plan of the Belle II experiment to further elucidate the KM mechanism and beyond

Nanae Taniguchi (KEK IPNS) on behalf of the Belle II collaboration

physics in B-factory

- Approach in flavor physics experiments is to search for new physics through quantum effect
- all quarks appear in B-factory
 - study coupling between new physics particles and each quark
 - include 3rd generation which is the key of CP violation
- heavy lepton, tau
 - B-factory is also tau-factory
 - Belle II collect large sample of tau-pair event

KEKB \rightarrow **SuperKEKB**

	KEKB	SuperKEKB
electron/positron	8.0/3.5 GeV	7.0/4.0 GeV
beam size at IP (vertical β-function)	~6mm	~0.3mm
beam currents	I.4/I.7A	2.6/3.6A
Luminosity(cm ⁻² s ⁻¹)	2.1×10 ³⁴	60×10 ³⁴

- SuperKEKB is unique ee collider at Y(4S) mass energy at this moment
- aiming to luminosity of 10³⁵
 - squeeze beam size at IP
 - increase beam currents
 - change beam energy to compensate beam life time

Belle → Belle II

multi-purpose detector It is required to achieve higher performance at higher trigger rate and higher background condition

all detectors and systems are upgraded

background tolerance is improved by finer segment, higher time resolution Trigger rate (500 Hz → 30kHz at Max.) ← pipe-line signal readout is implemented new vertex detector: Pixel detector provide excellent vertexing with Si strip detector

new particle ID detectors: Time Of Propagation and Aerogel Ring Image Cherenkov counter

Highlight

- 2019: physics run started
- 2020: updated luminosity record of KEKB(2x10³⁴)
- 2022: L=4.7x10³⁴. new world record
- integrated luminosity 427/fb until 2022 summer
 - competitive with Babar, almost half of Belle-I
- long shutdown until 2023 autumn
 - installation of pixel detector with full
 2nd layer
 - many updates and maintenance works of machine and detector are ongoing

New and difficult accelerator. Additional operational complexity during the pandemic

Belle II physics program

- Belle (1999 2010) : was constructed to substantiate KM model (~1/ab) achieved!!
- Belle II (2018) : is designed to find new physics beyond KM model (~50/ab)
 - Belle in many sectors the charment

Belle II physics program

- Belle (1999 2010) : was constructed to substantiate KM • model (~l/ab) achieved!!
- Belle II (2018) : is designed to find new physics beyond KM model (~50/ab)
 - Belle Contribute in many sectors •

B, charge, tau, dark, hadror

New Hadrons, QCD measu

Electroweakphysicswife

Magnetic Gazelle (LLP

Tau Spectral Fun

epton Flavor Violatio

Tau Electric Dipole Mot

A FB (tau, mu, e+, b, c) improved tau LPV

Tau m

e+e- -->ISR, pi+ pi- cross-sections (g

Spin Fragmentation Function

Linac energy

I will show some highlight in the next slides Some results are reported in the KEK-FF

MatriX Elements (Vcb, Vub)

Fe B decays

Stadtonic b. 1c decays

phases in b->s: B->phi Ks, B->eta' Ks

ospin sum rules

Measurements

Vtd/Vts from pengu

VV: right-handed currents, triple product

amma determinations

New charmed resonances

nguins: b-->s |+|-, lepton universality, NP

Exclusive measuremen

u nu, lepton universality

search for new physics in Mixing

- After era of Belle and Babar, CKM elements become a precision test of the SM
- only Belle II can measure all six observables (sides and angles of unitarity triangle) precisely
- discrepancy between Tree and Loop → clear evidence of new physics !

$\Phi_1(\beta)$ measurement

- Φ_1 is known as first observed CP violation in B meson
- · CP violation is caused by interference between direct decay and decay via mixing
- $B \rightarrow J/\psi K_S$ decay allow to measure CKM angle Φ_1 precisely
 - Time dependent CP asymmetry. Amplitude ~ $sin2\Phi_1$

$\Phi_1(\beta)$ measurement

- Φ_1 is known as first observed CP violation in B meson
- CP violation is caused by interference between direct decay and decay via mixing
- $B \rightarrow J/\psi K_S$ decay allow to measure CKM angle Φ_1 precisely
 - Time dependent CP asymmetry. Amplitude ~ $sin2\Phi_1$

- Thanks to excellent performance of vertex detector, vertex resolution is improved
 - factor 2 better than Belle
 - small radius of beam pipe(1.5cm \rightarrow 1cm) recover precision on Δz since detector can close to IP
- smaller beam size give advantage on measurement of decay vertex

Φ1 measurement

- Belle II first measurement
- consistent result with Belle
 - systematic error is comparable with Belle, thanks to improvement of detector performance
- further improvement is expected as integrated luminosity increase

Belle II prospect

- At Belle II (50/ab), angles and sides are expected to be measured with ~I deg. and I-2% uncertainties respectively
- extrapolating the world average of 2017, clear discrepancy between tree and loop is expected

Belle II prospect for NP

Assuming new physics contribution to B mixing

mixing amplitude $M_{12} = (M_{12})_{\rm SM} \times (1 + h_d e^{2i\sigma_d})$

deviation from SM

energy scale of new physics (NP) in Bd mixing
 NP flavor mixing is CKM-like : O(1)-O(10)TeV

* coupling is 1 : O(100) - O(1000) TeV

Flavor Changing Neutral Current process

- Flavor changing neutral current $b \rightarrow s(d)$
 - loop diagram is dominant in SM \rightarrow good probe for BSM
 - contribution of BSM appear as deviation from SM prediction
 - photon or leptons in final state → uncertainty of theoretical calculation is small
 - however, large uncertainty of hadronization (e.g. B→K*) in exclusive branching fraction(BF) measurement
 - inclusive measurement
 - theoretically clean
 - experimentally difficult

Inclusive $B.F(B \rightarrow Xs)$ measurement

prospect of inclusive B.F(B→Xsγ) measurement

- World average is consistent with SM prediction
- theoretical and experimental errors are competitive ~ 5%
- systematic error is dominant in measurements
- Belle II expect to improve $5 \rightarrow 3\%$
 - dominant systematic error in lepton-tag come from fake signal due to neutral hadron
 - Theoretical uncertainty is also expected to become comparable

New physics scale

- constraint on charged Higgs mass.
- M(H+) > ~900GeV at Belle II (~580GeV by Belle)

electroweak penguin

Test of Lepton Flavor Universality $\mathcal{B}(B \to K^{(*)})$

 $R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)} \mu \mu)}{\mathcal{B}(B \to K^{(*)} e e)}$

R=1 in SM(assuming universality of lepton)

deviation from R=1 was observed

- electroweak penguin decays are further suppressed
- BF~ 10^{-6} = BF(b \rightarrow s γ)× 10^{-2}

$b\to s\ell\ell$

- charged lepton can be detected
- experimentally clean measurement
- inclusive measurement is possible in Belle II
- At Belle II, electron and muon modes have similar efficiency
 - electron mode is challenging at LHCb
 - both low and high-q2(=MII) regions are possible

recent results of LHCb agree with SM

electroweak penguin

 $B \to K^* ee$

M_{bc} [GeV/c²]

 $\mathcal{B}(B \to K^* \mu \mu) = (1.19 \pm 0.31^{+0.08}_{-0.07}) \times 10^{-6}$ $\mathcal{B}(B \to K^* ee) = (1.42 \pm 0.48 \pm 0.09) \times 10^{-6}$

similar performance for muon and electron channels

electroweak penguin

- $B \to K \nu \nu$ search in Belle II (63/fb)
 - new analysis approach: inclusive tag.
 - Signal Kaon

signal

 $\bar{\nu}$

 B^+

- require charged track with highest Pt
- particle identification

 B^{-}

- All remaining tracks and clusters are associated to other B in the event
- higher reconstruction efficiency, but higher background → suppressed with BDT(boosted decision tree) classifiers that identify the distinctive characteristic of

semi-leptonic tag : $\varepsilon = O(0.1)$ % Belle hadronic tag : $\varepsilon = O(0.01)$ % BaBar inclusive tag : $\varepsilon = O(1)$ % Belle II

Κ^(*)νν

- no observation
- small theoretical uncertainty compared with sll
- challenging due to 2 neutrinos in the final state.
- Belle II is a only experiment to observe this mode.
 - $\Delta(B.F) \sim 10\%$ at 50/ab

tau physics

consistency test of SM

- Belle II collect large sample of tau-pair event
- Belle II can provide rich physics program of high precision measurement
 - lifetime and mass
 - Lepton Flavor Violation
 - Lepton Flavor Universality Violation

 $\Upsilon(4S) : 1.05 (nb)$ $\tau^+ \tau^- : 0.919 (nb)$

not only B but also tau factory !

advantages at Belle II

- tau produces in pairs
- well defined initial state energy
- clean environment
- high hermeticity of detector

no significant excess observed \rightarrow set world leading limits

		arXiv:2212.03634v1
Upper Limit at 95% CL		
	$\mathcal{B}(\tau^- \to e^- \alpha) / \mathcal{B}(\tau^- \to e^- \bar{\nu_e} \nu_\mu)$	$\mathcal{B}(\tau^- \to \mu^- \alpha) / \mathcal{B}(\tau^- \to e^- \bar{\nu_e} \nu_\mu)$
Belle II (62.8/fb)	$(1.1 - 9.7) \times 10^{-3}$	$(0.7 - 12.2) \times 10^{-3}$
ARGUS (0.5/fb)	$(6-36) \times 10^{-3}$	$(3-34) \times 10^{-3}$

direct NP

search

tau physics

- Tau LFV searches (1~50/ab)
 - unambiguous signatures of new physics
 - $\tau \rightarrow \mu \gamma$, 3-leptons and many modes > 40
 - Unique to Belle II, leading every modes

dark sector prospect

- Study of dark sector is active at Belle II
- dark matter may interact with SM particles through several portal interaction
 - vector portal (dark photon A', Z'), pseudo-scalar portal (axion-like particles)
- Belle II can search region of 100 MeV a few GeV
 - trigger is a key; single photon trigger, single track(muon) trigger
 - challenging due to higher background
 - thanks to upgrade of TRG and DAQ system at Belle II, search for dark sector is very active and wide-ranging program

summary

- At KEK, chronicle of ee collider
 - TRISTAN \rightarrow KEKB \rightarrow SuperKEKB
- SuperKEKB has achieved 4.7x10³⁴, new world record
 - super B factory now
- Belle II has started to produce new results
- we expect a new, exciting era of discoveries, looking for new physics beyond the Standard Model