# Dark sectors and tau physics at Belle II

#### Laura Zani

on behalf of the Belle II collaboration





La Thuile, 2023.03.29

57<sup>th</sup> Rencontres de Moriond – QCD & High Energy Interactions

\*laura.zani@roma3.infn.it

#### Dark matter and light dark sectors

• Dark matter is one of the most compelling reasons for new physics



Dark Sector Candidates, Anomalies, and Search Techniques

B-factories at e<sup>+</sup>e<sup>-</sup> collider can access the mass range favored by light dark sectors

Possible sub-GeV scale scenario: *light dark sector* weakly coupled to SM through a light *mediator X* 

- Vector portal  $\rightarrow$  **Dark Photons, Z' bosons**
- Scalar portal  $\rightarrow$  **Dark higgs/Scalars**
- Neutrino portal  $\rightarrow$  Sterile Neutrinos



L.Zani - Dark sectors and tau phsyics at Belle II - Moriond 2023

### Dark sectors searches at Belle II

- Many models proposed, possibly very small couplings:
   1) Be signature-based
  - 2) Profit from **clean environment** at lepton colliders + **hermetic detector: Belle II** at **SuperKEKB** asymmetric-energy e<sup>+</sup>e<sup>-</sup> collider

 $\rightarrow$  running mainly at  $\sqrt{s}$  = 10.58 GeV: B & T factory ( $\sigma_{\mbox{\tiny bb}} \sim \sigma_{\mbox{\tiny \tau\tau}} \sim$  1 nb), known initial state

- $\rightarrow$  efficient reconstruction of neutrals (17, 1), recoiling system and missing energy
- $\rightarrow$  specific **low-multiplicity triggers:** single track/ muon/photon (previously not available at Belle) **GOAL:** suppress high-cross section QED processes O(1-300 nb), without killing the signal < O(10 fb)
- Currently on first shutdown since July 2022
- Accumulated 424 fb<sup>-1</sup> (~ Babar, ~ half of Belle) and unique energy scan samples



L.Zani - Dark sectors and tau phsyics at Belle II - Moriond 2023

#### - for M<sub>S</sub> < M<sub>B</sub> decay to dark matter kinematically forbidden by relic density constraint

- Look for S decays into SM final states in 8 exclusive channels:
  - $B^+ \rightarrow K^+ S$  and  $B^0 \rightarrow K^{*0} (\rightarrow K^+ \pi^-) S$ ,

with  $S \rightarrow ee/\mu\mu/\pi\pi/KK$ 

- B-meson kinematics to reject combinatorial background
- SM long-lived  $K_s$  mass region vetoed  $\rightarrow$  excellent control sample in data
- Bump hunt with extended max likelihood unbinned fits to the reduced **mass spectrum** subtracted by twice the mass of the final state particles (easier to model at threshold), separately for each channel and lifetime

### Search for long-lived (pseudo)scalar in $b \rightarrow s$ transitions

- **Model-independent** search for dark scalar particles S from B decays in rare  $b \rightarrow s$  transition
  - S could mix with SM Higgs with mixing angle  $\theta_{s}$  (naturally long-lived for  $\theta_{s} \ll 1$ )



Belle II Preliminary

 $L dt = 189 \text{ fb}^{-1}$ 



 $B^+ \rightarrow K^+ S(\rightarrow \pi^+ \pi^-)$ 

MC stat

#### NEW for Moriond! First model independent results for LLP

• No significant excess found in  $189~fb^{{}_{-1}} \rightarrow first~model-independent~95\%$ CL upper limits on BF(B $\rightarrow$ KS) $\times$ BF(S $\rightarrow$ x+x-)

 $\rightarrow$  First limits on decays to hadrons

• Translate into model dependent limits on  $m_s vs sin\theta_s$ , with  $c\tau_s = f(m_s, \theta_s)$ 

Dark Higgs-like scalar S model interpretation [1]





[1]: Phys. Rev. D 101 095006 (2020)

L.Zani - Dark sectors and tau physics at Belle II - Moriond 2023

### Search for invisibly decaying Z' boson

- New gauge boson Z' coupling only to the  $2^{nd}$  and  $3^{rd}$  generation of leptons  $(L_{\mu}-L_{\tau})$  [1] may explain: longstanding  $(g-2)_{\mu}$  anomaly, dark matter abundance and B anomalies  $e^{-}$ ,  $\mu^{-}$ ,  $\tau^{-}$ ,  $\mu^{-}$ ,  $\tau^{-}$ ,  $\chi^{-}$ ,  $\chi^{-}$
- Search for the process:  $e^+e^- \rightarrow \mu^+\mu^- Z'$ , BF( $Z' \rightarrow \nu \overline{\nu}$ ) ~33-100%, BF( $Z' \rightarrow \chi \overline{\chi}$ ) ~ 100%, if DM kinematically accessible
- Look for a narrow peak in the recoil against a  $\mu^+\mu^{_-}$  pair in events where nothing else is detected
- Dominant background radiative QED processes:
  - $^{-}e^{+}e^{-} \rightarrow \mu^{+}\mu^{-}(\gamma)$
  - *e+e*-→**τ**+**τ**-(γ)

*<sup>−</sup> e<sup>+</sup>e<sup>-</sup>→e<sup>+</sup>e<sup>-</sup>µµ* 

- $\rightarrow$  FSR properties of the emitted Z' feeded in a neural network [2] trained for all Z' masses simultaneously:  $\varepsilon_{\rm sig} \sim 5\%$
- High statistics samples of  $\mu\mu\gamma,$  ee,  $e\mu$  used for selection validation and evaluation of the systematic uncertainties

B.Shuve and I.Yavin (2014) Phys. Rev. D 89, 113004; Altmannshofer et al JHEP 1612 (2016) 106.
 *Punzi-net*, F. Abudinén et al., Eur.Phys.J.C 82 (2022) 2, 121
 L.Zani - Dark sectors and tau physics at Belle II - Moriond 2023



#### Limits on invisible Z' arXiv:2212.03066

• Template fits to the recoil mass squared, in bins of recoil polar angle  $\rightarrow$  no significant excess, 90% CL upper limits on the cross section  $\sigma(e^+e^- \rightarrow \mu^+\mu^-Z', Z' \rightarrow invisible)$  and on the *coupling constant g'* 



[1] Belle II Collaboration, Phys. Rev. Lett. 124, 141801 (2020) L.Zani - Dark sectors and tau physics at Belle II - Moriond 2023

#### Search for a $\tau\tau$ resonance in ee $\rightarrow \mu\mu\tau\tau$

- Look for a di-tau resonance in e<sup>+</sup>e<sup>-</sup> $\rightarrow$   $\mu^+\mu^-\tau^+\tau^-$  as a peak in the recoil against two muons
- Reconstruct  $\tau$  decays to **one-charged particle** (+ nh<sup>0</sup>)  $\rightarrow$  select four-track events, with  $M_{4track} < 9.5$  GeV to require **missing energy** due to  $v_{\tau}$
- Suppress background with 8 classifiers (Multi-Layer Perceptron) trained in different recoil mass ranges
- Estimate background directly from data to minimize impact of **known mismodeling**





- No evidence found in **63.3 fb**<sup>-1</sup> from fits to the recoil mass in [3.6 10] GeV/c<sup>2</sup>
- Set upper limits on the product σ(e<sup>+</sup>e<sup>-</sup>→ μ<sup>+</sup>μ<sup>-</sup>τ<sup>+</sup>τ) · B(X→τ<sup>+</sup>τ<sup>-</sup>) → could be reinterpreted by different models: Z' [1], *leptophilic scalar S* [2] decaying into τ<sup>+</sup>τ<sup>-</sup>

 $\rightarrow$  world best limits for  $M_{_S}{>}6.5~\text{GeV}/c^2$  in leptophilic scalar S model

L.Zani - Dark sectors and tau phsyics at Belle II - Moriond 2023

[1] W. Altmannshofer et. al. JHEP 12 (2016) 106
[2] M. Bauer et. al. arXiv:2110.10698

### Invisible boson in lepton-flavor violating $\tau$ decays

- LFV signatures imply new physics (in SM predicted at 10<sup>-50</sup>, beyond current sensitivity)  $\rightarrow \tau$  decays to new LFV bosons (ALPs) predicted in many models [1]
- Search for the process  $e^+e^- \rightarrow \tau_{sig} (\rightarrow l\alpha) \tau_{tag} (\rightarrow 3\pi\nu)$ , with l=e or l= $\mu$



- Approximate  $\mathbf{T}_{sig}$  pseudo-rest frame as  $E_{sig} \sim \sqrt{s/2}$  and  $\hat{p}_{sig} \approx -\vec{p}_{\tau_{tae}} / |\vec{p}_{\tau_{tae}}|$
- Two-body decay: search a bump in normalized lepton energy  $x_i$  spectrum over irreducible background from  $\tau_{sM} \rightarrow i\nu\nu$
- No signal found in **62.8 fb**<sup>-1</sup>  $\rightarrow$  set 95% CL upper limits on BF ratios of **BF**( $\tau_{sig} \rightarrow l\alpha$ ) normalized to BF( $\tau_{SM} \rightarrow l\nu\nu$ )

Between 2-14 times more stringent than previous limits (ARGUS, 1995 [2])

M. Bauer, et al. Phys. Rev. Lett. 124, 211803 (2020)
 ARGUS Collaboration, Z. Phys. C 68, 25 (1995)

L.Zani - Dark sectors and tau phsyics at Belle II - Moriond 2023



Arxiv:2212.03634, accepted by PRL

#### NEW for Moriond!

## Search for LFV $\tau \to I \Phi$ decays

- New mediators (vector leptoquark [1]) may enhance LFV  $\tau \rightarrow I\Phi$  decays and accommodate for flavor anomalies in LFU tests
- Previous searches at Belle (854/fb) [2] with tagged approach ( $\tau_{tag} \rightarrow I/h(\nu_I)\nu_{\tau}$ )
  - $\rightarrow$  Increase signal efficiency: drop any requirement on the tag side (untagged reconstruction) and use BDT classifiers exploiting signal and event kinematic features to suppress background
- \*  $\varepsilon_{
  m sig}$  = 6.5% for muon mode, ~ 2 x Belle
- Poisson counting in signal regions in  $M_\tau$  and  $\Delta E_\tau = E^*_{_{sig}} \sqrt{s}/2 \ \text{plane}$ 
  - $\rightarrow$  expected background evaluated from data  $\ensuremath{\textbf{reduced sidebands}}$  with scaling from simulation
- No significant excess in  $190~fb^{\mbox{-1}},$  set 90% CL upper limits on the BF with  $\mbox{CL}_{\mbox{\tiny s}}$  method

$$\begin{split} \mathsf{BF}_{_{\text{UL}}}(\tau \rightarrow \mathsf{e}\Phi) &= 23 \times 10^{\text{-8}} \\ \mathsf{BF}_{_{\text{UL}}}(\tau \rightarrow \mu \Phi) &= 9.7 \times 10^{\text{-8}} \end{split}$$

Andrei Angelescu, et al., Phys. Rev. D 104, 055017 (2021),
 Y. Miyazaki et al., Belle, Phys. Lett. B 699 (2011)



Ttag

Tsia

 $\rightarrow$ Results not competitive yet, but successful first application of untagged approach in  $\tau$ -pair analysis at Belle II

L.Zani - Dark sectors and tau phsyics at Belle II - Moriond 2023

 $\phi \rightarrow K^+ K^-$ 

### for Moriond! Measurement of the τ-lepton mass

- Lepton properties are fundamental parameters of the SM and need to be measured with the highest precision
  - $^-$  tau mass known with  ${\sim}10^{\scriptscriptstyle3}$  worse precision than the muon mass
  - $^-$  uncertainties important in lepton flavor universality  $\ensuremath{\textit{tests}}$  of  $\ensuremath{\textit{SM}}$
- Reconstruct  $e^+e^- \rightarrow \tau_{tag} \tau_{sig}$  events with  $\tau_{tag} \rightarrow l \nu_l \nu_{\tau} / \pi(\pi^0) \nu_{\tau}$  and  $\tau_{sig} \rightarrow 3\pi \nu_{\tau}$  as four tracks and no additional high energy photons in the event
- Access  $m_{\tau}$  with *pseudo-mass* technique  $M_{\min}$ :  $\sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 E_{3\pi}^*)(E_{3\pi}^* P_{3\pi}^*)} \le M_{\tau}$
- Fit to the end point with an empirical function, smeared edge due to *detector resolution effects* and larger *tails because of ISR*



L.Zani - Dark sectors and tau phsyics at Belle II - Moriond 2023

 $\nu_{\tau}$ 

hadrons

 $\tau$ 

Signal

 $\hat{n}_{thrust}$ 

 $\tau$ 

 $\nu_{\tau}$ 

 $\bar{\nu}_{o}$ 

Tag

#### **NEW**

for Moriond!

#### **τ** mass: precision challenge

| Excellent control of systematic unc<br>beam energies and tracking: $M_{\min}$ =                                                                                                                                                                     | certainties the $\sqrt{M_{3\pi}^2 + 2}$                  | hank $(\sqrt{s})$ | is to precise understanding of $/2 - E_{3\pi}^* (E_{3\pi}^* - P_{3\pi}^*) \le M_{\tau}$                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source                                                                                                                                                                                                                                              | Uncertainty $[MeV/c^2]$                                  |                   |                                                                                                                                                                                               |
| Knowledge of the colliding beams:<br>Beam energy correction<br>Boost vector<br>Reconstruction of charged particles:<br>Charged particle momentum correction<br>Detector misalignment                                                                | 0.07<br>$\leq 0.01$<br>0.06<br>0.03                      | •                 | Beam energy calibration<br>with B-meson hadronic decays<br>method and Y(4S) lineshape<br>measurement to get $\sqrt{s}$                                                                        |
| Fitting procedure:<br>Estimator bias<br>Choice of the fit function                                                                                                                                                                                  | 0.03<br>0.02                                             |                   |                                                                                                                                                                                               |
| Mass dependence of the bias<br>Imperfections of the simulation:<br>Detector material budget<br>Modeling of ISR and FSR<br>Momentum resolution<br>Neutral particle reconstruction efficiency<br>Tracking efficiency correction<br>Trigger efficiency | $ \begin{array}{c}                                     $ |                   | <b>Momentum scale factor</b><br>cures the bias due to imperfect<br>field: extract corrections depend<br>on $\cos\theta_{track}$ by comparing $D^0 \rightarrow H$<br>mass peak w.r.t PDG mass. |
| Background processes Total                                                                                                                                                                                                                          | $\leq 0.01$<br>0.11                                      |                   |                                                                                                                                                                                               |

#### ergy calibration

#### tum scale factor

bias due to imperfect Bact corrections dependent by comparing  $D^0 \rightarrow K\pi$ ak w.r.t PDG mass.



### for Moriond! World's most precise measurement

• World's most precise measurement of  $m_{ au} = 1777.09 \pm 0.08_{
m stat} \pm 0.11_{
m sys}~
m MeV/c^2$ 



L.Zani - Dark sectors and tau physics at Belle II - Moriond 2023

### Summary and conclusions

- Belle II has *unique sensitivity* for light dark sectors searches and is *complementary* to highenergy collider and beam dump experiments
- Confirms world's leading precision capabilities
  - → Search for a long-lived (pseudo-)scalar in b  $\rightarrow$  s transitions
  - \* Search for invisible Z' in ee  $\rightarrow \mu\mu Z'$  arXiv:2212.03066
  - \* Search for  $\tau\tau$  resonance in ee  $\to \mu\mu\tau\tau$
  - → Search for invisible LFV scalar in  $\tau \rightarrow I\alpha$  arXiv:2212.03634
  - $\textbf{\scriptsize \ }$  Search for LFV  $\tau \rightarrow \mathsf{I}\Phi$  decays
  - → Measurement of the  $\tau$  -lepton mass

 $\rightarrow$  424 fb<sup>-1</sup> already on tape, more results on larger statistics and with improved analyses in the pipeline

/hanks for your attention!

L.Zani - Dark sectors and tau phsyics at Belle II - Moriond 2023



L.Zani - Dark sectors and tau phsyics at Belle II - Moriond 2023

#### SuperKEKB accelerator



 GOAL: 30 x KEKB peak luminosity, L = 6 · 10<sup>35</sup> cm<sup>-2</sup>s<sup>-1</sup> (nano-beam scheme technique<sup>\*</sup>)

ightarrow unprecedented luminosity, wolrd record **4.7x10**<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>

### Belle II Luminosity

Total Integrated luminosity for good runs:

- Total integrated luminosity: 424 fb<sup>-1</sup>
- Total integrated luminosity at the Y(4S) resonance: 363 fb<sup>-1</sup>
- Total integrated luminosity below Y(4S) resonance: 42 fb<sup>-1</sup>
- Total integrated luminosity above Y(4S) resonance: 19 fb<sup>-1</sup>



### Long-shutdown activity and plans

Belle II stopped taking data in Summer 2022 for a long shutdown

- replacement of beam-pipe
- replacement of photomultipliers of the central PID detector (TOP)
- installation of 2-layered pixel vertex detector
- improved data-quality monitoring and alarm system
- complete transition to new DAQ boards (PCIe40)
- replacement of aging components
- additional shielding and increased resilience against beam backgrounds

Currently working on pixel detector installation:

- > shipping to KEK in mid March
- > final test at KEK scheduled in April

 $\rightarrow$  On track to resume data taking next winter with new pixel detector

Search for LFV  $\tau \to I\Phi$  decays:  $\mathsf{CL}_{_S}$  results



L.Zani - Dark sectors and tau physics at Belle II - Moriond 2023

#### Previous searches for LFV $\tau \to I \Phi$ decays

| BaBar Collaboration, B. Aubert et al.,                                         |  |  |  |  |
|--------------------------------------------------------------------------------|--|--|--|--|
| Improved Limits on Lepton Flavor Violating Tau Decays to Ιφ, Ιρ, ΙΚ*, and ΙΚ*, |  |  |  |  |
| Phys. Rev. Lett. 103 (2009).                                                   |  |  |  |  |

| Mode                 | $\varepsilon$ [%] | $N_{ m bgd}$  | $N_{\rm obs}$ | $N_{ m UL}^{90}$ | $\mathcal{B}^{90}_{\mathrm{exp}}$ | $\mathcal{B}^{90}_{\mathrm{UL}}$ |
|----------------------|-------------------|---------------|---------------|------------------|-----------------------------------|----------------------------------|
| $e\phi$              | $6.43\pm0.16$     | $0.68\pm0.12$ | 0             | 1.8              | 5.0                               | 3.1                              |
| $\mu\phi$            | $5.18\pm0.27$     | $2.76\pm0.16$ | 6             | 8.7              | 8.2                               | 19                               |
| $e\rho$              | $7.31\pm0.18$     | $1.32\pm0.17$ | 1             | 3.1              | 4.9                               | 4.6                              |
| $\mu ho$             | $4.52\pm0.41$     | $2.04\pm0.19$ | 0             | 1.1              | 8.9                               | 2.6                              |
| $eK^*$               | $8.00\pm0.19$     | $1.65\pm0.23$ | <b>2</b>      | 4.3              | 4.8                               | 5.9                              |
| $\mu K^*$            | $4.57\pm0.36$     | $1.79\pm0.21$ | 4             | 7.1              | 8.5                               | 17                               |
| $e\overline{K}^*$    | $7.76\pm0.18$     | $2.76\pm0.28$ | <b>2</b>      | 3.2              | 5.4                               | 4.6                              |
| $\mu \overline{K}^*$ | $4.11\pm0.32$     | $1.72\pm0.17$ | 1             | 2.7              | 9.3                               | 7.3                              |

| Belle Collaboration, Y. Miyazaki et al.,                                        |  |  |  |
|---------------------------------------------------------------------------------|--|--|--|
| Search for Lepton-Flavor-Violating tau Decays into a Lepton and a Vector Meson, |  |  |  |
| Phys. Lett. B 699 (2011).                                                       |  |  |  |

| Mode                            | $\varepsilon$ (%) | $N_{ m BG}$   | $\sigma_{\rm syst}$ (%) | $N_{\rm obs}$ | $s_{90}$ | $\mathcal{B}_{\rm obs}~(\times 10^{-8})$ |
|---------------------------------|-------------------|---------------|-------------------------|---------------|----------|------------------------------------------|
| $\tau^- \to \mu^- \rho^0$       | 7.09              | $1.48\pm0.35$ | 5.3                     | 0             | 1.34     | 1.2                                      |
| $\tau^- \to e^- \rho^0$         | 7.58              | $0.29\pm0.15$ | 5.4                     | 0             | 2.17     | 1.8                                      |
| $\tau^- \to \mu^- \phi$         | 3.21              | $0.06\pm0.06$ | 5.8                     | 1             | 4.24     | 8.4                                      |
| $\tau^- \to e^- \phi$           | 4.18              | $0.47\pm0.19$ | 5.9                     | 0             | 2.02     | 3.1                                      |
| $\tau^- \to \mu^- \omega$       | 2.38              | $0.72\pm0.18$ | 6.1                     | 0             | 1.76     | 4.7                                      |
| $\tau^- \to e^- \omega$         | 2.92              | $0.30\pm0.14$ | 6.2                     | 0             | 2.19     | 4.8                                      |
| $\tau^- \to \mu^- K^{*0}$       | 3.39              | $0.53\pm0.20$ | 5.5                     | 1             | 3.81     | 7.2                                      |
| $\tau^- \to e^- K^{*0}$         | 4.37              | $0.29\pm0.14$ | 5.6                     | 0             | 2.17     | 3.2                                      |
| $\tau^- \to \mu^- \bar{K}^{*0}$ | 3.60              | $0.45\pm0.17$ | 5.5                     | 1             | 3.90     | 7.0                                      |
| $\tau^- \to e^- \bar{K}^{*0}$   | 4.41              | $0.08\pm0.08$ | 5.6                     | 0             | 2.34     | 3.4                                      |