow D^{*-} \ell^+ \nu$ at Belle II (189/fb)

BGL fit result, truncation order determined by Nested Hypothesis Test [Phys. Rev. D100, 013005]

	Values	Correlations	χ^2/ndf
$\tilde{a}_0 \times 10^3$	0.89 ± 0.05	$1.00 0.26 \ -0.27$	0.07
$\tilde{b}_0 imes 10^3$	0.54 ± 0.01	$0.26 1.00 \ -0.41$	-0.46 40/21
$\tilde{b}_1 \times 10^3$	-0.44 ± 0.34	-0.27 - 0.41 1.00	0.56 40/31
$\tilde{c}_1 \times 10^3$	-0.05 ± 0.03	0.07 - 0.46 0.56	1.00

LQCD used only for normalisation at zero recoil (w = 1)

To be submitted to PRD

Belle II $|V_{cb}|$ and $|V_{ub}|$

• Recent Belle II results on exclusive decays

	$ V_{cb} \times 10^3$		Reference
Belle II $B^0 \to D^{*-} \ell^+ \nu$ untagged	40.9 ± 1.2 (BGL)	Preliminary	To be submitted to PRD
Belle II $B^0 \to D^{*-} \ell^+ \nu$ tagged	37.9 ± 2.7 (CLN)	Preliminary	[arXiv:2301.04716]
Belle II $B \to D\ell\nu$ untagged	38.28 ± 1.16 (BGL)	Preliminary	[arXiv:2210.13143]
	$ V_{ub} \times 10^3$		Reference
Belle II $B \rightarrow \pi e \nu$ tagged	3.88 ± 0.45	Preliminary	[arXiv:2206.08102]
Belle II $B \to \pi \ell \nu$ untagged	3.55 ± 0.25	Preliminary	[arXiv:2210.04224]

WA values [HFLAV 2021] $|V_{cb}|_{excl} = (39.10 \pm 0.50) \times 10^{-3}$ $|V_{ub}|_{excl} = (4.19 \pm 0.17) \times 10^{-3}$

$|V_{cb}|$ and $|V_{ub}|$ at LHCb

	V _{cb} x 10 ⁻³	reference
$B_s \rightarrow D_s^{(*)} \mu^+ \nu_{\mu}$	41.4±0.6±0.9±1.2 (CLN)	<u>Phys. Rev. D101 (2020) 072004</u>
$B_s \rightarrow D_s^{(*)} \mu^+ \nu_{\mu}$	42.3±0.8±0.9±1.2 (BGL)	<u>Phys. Rev. D101 (2020) 072004</u>

From the LHCb direct measurement of $|V_{ub}|/|V_{cb}|$ and using the world average of exclusive measurements $|V_{cb}| = (39.5 \pm 0.9) \times 10^{-3}$

	V _{ub} x 10 ⁻³	reference
$B_s^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$	2.40±0.16 (q ² <7 GeV ² /c ⁴)	Phys. Rev. Lett. 126 (2021) 081804
$B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$	3.74±0.32 (q²>7 GeV²/c4)	<u>Phys. Rev. Lett. 126 (2021) 081804</u>
$\Lambda^0_b \rightarrow p \mu^- \nu_\mu$	3.27±0.23	Nature Physics 11 (2015) 743

Summary and conclusion

- LHCb and Belle II will improve present SM constraints in the flavour section
 - Tests of lepton flavour universality/violation
 - Test of the CKM mechanism
- While we have seen the demise of some anomalies in the past year,

others are still present and the experimental situation needs to be clarified with urgency

Backup

Untagged vs. Tagged

Untagged:

only $B_{\rm sig}$ is reconstructed

high signal yield (+) high backgrounds (-) poor neutrino reconstruction (-)

Tagged:

 $B_{\rm sig}$ and $B_{\rm tag}$ are reconstructed to take advantage of $\Upsilon(4S)$ kinematics

signal yield O(10³) lower (-) low backgrounds (+) good neutrino reconstruction (+) tag calibration (-)

N

 π^+

 $\bar{\mathbf{D}}_0$

 e^+

Simultaneous fit $R_{K,K^{*0}}$ Muons

Simultaneous fit $R_{K,K^{*0}}$ Electrons

