

Recent results from Belle II

12th High-Energy Physics International Conference (HEPMAD 2022) Antananarivo, Madagascar 10th - 16th October, 2022

Jyotirmoi Borah

(*on behalf of the Belle II collaboration*)

Indian Institute of Technology Guwahati, Assam, India

Dutline

Collider

- The superKEKB collider
- The Belle II detector

Recent results from Belle II

- Physics program at Belle II
- A brief introduction to some physics areas
- Followed by recent results

Summary and outlook

• Future prospects of Belle 2

Abbreviations

- Standard Model: SM
- New Physics: NP
- Interaction point: IP
- Electroweak: EW
- Quantum Chromodynamics: QCD
- Flavor Changing Neutral Current: FCNC
- Multivariate Analysis: MVA
- Boosted Decision Tree: BDT
- Full Event Interpretation: FEI
- Kernel Density Estimation: KDE
- Boyed-Grienstein-Lebed: BGL
- Caprini-Lellouch-Neubert: CLN
- Bourrely-Caprini-Lellouch: BCL

The SuperKEKB collider (Luminosity frontier)

• Goal to achieve intantaneous luminosity (\mathcal{L}) of 6 × 10³⁵ cm⁻²s⁻¹ and integrated $\mathscr L$ of 50 ab⁻¹ to meet various physics requirements

• β_{v}^{*} is a function related to the transverse beam size along the beam trajectory

In comparison to KEKB

- β_y^* is reduced by 1/20
- Beam currents are doubled

() *Ie*[−] = 2.60 A, *Ie*⁺ = 3.60 A

• Lesser asymmetry in beam energy is to reduce backgrounds

 $(E_{e^-} = 4.0 \text{ GeV}, E_{e^+} = 7.0 \text{ GeV})$

• The crossing angle is quadrupled (83 mrad)

• Nano-beam scheme (*Raimondi*)

50 X more data than KEKB

The Belle II detector

- Belle II is a general purpose next generation 4π detector
- It is designed to withstand extreme luminosity
- Currently it is undergoing upgrade (LS1) to boost data-taking capability

Improvements over Belle

- Addition of PXD to VXD with close proximity to IP improves vertex reconstruction
- Larger CDC with more sense wires
- Improvement in PID using Cherenkov imaging technique (TOP)
- Electronics improvement in the ECL
- Addition of inner layers to KLM

Other improvements

- New triggers introduced for dark matter searches
- Use of advanced analysis tools and techniques
- Optimal use of machine learning techniques

KL and muon detector: **Resistive Plate Counter (barrel)** Scintillator + WLSF + MPPC (end-caps) **EM Calorimeter:** Csl(Tl) + waveform sampling (barrel + endcaps)**Particle Identification** Time-of-Propagation counter (barrel) electron (7GeV) **Prox. focusing Aerogel RICH (fwd)** Beryllium beam pipe 2_{cm} diameter **Vertex Detector** 2 layers DEPFET + 4 layers DSSD positron (4GeV) **Central Drift Chamber** He(50%):C2H6(50%), Small cells, long lever arm, fast electronics

HEPMAD 2022 4 J.Borah | IITG

Belle II TDR (arXiv:1011.0352)

Current status of data taking at Belle II

- Belle II collected data mainly at e^+e^- CM energy of 10.56 GeV
- This CM energy corresponds to the threshold production of $B\bar{B}$ events from $\Upsilon(4S)$ resonance
- Reached a world record of peak intantaneous luminosity of 4.71×10^{34} cm⁻²s⁻¹

• Recorded total integrated luminosity of $\sim 424 \text{ fb}^{-1}$

Physics programs at Belle II

Charm Lifetime measurements

Motivation to study charm

• Charm is the only up type quark whose hadronic weak decays can be analyzed, as the top quark decays much before it can hadronize

- Precise τ measurements are used to calculate partial decay widths from experimentally measured decay fractions.
- Additionally, it can be used to extract Standard Model (SM) parameters $(|V_{cs}|, |V_{cd}|)$

 $(\tau = \hbar / \Gamma_{\text{total}})$

Pre-Belle II status of charm lifetime measurements

Before 2000 (From theoretical predictions)

 $\tau(D^+) > \tau(D_s^+) > \tau(D^0) > \tau(\Xi_c^+) > \tau(\Lambda_c^+) > \tau(\Xi_c^0) > \tau(\Omega_c^0)$

Before 2018 (From experimental measurements)

 $\tau(D^+) > \tau(D_s^+) > \tau(\Xi_c^+) > \tau(D^0) > \tau(\Lambda_c^+) > \tau(\Xi_c^0) > \tau(\Omega_c^0)$

After 2018 (From experimental measurements) (Emerging)

$$
\tau(D^+) > \tau(D_s^+) > \tau(\Xi_c^+) > \tau(D^0) > \tau(\Omega_c^0) > \tau(\Lambda_c^+) > \tau(\Xi_c^0)
$$

Hadron Lifetimes (fs) Experiment Year FOCUS 2002 LHCb $1 \t2017$ LHCb | 2019 FOCUS 2002 LHCb 1 2018 LHCb 1 2019 $LHCb$ 1 2019 D^+ D_s^+ Ξ_c^+ *D*0 Ω_c^0 Λ_c^+ Ξ_c^0 $1039.4 \pm 4.3 \pm 7.0$ $506.4 \pm 3.0 \pm 1.7 \pm 1.7$ $456.8 \pm 3.5 \pm 2.9 \pm 3.1$ $203.5 \pm 1.0 \pm 1.3 \pm 1.4$ $154.5 \pm 1.7 \pm 1.6 \pm 1.0$ $409.6 \pm 1.1 \pm 1.5$ $268 \pm 24 \pm 10 \pm 2$

First uncertainty is <i>stat., second is <i>syst., third is due to $\tau(D^+)$

- D^0 and D^+ lifetime measurements are two decades old
- LHCb's measurements are relative and dominated by $\tau(D^+)$ uncertainties

Advantages at Belle II

- Large production cross-section of charm quarks, $\sigma_{c\bar{c}} \sim \sigma_{b\bar{b}}$
- Absolute measurement of lifetimes of all charm hadrons
- e^+e^- provides a 'clean' environment for reconstruction
- Better vertex resolution due to close proximity (1.4cm from IP) of the pixel detector in comparison to Babar and Belle

Lifetime measurements of $D^+, D^0, \Lambda_c^+, \Omega_c^0$

• The hardons are considered from e^+e^- → $c\bar{c}$ $\left[\frac{D^0 \to K^- \pi^+}{\int L dt = 72 \text{ fb}^{-1}}\right]$ 10⁴ $10⁴$ **Belle II Preliminary** $\Lambda_c^+ \to pK^-\pi^+$ events produced near $\Upsilon(4S)$ resonance L dt = 207.2 fb⁻¹ $10³$ $10³$ \rightarrow Data • Lorentz boost provides the separation between the \bullet Data $10²$ $10²$ - Total fit $-$ Fit Candidates per 70 fs production and decay vertex (d) per 70 fs 10 10 --- Background ----- Background • The decay time is calculated using, $\begin{bmatrix} 1 & 10^4 \\ 10^3 & 10^3 \end{bmatrix}$ mass $D^+ \to K^- \pi^+ \pi^+$ m_H^{\star} ⃗⋅ *p* $10³$ $t_H =$ $\frac{\mu}{p^2}$ *d* momentum 10^{2} $10²$ 10 • Background shapes are determined using side-band data $\overline{1}$ • The lifetime is extracted from a fit to (t, σ_t) distributions, Ω 10 $\mathbf{0}$ 2 10 12 6 t [ps] where σ_t is the uncertainty in *t* Decay time [ps] $\Omega_c^+ \to \Omega^- \pi^+$ **Belle II** preliminary • Data (207 fb^{-1}) $\Omega^- \to \Lambda^0 K$ Hadron Belle II (fs) (fs) (fs) References $-$ Fit Λ⁰ → *pπ*[−] Background $1039.4 \pm 4.3 \pm 7.0$: 7.0 (FOCUS) [PRL 127 211801 \(2001\)](https://doi.org/10.1103/PhysRevLett.127.211801) D^+ $1030.4 \pm 4.7 \pm 3.1$ (FOCUS) Candidates per 80 fs $409.6 \pm 1.1 \pm 1.5$ D^0 $\ddot{}$ $410.5 \pm 1.1 \pm 0.8$ (FOCUS) [arXiv : 2208.08573v1](http://arxiv.org/abs/2208.08573v1) Ω_c^0 $243 \pm 48 \pm 11$ $268 \pm 24 \pm 10 \pm 2$ (LHCb) *c* (PRD accepted) [arXiv : 2206.15227v1](http://arxiv.org/abs/2206.15227v1) Λ_c^+ 10 (LHCb) $203.20 \pm 0.89 \pm 0.77$ $203.5 \pm 1.0 \pm 1.3 \pm 1.4$ *c* (PRL accepted) World's precise measurement for D^+, D^0, Λ_c^+ lifetimes ! -3 -2 $\overline{2}$ $\overline{3}$ -1 $\bf{0}$ $\mathbf{1}$

Decay time [ps]

HEPMAD 2022 10 J.Borah | IITG Confirms Ω_c^0 is not the shortest living charmed baryon !

$|\overline{V_{cb}}|$ and $|\overline{V_{ub}}|$ measurements

Cabibbo-Kobayashi-Maskawa (CKM) matrix

Overconstrain the Unitarity Triangle by precisely measuring the sides and angles

Present status of $|V_{cb}|$ and $|V_{ub}|$ measurements

Inclusive : Sum over all possible hadronic final states $(B \to X_{c/u}$ *lv*) Exclusive : Consider a specific final state $(B \to (D/D^*/\pi) \; l\nu)$

These measurements are theoretically and experimentally independentially

Complementary measurements are important !

Apart from, constraining the UT triangle,

- V_{cb} and V_{ub} values are determined from tree level processes, assuming no new physics (NP)contributions
- These values are then used to make SM predictions for loop level processes which are sensitive to new physics (NP)

38

36

40

 $|V_{cb}|$

42

 $P(\chi^2) = 8.9\%$

 $3.2\frac{E}{4}$

3

2.8

Untagged $|V_{ch}|$ measurement: $B \rightarrow D l \nu$

Analysis strategy

Events / (0.2

 $d\Gamma/dW$ $[10^{-15}$ GeV²

25 20 15

 $10\,$ 5

 -5.9

• Signal: $B \to Dl\nu$ $(B^0 \to D^-l^+\nu, B^+ \to \bar{D}^0l^+\nu)$

Belle II Preliminary $B^- \rightarrow D^0 e^- \overline{\nu}_e$

 x^2 /ndf: 18.2/14

• $D^{-} \to K^{+}\pi^{-}\pi^{-}, D^{0} \to K^{+}\pi^{-}, l = e, \mu$

 $cos\theta_{BY}$

- Continuum is the dominant: Continuum Suppression
- Other backgrounds of conceren are: other *B* decays, $B \to D^* l \nu$

• Use D^* veto to reject these backgrounds Signal extraction: Angle between *B* and *Dl* ($cos\theta_{BY}$) • Use D^*

High efficiency/Low purity

Extraction of $|V_{cb}|$

• The partial decay rates are extracted in bins of *w* by performing a combined fit to the BGL expression and QCD form factors

$$
\eta_{\text{EW}}|V_{cb}| = (38.53 \pm 1.15) \times 10^{-3}
$$

stat. + syst. + theoretical

Consistent with exclusive world average values !

 1.1

 1.2

 1.3

W

 1.4

1.5

1.6

 1.7

 1.0

BGL $N = 3$

 1σ 2σ

 $\overline{3}\sigma$ Data

Tagged $|V_{ch}|$ measurement: $B \rightarrow D^* l \nu$

- Signal: $B \to D^*l\nu$ $(B^0 \to D^{*-}l^+\nu)$
- $D^{*-} \to \bar{D}^0 \pi^-, D^0 \to K^+ \pi^-, l = e, \mu$
- Reconstruction of low momentum pions from D^* is challenging
- FEI using HT algorithm to identify B_{tag} candidates

Untagged $|V_{uh}|$ measurement: $B \to \pi l \nu$

• Signal: $B \to \pi l \nu \ (B^0 \to \pi^{\pm} l^{\mp} \nu), l = e, \mu$

• Continuum is the dominant: Continuum Suppression (BDT)

 $\frac{1}{24\pi^3}$ $|p_\pi|^3 |f_+(q^2)|^2$

- Everything else including the other B is included as the rest-of-events to determine *pν*
- Other backgrounds of concern are: other *B*

 $G_F^2 |V_{ub}|^2$

- Extraction of $|V_{ub}|$
- The partial decay rates are extracted in bins of q^2 by performing a combined fit to the BCL expression and QCD form factor

 $M(l\bar{l})$ form factor

ICHEP 2022

$$
|V_{ub}|_{B^0 \to \pi^- l^+ \nu_l} = (3.54 \pm 0.12_{\text{stat.}} \pm 0.15_{\text{syst.}} \pm 0.16_{\text{theo.}}) \times 10^{-3}
$$

Consistent with exclusive world average values !

 $d\Gamma(B\to \pi l\nu)$

=

 dq^2

Tagged $|V_{uh}|$ measurement: $B \rightarrow \pi e \nu$

- Signal: $B \to \pi e \nu \ (B^0 \to \pi^+ e^- \bar{\nu}_e, B^+ \to \pi^0 e^+ \nu_e)$
- FEI using HT algorithm to identify B_{tag} candidates
- MC simulations are considered for background studies

• Cross-feedback:
$$
B^0 \rightarrow \rho^- l^+ \nu_l
$$

• Continuum backgrounds, generic $B\bar{B}$, and $B \to X_u l \nu$

Signal extraction:
$$
M_{miss}^2 \equiv p_{miss}^2 = (p_{B_{sig}} - p_{e\pi})^2
$$

\n
$$
\frac{d\Gamma(B \to \pi l\nu)}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} |p_{\pi}|^3 |f_+(q^2)|^2
$$
\n
$$
M(l\bar{l})
$$
\n
$$
\text{contain form factors}
$$

Extraction of $|V_{cb}|$

• The partial decay rates are extracted in bins of q^2 by performing a combined fit to the BCL expression and QCD form factors

$$
|V_{ub}| = (3.88 \pm 0.45) \times 10^{-3}
$$

stat. + syst. + theoretical

Consistent with exclusive world average values !

Rare *B* meson / Charmless *B* decays

Isospin sum rule in $K\pi$ decay channels

Assuming isospin symmetry in the dominant Feynman diagrams (QCD penguin),

$$
\Gamma(K^+\pi^-) \approx \Gamma(K^0\pi^+) \approx 2\Gamma(K^+\pi^0) \approx 2\Gamma(K^0\pi^0)
$$

$$
\mathcal{A}_{\rm CP}(K^+\pi^-) + \mathcal{A}_{\rm CP}(K^0\pi^+) \approx \mathcal{A}_{\rm CP}(K^+\pi^0) + \mathcal{A}_{\rm CP}(K^0\pi^0)
$$

In SM, $I_{K_{\pi}}=0$

Isospin sum rule in terms of CP asymmetries

$$
I_{K\pi} = \mathcal{A}_{K^+\pi^-} + \mathcal{A}_{K^0\pi^+} \frac{\mathcal{B}(K^0\pi^+)}{\mathcal{B}(K^+\pi^-)}\frac{\tau_{B^0}}{\tau_{B^+}} - 2\mathcal{A}_{K^+\pi^0} \frac{\mathcal{B}(K^+\pi^0)}{\mathcal{B}(K^+\pi^-)}\frac{\tau_{B^0}}{\tau_{B^+}} - 2\mathcal{A}_{K^0\pi^0} \frac{\mathcal{B}(K^0\pi^0)}{\mathcal{B}(K^+\pi^-)}
$$

 $(1,0)$

Determination of α/ϕ_2 using $\pi\pi$ decay channels

Extraction of α/ϕ_2 is complicated by the presence of tree and penguin diagrams.

To disentangle them, an isospin analysis is necessary which requires precision measurement of the β and CP asymmetry.

Direct CP asymmtery determination using three body decays

- Dalitz decays are useful to understand the relative contribution of tree and penguin amplitudes.
- Moreover, they are good places to look for direct CP asymmetries.

Belle II provides unique oppurtunity to measure all these decays consistently !

Isospin analysis

Consistent with previous Belle measurement

- An updated measurement with a better fit strategy : 3D fit
- Validation of analysis procedure: $B^0 \to \bar{D}(\to K^+\pi^-)\pi^0$
- Use of off-resonance data and control mode: shift and scaling parameter

$$
\mathcal{A}_{CP} = \frac{N(B^{+}) - N(B^{-})}{N(B^{+}) + N(B^{-})}
$$

Within 1.5 σ of the previous Belle result even with 2.3 times less statistics

Flavor tagging at Belle II

- $B_{\rm tag}$ is reconstructed from (after applying selection criteria in ROE events) inclusive B decays.
- They are so chosen that the flavor of the B_{tag} (B or \bar{B}) can be determined. Eg. $B^0 \to X^- l^+ \nu$
- They are not 100% efficienct in correctly identifying the flavor of B_{tag} .
- Hence, dilution factors are introduced to quantify the mistag probability $(w).$ No flavor info.

Output of the Flavor Tagger

$$
q \in [+1(B^0), -1(\bar{B}^0)]
$$

$$
r = (1 - 2w)
$$

10

 Δt (ps)

Perfect reconstruction
\n
$$
\frac{1}{2}
$$

\n $\frac{1}{2}$
\n \frac

 -5

 $B_{\rm rec}/B_{\rm CP}/B_{\rm sig}$

 B_{tag}

 ϵ +

 $\Upsilon(4S)$

$$
\epsilon_{eff} = (28.8 \pm 1.2 \text{ (stat.)} \pm 0.4 \text{ (syst.)}) \%
$$

 -10

-5

Arbitrary scale

5

10

 Δt (ps)

Isospin sum rule : $B^0 \to K^0 \pi^0$

190 fb⁻¹

- Fit strategy: 4D fit
- Challenging $B^0 \to K_s^0 \pi^0$ decay vertex reconstruction
- Continuum is the dominant background
- Use of Belle II flavor tagging algorithm to measure Δt to enhance the sensitivity to \mathscr{A}_{CP}
- First measurement of \mathcal{A}_{CP} in $B^0 \to K_s^0 \pi^0$ to use timedependent analysis.

First uncertainty: stat.; second: syst.

PRL 99 121601 (2007)

Consistent with previous Belle measurement !

α/ϕ_2 determination

α/ϕ_2 determination: $B \to \pi\pi / B \to \rho\rho$

- Target: Measurement of \mathscr{B} and \mathscr{A}_{CP}
- Process mediates via $b \rightarrow u$ diagrams
- Interference between 'tree' and 'penguin' diagrams
- Multivariate analysis to suppress continuum
- 3D signal extraction function
- Validation of analysis procedure: $B^+ \to \bar{D}(\to K^+\pi^-\pi^0)\pi^+$

ŦF.

ICHEP 2022 PRL 99 121601 (2007)

First uncertainty: stat.; second: syst. Consistent with previous Belle measurement !

α/ϕ_2 determination: $B^0 \to \pi^0 \pi^0$

- Very challenging due to neutral final states
- Analysis strategy

 $\frac{CP}{P}$ $\Gamma(\bar{B}\to\pi^0\pi^0)-\Gamma(B\to\pi^0\pi^0)$ $\Gamma(\bar{B}\to\pi^0\pi^0)+\Gamma(B\to\pi^0\pi^0)$

- Photons for signal reconstruction are selected via BDT
- 2D KDE function for signal extraction
- As is evident, continuum is the dominant background
- Use of data driven method for continuum suppression
- Use of Belle II flavor tagging algorithm
- Validation of analysis procedure: $B^0 \to D(\to K^+\pi^-\pi^0)\pi^0$

ICHEP 2022 PRD 96 032007 (2017)

First uncertainty: stat.; second: syst.

Comaprable sensitivity with 1/4th of data!

α/ϕ_2 determination: $B^0 \rightarrow \rho^+ \rho^-$

- 'Golden' channel for ϕ_2 measurement: small contribution from 'penguin' diagram
- Relies on the excellent neutral performance of the Belle II detector
- Target: $\mathcal B$ and polarization

Analysis strategy

- 6D fit is performed to extract the yields
- Continuum and peaking background (with similar final state) complicates the analysis
- Validation: analysis procedure and continuum suppression inputs

Belle

BaBar

This study

Belle

BaBar

 3.0

2.8

 $Br(10^{-5})$
2.6

 2.4

 2.2

 \bigcirc

HEPMAD 2022 Consistent with previous measurements 28 and 2001 28 J.Borah | IITG

This study

α/ϕ_2 determination: $B^+ \rightarrow \rho^+ \rho^0$

- Relies on the excellent neutral performance of the Belle II detector
- Target: \mathcal{B} , \mathcal{A}_{CP} , and polarization

Analysis strategy

- 6D fit is performed to extract the yields
- Continuum and peaking background (with similar final state) complicates the analysis
- Validation: analysis procedure and continuum suppression inputs

First uncertainty: stat.; second: syst.

Consistent with previous measurements, however, dominated

by systematic uncertainties

Time-dependent CPV measurement

3 body decays: Time dependent CPV analysis: $B^0 \rightarrow K_s^0 K_s^0 K_s^0$ *s*

- Target: $\mathcal B$ and CP aysymmetry
- Process mediates via $b \rightarrow s q \bar{q}$ transition
- It is sensitive to non-SM effects
- Important for understanding the CP asymmetry

Any significant deviation of \mathscr{A}_{CP} and ${\mathscr{S}}_{CP}$ from *prediction of SM may be a hint of NP !*

Analysis strategy

- Sigal extraction using a 3D fit function comprising of: M_{bc} , $M(K_s^0 K_s^0 K_s^0)$, \mathcal{O}_{CS}
- Continuum events pose as dominant background: BDT classifiers for suppression
- Additional backgrounds from, $B^0 \to X$ ($\to K_s^0 K_s^0 K_s^0$ due to $b \to c$ transitions
- Veto $b \rightarrow c$ transitions through invariant mass, $M(K_s^0 K_s^0)$ selection criterion
- For CPV studies, Belle II flavor tagger algorithm is used to identify B_{tag} flavor
- Challenge is to correctly reconstruct K_s^0 vertex

Time dependent CPV: $B^0 \rightarrow K_s^0 K_s^0 K_s^0$

Electroweak and radiative penguin decays

Electroweak and radiative 'penguins': $b \rightarrow s$

- A *b* quark decaying to an *s/d* quark requires the presence of a neutral vector boson at the vertex and a change of flavor (*Flavor changing neutral current*: FCNC)
- These, $b \rightarrow s$ FCNC processes are suppressed at 'tree' level within SM due to GIM
- However, can occur through loop-level within the SM
- New particles can couple to the SM particles an can influence its predictions, thereby making FCNC decays potent probe for NP searches

Theoretical Challenges

• Need to consider different kinematic regions to probe the complete q^2 spectrum

−) (*l* +) (*l* u, c, t

arXiv: 2205.05222v1

from Ψ) *A single measurement is not sufficient!*

Experimental challenges: missing particles / inclusive measurements

- Missing final state particles or inclusive measurements are experimentally very challenging
- e^+e^- colliders such as Belle II are best suited for such kind of measurements because of 4*π* coverage
- These measurements are performed using the principle of conservation of momentum and identifying the conjugate B-meson very precisely (the tagging approach)
- Three types of tagging: Exclusive (hadronic), Semi-exclusive (semi-leptonic), and inclusive tagging

Search for $B^+ \to K^+ \nu \bar{\nu}$ using inclusive tagging method

- Vary challenging due to missing particles in the signal-side B meson
- *• An inclusive tag approach adopted for the first time at Belle II*

Analysis strategy

- Charged tracks and neutral clusters are identified with preliminary selection criteria to remove backgrounds
- Multivariate analysis techniques: 2 BDT classifiers used in cascade to separate signal from background, additional binary classifier to correct for mismodelling of qqbar events Signal efficiency

Signal yield = $4.2^{+3.4}_{-3.2}$

 $\mathcal{B}(B^+ \to K^+ \nu \bar{\nu}) = (1.9 \frac{+1.3}{-1.3})$ −1.3 $_{-0.7}^{+0.8}$) × 10^{-5} **First uncertainty: stat.; second: syst.**

Ul on the $\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})$ at 90% CL < 2.3 × 10⁻⁵

PRL 127 181802 (2021)

Radiative decay $B \to X_s \gamma$

- Target: Measurement of inclusive \mathcal{B} for different E^B_γ threshold
- Experimentally challenging

Analysis strategy

- No kinematic selection criteria applied to select X_s
- The tag side is reconstructed using hadronic decay channels
- Signal region is identifed to be $1.8 < E_\gamma^B < 2.7$ (GeV)
- Fit strategy:

1. Determine the well-reconstructed B_{tag} candidates using M_{bc}

as a fit variable

2. Background subtraction in E^B_γ distribution is carried out using MC simulation

BaBar's hadronic tag result, $E_\gamma^B > 1.9$ (GeV) (210 fb⁻¹)

 $(3.66 \pm 0.85 \pm 0.60) \times 10^{-4}$

Competitive with BaBar's measurement !

HEPMAD 2022 37 J.Borah | IITG

Preparations to test Lepton Flavor Universality

Preparations to test LFU: $\mathcal{R}(X_{e/u}) = \mathcal{B}(B \to X_c e \nu) / \mathcal{B}(B \to X_c \mu \nu)$

- The SM predicts the coupling strength of the weak interaction to be uniform for all of the lepton families: LFU
- This prediction needs to be experimentally verified and complementary measurements are a necessity
- SM prediction, $\mathcal{B}(B \to X_c \tau \nu) = (2.45 \pm 0.10) \%$ and sum of exclusive decays,

 $\mathcal{B}(B \to D\tau\nu) + \mathcal{B}(B \to D^*\tau\nu) = (2.30 \pm 0.67)\%$ (dominated by large uncertainties)

• Target: To measure light lepton ratio and validate the analysis strategy

HEPMAD 2022 39 J.Borah | IITG

Summary

√Presented results corresponding to an integrated luminosity of 190 fb⁻¹ on the following topics

- * Charm lifetime measurements
- * Tagged and untagged exclusive measurements on $|V_{cb}|$ and $|V_{ub}|$
	- * Measurements to verify the isospin sum rule
- * *α/* ϕ_2 measurement
	- * Time dependent CP violation measurements on three body decays
	- * Electroweak and radiative peguin decays
	- * Preparations to test the lepton flavor universality
- ✓All these measurements agree well with the world average values and in some does better than the previous generation e^+e^- colliders (Babar/Belle) with limited statistics
- ***Some interesting results from the dark sector, charmonium and τ physics could not be accomodated** here, due to the broad physics program of Belle II

Future prospects

Belle II holds promise in giving us new

HEPMAD 2022 41 J.Borah | IITG *insights through precision measurements*

After LS1 upgrade (estimated)

Th*ank Y*o

Additional slides

Types of colliders

• At present (on earth), colliders are the only way to create an environment similar to our early universe

- Energy frontier (13.6 TeV, $\sim 2.06 \times 10^{34}$ cm⁻²s⁻¹)
- Capability to produce almost all SM particles
- Huge amount of backgrounds from pp collisions $($ ~ 20 inelastic events per crossing (30M crossing/sec))

Hadron Collider Electron-Positron Collider

(Belle II)

- Luminosity frontier (Design $\mathcal{L} = 6 \times 10^{35}$ cm⁻²s⁻¹)
- Threshold production of particles
- Compared to *pp* collisions, e^+e^- collisions produce fewer backgrounds: a clean environment

Both frontiers are necessary for understanding the Nature !

HEPMAD 2022 44 J.Borah | IITG

Lifetime measurements of $D^+, D^0, \Lambda_c^+, \Omega_c^0$

$$
t_h = \frac{m_h}{p^2} \overrightarrow{d} \cdot \overrightarrow{p}
$$

 $10³$ **Belle II,** $10fb^{-1}$ $D^{*+} \to D^0 \pi_s^+$ $10²$ **Belle** $D^0 \to K \pi$ **BABAR** $\overline{0}$ 2 t [ps]

 $D⁰$ lifetime distribution comparison

Improvement of Belle 2 over Belle

- 2 times better vertex resolution
- 20 times smaller beam spot size

Behind the scenes: Time dependent CPV decays

$$
\overbrace{\text{Belle II}}
$$

$$
\mathcal{A}_{\rm CP}^{B\to f}(\Delta t) \equiv \mathcal{S} \, \sin(\Delta m \, \Omega t) + \mathcal{A} \, \cos(\Delta m \, \Omega t) \quad \text{Sensitive to } \Delta t
$$

Determination of At:

- Requires the measurement of Δz .
- \bullet Δ z measurement requires the correct reconstruction of B_{tan} and B_{rec} vertices.
- Vertex reconstruction can be done only from tracks.
- First, B_{rec} is fully reconstructed and the remaining tracks are assigned to rest-of-event (ROE) category.
- ROE events are subjected to selection criteria (min. hits in vtx. detector, IP constraints etc.)
- Subsequently, all tracks from ROE are combined to form the B_{tan} vertex (on the basis of some FOM, X^2)

Factors affecting At resolution:

- B_{tao} , B_{rec} vertex resolution
- Resolution of the boost factor, βy determined from the beam energy

- For a typical $\Delta z \sim 100 \ \mu \text{m}$
- Δt resolution is 0.6 ps $\tau_B(1.5 \text{ps})$
- Δt resolution is 0.6 ps $\tau_{B\rightarrow \bar{B}}(12.5 \text{ps})$

 B_{tag} is B or \bar{B} ? \rightarrow Flavor tagging

Charmless *B* decays : Isospin sum rule

62.8 fb^{-1}

-
-
- $R^{\mu\nu} \rightarrow K^+\pi^0$

190 fb⁻¹ $B^+ \rightarrow K^+\pi^0$ 190 fb⁻¹

2D signal extraction function

- $M_{bc} = \sqrt{E_{beam}^{*2} p_B^{*2}}$
- $\Delta E = E_B^* E_{beam}^*$
- M_{bc} and ΔE correlations are taken into account

Backgrounds analyzed

- $e^+e^- \rightarrow q\bar{q}$ (q = u, d, s, c)
- $\bullet \ \ b \rightarrow c$ mediated decays
- $b \rightarrow u$, d, s mediated decays
- Multivariate analysis is employed to suppress continuum

Charged track identification

 $B^0 \to K^+ \pi^-$

 $B^+ \to K^0 \pi^+$

 $B^+ \to K^+\pi^0$

 $B^0 \to K^0 \pi^0$

- Tracks momentum information from dE/dx in CDC
- Particle identification using Cherenkov detectors
- pion/Kaon misidentification is $9\%/11\%$

Neutral pion reconstruction

- Reconstructed from γ 's deposited in ECL
- \bullet ECL selection criteria (forward/barrel/backward)

K_s^0 reconstruction (challenges)

- $\bullet~$ Dipion invariant mass 'cuts'
- K_s^0 flight distance
- Angle between dipon momentum and K_s^0 flight direction

Analyses mostly affected by continuum backgrounds

$|V_{cb}|$ and $|V_{ub}|$ measurements strategy

- $|V_{cb}|$, $|V_{ub}|$ measurements are experimentally very challenging owing to missing particles in the final state
- Both untagged and tagged approaches are adopted to complement each other.
- Untagged approach provides higher efficiency in signal reconstruction with a trade-off in signal purity
- Whereas tagged approach has lower signal efficiency but has higher purity

Advantages at Belle II

- Threshold production of $B\bar{B}$ pairs
- e^+e^- provides a 'clean' environment for reconstruction
- Missing momentum of undetected particles can be calculated due to 4π detection of other particles in an event