59th Winter Meeting on Nuclear Physics

Recent Results from *Bellell*

Giulia Casarosa

on behalf of the Belle // Collaboration

Bormio, January 25th, 2023

Outline

- Introduction 0
- Belle II at the High-Luminosity B-Factory SuperKEKB 0
- 0
 - B, charm, τ & Dark Sector 0
- Conclusions 0

Overview of the Physics Program & Some Recent Highlights

Belle II

2

The Standard Model ...

- the SM is the most successful theory that describes elementary particles and interactions
 - the elementary fermions and bosons have been observed (some) indirectly) and their properties have been measured
 - the quark model predicts the vast majority of observed bound states, mesons and baryons
 - Interactions between mesons, baryons and leptons are predicted with a precision of $\mathcal{O}(1\%)$
 - hundreds of observables (branching ratios, CP violation) parameters, asymmetries, ...) are measured to be consistent with the theory predictions – within the theoretical and the experimental uncertainty

... and its open questions

but still we have (big) open questions coming from observations unexplained by the SM

- no explanation of the size of the observed matter-antimatter asymmetry [effect $\mathcal{O}(100\%)$]
- no dark matter candidate nor dark energy explanation [95% of the universe is unknown]
- no explanation of masses hierarchy, ...
- and tensions between measurements and SM predictions that need progress in either theory or experiment (or both) to be interpreted
 - (g-2)µ
 - tensions come & go…
 - ... anomalies in angular observables in $b \rightarrow s\ell\ell?$

physics beyond the SM (New Physics) is likely to exist

not confirmed :(

4

Hunting for New Physics

- Belle II belongs to the Intensity Frontier, New Physics is searched in:
 - very high-precision measurements to detect (tiny) deviations from SM predictions produced by *virtual* New Physics particles
 - SM-forbidden processes enabled by the presence of virtual NP particles in box / loops / ...
- probes NP mass scale higher than the one accessed at the Energy Frontier, e.g. $\mathcal{O}(10 \text{ TeV})$ in b \rightarrow s $\ell\ell$
- what is needed at the intensity frontier?
 - a *larger* dataset to minimise statistical uncertainty
 - keep systematics under control

The Energy Frontier

Origins of Mass

Matter/Anti-matter Asymmetry

Neutrino Physics

The Intensity

Belle II

Proton Decay

Frontier

Dark matter

Origin of Universe

Unification of Forces

New Physics Beyond the Standard Model

The Cosmic

Physics Frontiers

- significantly contributed to the SM success
- → main process: $e^+e^- \rightarrow (boosted)$ Y(4S) → BB
 - B mesons are produced in an entangled s B mesons are produced in an entangled s informations on the flavour/CP-state of ot $\sqrt[6]{0.12}$ signal channel
- → not only $B\overline{B}$ events are produced → rich \widehat{O} harm, \overline{T} , quarkonium, and low-multiplicity physics program!
- Belle & BABAR, have collected together 1.5/ab
 - $1.7 \times 10^9 \text{ BB}$, $2 \times 10^9 \text{ cc}$, $1.4 \times 10^9 \text{ t+t-}$ events
 - the majority of existing measurements are (still) limited by the statistical uncertainty

Bormio 23

Belle II

Belle II is a 2nd generation experiment that'll collect a much larger* dataset to significantly increase the precision!

* Belle II goal is 50/ab = x30 (Belle + BABAR datasets)

SuperKEKB High-Luminosity B-Factory

- SuperKEKB is a 2nd generation asymmetric e⁺e⁻ collider at the Y(4S) mass energy
- Target instantaneous luminosity is $\mathscr{L} = 6x10^{35}$ cm⁻²s⁻¹ (x30 w.r.t. KEKB/Belle)
 - max instantaneous luminosity $\mathcal{L} = 4.7 \times 10^{34}$ cm⁻²s⁻¹ (world record)
- Achievable in the nano-beam scheme*
 - increase beam currents
 - squeeze beams at the interaction point
 - reduced beam energy asymmetry

Bormio 23

* proposed by P. Raimondi for SuperB

SuperKEKB High-Luminosity B-Factory

- SuperKEKB is a 2nd generation asymmetric e⁺e⁻ collider at the Y(4S) mass energy
- \rightarrow Target instantaneous luminosity is $\mathscr{L} = 6 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ (x30 w/r.t. KEKB/Belle)
 - max instantaneous luminosity $\mathcal{L} \neq 4.7 \times 10^{34}$ cm⁻²s⁻¹ (WR)
- Achievable in the nano-beam scheme*
 - increase beam currents
 - squeeze beams at the interaction point
 - reduced beam energy asymmetry

Bormio 23

* proposed by P. Raimondi for SuperB

Belle II experiment @ SuperKEKB High-Luminosity B-Factory

- multi-purpose detector designed to reconstruct *all** particles from the e+ecollision
- excellent vertexing
- high-efficiency detection of neutrals (γ, π⁰, η, η', ...)
- high trigger efficiency, including for lowmultiplicity events
- reconstruction performance at least as good as Belle & BABAR

Bormio 23

* particles that interact with the detector

Belle II I DR

A Candidate Hadronic Event

NOTE: the DAQ is not synchronous to the bunch crossing (150÷250 MHz)

 \rightarrow detectors integrate many collisions (+ beam background)

 \rightarrow reconstruction is not as easy as it may look! Bormio 23

A Typical Y(4S) Event

- average multiplicities:
 - 11 charged tracks
 - 5 neutral pions
 - 1 neutral kaon
- soft charged tracks momentum spectrum

Belle II

10

Current Dataset ...

- First data recorded in 2019
 - 2 data-taking period per year
- Collected data
 - 362/fb at Y(4S)*
 - 42/fb off-resonance, 60 MeV below Y(4S)
 - 19/fb energy scan between 10.6 to 10.8 GeV for exotic hadron studies

L (fb ⁻¹)	Belle	BABAR	total
Y(5S)	121	_	121
Y(4S)	711	433	1144
Y(3S)	3	30	33
Y(2S)	25	14	39
Y(1S)	6	_	6
off-res	100	54	154

Bormio 23

... and road to 50/ab

Bormio 23

60 ntegrated 40 Luminosity 30 20 [ab-10 0 2034

- Long Shutdown 1 (LS1)
 - now
 - end 2022 2023
 - maintenance/upgrade of machine & sub-detectors
- Long Shutdown 2 (LS2)
 - to be confirmed
 - 2026 2027
 - upgrade of the SuperKEKB Interaction Region

Overview Of the Physics Program and its rich menu

Bormio 23

Belle II

13

The Physics Program a snapshot

- Belle II is (going to) contribute in many sectors
 - Standard Model Physics, CPV
 - Dark Sector (ALPs, Z', Dark Higgs)
 - LFU, LFV, EDM, ...
- with many types of analyses:
 - (many sort of) searches
 - time-dependent
 - missing energy and missing mass
 - on the Dalitz Plot (multi-body)

Belle II

Belle II Physics Book, PTEP 2019 123C01

Snowmass White Paper

14

The Physics Program a snapshot

- Belle II is (goir many sectors
 - Standard M
 - Dark Sector
 - LFU, LFV, E
- ... with many
 - (many sort c)
 - time-depend
 - missing ene

I will show some recent highlight.

- "Bottomonium Physics at Belle II" A. BOSCHETTI, WEDNESDAY 17:30
- hexaguark at Belle II" DR. B. SCAVINO, THURSDAY 18:00
- on the Dalitz Plot (multi-body)

Belle II

improved tau

Belle II Physics Book, PTEP 2019 123C01

Snowmass White Paper

physics

Bormio 23

16

A BB Event

Bormio 23

- tag-side Exclusive Reconstruction (FEI):
 - for weak signature signals, e.g. $B^+ \rightarrow \tau^+ v$
 - hadronic tag: $\varepsilon = \mathcal{O}(0.5\%)$, less background
 - semileptonic tag: $\varepsilon = O(2\%)$, more background
- tag-side Inclusive Reconstruction (+ FT):
 - for stronger signature signals
 - ignore details, measure inclusive observables
 - higher efficiency but more background
 - ✓ effective offline B meson beam
 - high-efficiency flavour/CP tagging
 - \checkmark high performances in channels with missing energy

BB Physics a very rich program

 $B^{+} \rightarrow D^{(*)}K^{(*)}^{+}$

B mixing & searches for new sources of CPV

non-SM probes from radiative & (semi)-leptonic decays

- tests of LFU, e.g. $R(X_{e/\mu})$,

measurements of CKM Unitary Triangle sides & angles

overconstraining the UT is a very powerful test of the SM

$B^0 \to J/\psi K_S$

$sin 2\beta/\phi_1$ the B° mixing phase

$$\mathcal{A}^{raw}(\Delta t) = \frac{N(\bar{B^0} \to R)}{N(\bar{B^0} \to R)}$$

- SM measurement, but important analysis to refine all our tools for future measurement sensitive to NP (e.g. $B^0 \rightarrow K_S K_S K_S$): we are ready! ²⁵⁰ Belle II (Preliminary)
 - 1st generation B-factories golden channel for SM mixing
- Δt resolution function & flavour tagger parameters from other analyses
 - flavour tagger effective efficiency:

Bormio 23

- - WA (K_S mode only) S_{CP} = 0.695 ± 0.019 A_{CP} = 0.000 ± 0.020

CKM Elements |V_{ub}| & |V_{cb}| SM tests

 main limiting factors to the UT constraining power

- are important inputs in predictions of SM rates for ultra rare decays, e.g. B → μν, K → πνν (that may have NP contributions)
- extracted from semileptonic decays:
 - (signal) exclusive
 - **V**_{ub}: $B \to h\ell \bar{\nu}_{\ell}$ with $h = \pi, \rho, \omega$
 - $\mathbf{V_{cb}}: B_{(s)} \to D_{(s)}^{(*)} \ell \bar{\nu}_{\ell}$
 - (signal) inclusive $B \to X_{u,c} \ell \bar{\nu}_{\ell}$

rest-of-event informations used to compute q²

 $|V_{ub}| ext{ from untagged } B^0 o \pi^- \ell^+
u_\ell$

Differential rate in terms of $q^2 = (p_\ell + p_\nu)^2$

$$\frac{d\Gamma(B^0 \to \pi^- \ell^+ \nu)}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 |p_\pi|^3 |f_+(q^2)|^2$$

consistent with the exclusive determination

$B^{0} \rightarrow \pi^{0} \pi^{0} Branching Ratio & Acp$ important channel for the measurement of the CKM angle α/Φ_2

- The most experimentally difficult $\pi\pi$ mode shows that we can do all-neutrals final states
- - use $B \rightarrow D^{0}(K^{+}\pi^{-}\pi^{0}) \pi^{0}$ as control channel
 - B flavour extract with flavour tagger, $\varepsilon_{tag} = (30.0 \pm 1.2 \pm 0.4)\%$

Bormio 23

(to be submitted to PRD)

 \bullet signal yields extracted with a 3D fit to M_{bc}, ΔE and the continuum-suppression BDT output

Results:

 $A_{CP} = 0.14 \pm 0.46 \pm 0.07$

 $\mathscr{B} = (1.27 \pm 0.25 \pm 0.17) \cdot 10^{-6}$

WA: $A_{CP} = 0.33 \pm 0.22$, $BR = (1.59 \pm 0.26)10^{-6}$

close to Belle precision with only ~1/4 of the dataset!

 $A_{CP} = 0.14 \pm 0.36 \pm 0.10$ $\mathscr{B} = (1.31 \pm 0.19 \pm 0.19) \cdot 10^{-6}$

using the Full Event Interpretation (FEI)

- First ever *inclusive* measurement of $R(X_{e/\mu})$, with hadronic tagging of the B_{tag} & $p_{\ell}^* > 1.3$ GeV/c • precise knowledge of the B_{tag} kinematics allows to inclusively reconstruct B_{sig}
- signal yields are extracted with a template fit to the center-of-mass lepton momentum
 - continuum background constrained with off-res data
 - rest is contained from bkg-enriched regions in data

Bormio 23

$$(\mu) = \frac{N_{Xev} \cdot \epsilon_{X\mu\nu}}{N_{X\mu\nu} \cdot \epsilon_{Xe\nu}}$$
 with
 $N_{el} \cdot (\epsilon_{B_{tag}}^{data} / \epsilon_{B_{tag}}^{MC})$
 $N_{el} \cdot (\epsilon_{B_{tag}}^{data} / \epsilon_{B_{tag}}^{MC})$

- Most precise BF-based LFU test with semileptonic B decays
 - main systematic due to lept-ID
 - can be extended to lower p_{ℓ}

 $= 1.033 \pm 0.010^{stat} \pm 0.020^{syst}$

in agreement with SM: 1.006±0.001 (K.Vos, M. Rahimi) Belle II in progress

This measurement enables the measurement of $R(X_{\tau/\ell})$

arXiv/2301.08266

- FCNC potentially sensitive to non-SM contributions via new particles contributing both in the box and in the penguin diagrams
 - only one Wilson coefficient in SM (C_{L}^{SM}), while C_{L} and C_{R} probe NP
- Previous measurements at Belle & BABAR were based on exclusive reconstruction of the second B meson \rightarrow new approach at Belle II with the inclusive reconstruction
 - much higher reconstruction efficiency with respect to the exclusive reconstruction
 - ... but higher backgrounds \rightarrow suppressed with BDT classifiers that identify the distinctive characteristics of the signal
- Competitive performance already with a small data sample!
 - Belle II is more than "redoing" Belle & BABAR measurements

(Some) Prospects for B physics

- factional uncertainties below 3% are expected
- will double the global precision exclusive $|V_{ub}|$, also in absence of improvements in theoretical inputs
- with advances in LQCD we can do even better

Bormio 23

- fundamental channel for the α/ϕ_2 determination, unique to Belle II
- can improve by one order of magnitude, as the main systematic (π^0 reconstruction efficiency) scales with statistics

semitauonic R

- uncertainties on R(D^(*)) should be under 10% with few ab⁻¹
- inclusive R(X) measurements unique for Belle II will be performance with high accuracy
- possible additional observables: D^* and τ polarization

charm physics

Bormio 23

A Charm Event is Different $e^+e^- \to c\bar{c} \to D_{\rm tag}X_{\rm frag}D_{\rm sig}$ a brief picture

 \rightarrow e⁺e⁻ \rightarrow two charm hadrons + *fragmentation*

- no entanglement between the two charm hadrons, inaccessible strong phase between the two charm hadrons
- reconstruct the signal channel:
 - D⁰ flavour tagging: D^{*+} \rightarrow D⁰ π ⁺ decays, or exploiting the rest-of-the-event informations

mixing & CPV

(new for *Belle II*, coming soon!) high-precision SM (e.g. lifetimes), searches of new states, $\mathsf{D} \twoheadrightarrow \mathsf{V} \gamma$, ...

Full Charm Event Reconstruction, similar to B-physics exclusive reconstruction

invisible, ...

inclusive charm mesons & baryons samples to study (semi-)leptonic decays (missing energy), or to search of rare/forbidden decays, form factors & CKM elements

Belle II

* per e⁺e⁻ annihilation at $\sqrt{s} = 10 \text{ GeV}$

Charm Lifetimes status & motivation

- strong interactions
 - mass is not so heavy \rightarrow the spectator quark contribution can't be neglected
- measurement*:

$$\tau(\Xi_c^+) > \tau(\Lambda_c^+) > \tau(\Xi_c^0) > \tau(\Omega_c^0)$$

interest in improving the precision on these SM measurements

Lifetimes measurements test non-perturbative QCD and provide guidance to describe

• HQE used to determine heavy-quark hadron lifetimes as expansion in $1/m_q$ but the charm

 \rightarrow HQE predicted hierarchy of hadron lifetimes (<2018), disproved by LHCb Ω_c lifetime

Belle II confirmed the new picture $\Lambda_c \& \Omega_c$ lifetime measurement (200/fb) D+lifetime measurement (72/fb)

PRL, 121, 092003 (2018) * $\Omega_c \rightarrow pKK\pi$ from semileptonic B decays

Results

- World's most precise measurements for the Λ_c (~200/fb), D^o and D⁺ lifetimes (72/fb)
- Lifetimes consistent with world averages (D^{o} , D^{+} , Λ_{c}) and with LHCb value (Ω_{c}).
- First lifetime measurements done at experiments at B-Factories
 - Belle II can do more than what Belle & BABAR have done
- Few per-mill accuracy establishes the excellent performance of our detector!

220

200

180

Prospects on Charm CPV based on extrapolations from Belle analysis

- Charm is unique to search for CPV in the up-type quark sector
 - D⁰ is the only mixing system made of up-type quarks
- Measurement of A_{CP} in several channels are needed to overcome difficulties in the computation of SM predictions
 - e.g. use sum rules, estimating SU(3)_F symmetry breaking effects (need A_{CP} and BR of SU(3)_Fconnected channels)
- Belle II contribution will be important especially on neutrals in the final state
 - first measurements will be out soon!

 $A_{CP} = \frac{N(D) - N(\bar{D})}{N(D) + N(\bar{D})}$

Mode	\mathcal{L} (fb ⁻¹)	A_{CP} (%)	Belle II 5
$\overline{{}_{\mathcal{T}} D^0 \to K^+ K^-}$	976	$-0.32 \pm 0.21 \pm 0.09$	± 0.0
$D^0 \rightarrow \pi^+ \pi^-$	976	$+0.55\pm 0.36\pm 0.09$	± 0.0
$\square D^0 o \pi^0 \pi^0$	966	$-0.03\pm 0.64\pm 0.10$	± 0.0
$D^0 o K^0_S \pi^0$	966	$-0.21\pm 0.16\pm 0.07$	± 0.0
$D^0 ightarrow K^{\widetilde{0}}_S K^0_S$	921	$-0.02 \pm 1.53 \pm 0.02 \pm 0.17$	± 0.2
$D^0 ightarrow K_S^{ ilde{0}} \eta$	791	$+0.54\pm 0.51\pm 0.16$	± 0.0
$D^0 ightarrow K_S^{ m 0} \eta'$	791	$+0.98\pm 0.67\pm 0.14$	± 0.0
$D^0 \to \pi^+\pi^-\pi^0$	532	$+0.43\pm1.30$	± 0.1
$D^0 \to K^+ \pi^- \pi^0$	281	-0.60 ± 5.30	± 0.4
$D^0 \to K^+\pi^-\pi^+\pi^-$	281	-1.80 ± 4.40	± 0.3
$D^+ o \phi \pi^+$	955	$+0.51\pm 0.28\pm 0.05$	± 0.0
$D^+ \to \pi^+ \pi^0$	921	$+2.31 \pm 1.24 \pm 0.23$	± 0.1
$D^+ \to \eta \pi^+$	791	$+1.74\pm 1.13\pm 0.19$	± 0.1
$D^+ o \eta' \pi^+$	791	$-0.12\pm 1.12\pm 0.17$	± 0.1
$D^+ \to K^0_S \pi^+$	977	$-0.36\pm 0.09\pm 0.07$	± 0.0
${}_{ \ }D^+ \to K^{ \widetilde{0}}_S K^+$	977	$-0.25\pm 0.28\pm 0.14$	± 0.0
$D_s^+ \to K_S^0 \pi^+$	673	$+5.45 \pm 2.50 \pm 0.33$	± 0.2
$\left(\begin{array}{c} D_s^+ \to K_S^{ar 0} K^+ \end{array} \right)$	673	$+0.12\pm 0.36\pm 0.22$	± 0.0
$\sqrt{D_s^+ \to K^+ \pi^0}$	otor thio	ic not a complete list	

<u>note</u>: this is not a complete list

physics

Bormio 23

Hadronic: 1ν

τPhysics at Belle II

rich program of high-precision measurements:

- lifetime & mass (SM)
- V_{us} , CP asymmetries e.g. $\tau \rightarrow K_S \pi v$
- LFV searches & LFU tests
- \rightarrow main advantages of studying τ (and dark matter) physics at Belle II
 - well defined initial state energy & clean environment
 - high hermiticity of the detector & precise knowledge of acceptance and efficiency
 - dedicated low-multiplicity triggers lines

τ events are classified by the of number of tracks in the final state:

- 1-prong: 50% from hadronic decays, 35% of leptonic decays
- 3-prong: 15%, from hadronic decays

$\tau \rightarrow \ell \alpha (invisible)$

Neutrino-less LFV decays are sensitive probes of New Physics

• e.g. long-lived ALPs or LFV Z'

require 1x3 prong event topology, veto additional neutrals

- \rightarrow SM background $\tau \rightarrow \ell v v$ but lepton is monoenergetic in the τ rest frame
 - τ rest frame *approximated* using the 3 tracks in the tag side
- Iook for a bump in the lepton energy spectrum

$\tau \rightarrow \ell \alpha \text{ (invisible)}$ results

- \rightarrow no significant excess observed \rightarrow set 95% CL upper limits on -
 - previous measurement by ARGUS with 0.5/fb

most stringent limits in these channels to date

Bormio 23

33

$$\frac{\mathscr{B}(\tau^- \to \ell^- \alpha)}{\mathscr{B}(\tau^- \to \ell^- \nu \bar{\nu})}$$

Z. Phys. C 68 (1995) 25

Program for LFV searches in τ decays

- Charged LFV is allowed in various extensions of the SM but it was never observed
 - many channels accessible (only) at Belle II

Bormio 23

$$\begin{split} &-\tau \to \ell \ell \ell \\ \text{formula} &-\tau \to \ell K_s, \Lambda h \\ &-\tau \to \ell V_0 (\to h h') \\ &-\tau \to \ell P^0 (\to \gamma \gamma) \\ &-\tau \to \ell h h' \\ &-\tau \to \ell \gamma \end{split}$$

Hard

Simple

Physics models	$B(au o \mu \gamma)$	$B(au o \mu \mu)$
SM + v mixing	$10^{-49} \sim 10^{-52}$	$10^{-53} \sim 10^{-53}$
SM+heavy Majorana v_R	10^{-9}	10^{-10}
Non-universal Z'	10 ⁻⁹	10^{-8}
SUSY SO(10)	10 ⁻⁸	10^{-10}
mSUGRA + seesaw	10 ⁻⁷	1 0 ⁻⁹
SUSY Higgs	10^{-10}	1 0 ⁻⁷

Ref: M. Blanke, et al., Charged Lepton Flavour Violation and (g - 2)µ in the Littlest Higgs Model with T-Parity: a clear Distinction from Supersymmetry, JHEP 0705, 013 (2007).

Clark sector physics

Bormio 23

Dark Sector search for (light) Dark Bosons & Dark Matter

- → light DM with masses @(MeV-GeV) can be searched at Belle II
 - interest for models with low-mass dark matter candidates growing after null searches @ LHC & direct searches
 - theoretical models predict light mediators that couples DM to SM particles

- The main challenge at Belle II is to suppress the large SM background, saving the signal
 - dedicated low-multiplicity triggers

precise knowledge of acceptance and efficiency Bormio 23

$Z' \rightarrow Invisibile$

- $L_{\mu}-L_{\tau}$ gauge boson Z' could explain $(g-2)_{\mu}$ and other flavour anomalies
- → we search for e+e- → μ + μ + missing energy
 - Z' searched in the recoil mass of the di-muon system
 - high-suppression of SM backgrounds
- no excess was found
 - set 90% CL limits
 - fully invisible means BR(Z' \rightarrow invisible) = 1
 - most stringent limits to date

Bormio 23

Dark Matter Prospects

several world leading results:

- Z' → invisible (PRL 124 141801, 2020) now superseded by 2022 result
- ALP $\rightarrow \gamma \gamma$ <u>PRL 125 161806 (2020)</u>
- Z', ALP, $S \rightarrow \tau\tau$ (to be submitted to PRL)
- dark higgs \rightarrow invisible $\frac{\text{accepted by PRL}}{\frac{\text{arXiv}/2207.00509}}$
- and many other searches ongoing

Conclusions

- Belle II physics program is very broad, I discussed just a small fraction of it!
 - B, charm, τ, dark matter (...) physics
- First results confirm the very good detector performance & status of our tools: we are ready for the NP search!
- Innovative analysis & reconstruction techniques (wrt 1st generation B-Factories) will push our precision *beyond* the increase of luminosity
- Even with a data sample smaller than that of BABAR and Belle we produced world leading measurements
 - charm lifetimes, $R(X_{e/\mu})$, upper limits on Z' \rightarrow invisible & $\tau \rightarrow \ell \alpha$, ...

Thank you for your attention.

