

Recent results from Belle II

12th High-Energy Physics International Conference (HEPMAD 2022)
Antananarivo, Madagascar
10th - 16th October, 2022

Jyotirmoi Borah

(on behalf of the Belle II collaboration)

Indian Institute of Technology Guwahati, Assam, India

Outline

Collider

- The superKEKB collider
- The Belle II detector

Recent results from Belle II

- Physics program at Belle II
- A brief introduction to some physics areas
- Followed by recent results

Summary and outlook

• Future prospects of Belle 2

Abbreviations

- Standard Model: SM
- New Physics: NP
- Interaction point: IP
- Electroweak: EW
- Quantum Chromodynamics: QCD
- Flavor Changing Neutral Current: FCNC
- Multivariate Analysis: MVA
- Boosted Decision Tree: BDT
- Full Event Interpretation: FEI
- Kernel Density Estimation: KDE
- Boyed-Grienstein-Lebed: BGL
- Caprini-Lellouch-Neubert: CLN
- Bourrely-Caprini-Lellouch: BCL

The SuperKEKB collider (Luminosity frontier)

• Goal to achieve intantaneous luminosity (\mathscr{L}) of 6×10^{35} cm⁻²s⁻¹ and integrated \mathscr{L} of 50 ab⁻¹ to meet various physics requirements

• β_y^* is a function related to the transverse beam size along the beam trajectory

In comparison to KEKB

- β_y^* is reduced by 1/20
- Beam currents are doubled

 $(I_{e^-} = 2.60 \text{ A}, I_{e^+} = 3.60 \text{ A})$

• Lesser asymmetry in beam energy is to reduce backgrounds

 $(E_{e^-} = 4.0 \text{ GeV}, E_{e^+} = 7.0 \text{ GeV})$

• The crossing angle is quadrupled (83 mrad)

• Nano-beam scheme (*Raimondi*)

50 X more data than KEKB

The Belle II detector

- Belle II is a general purpose next generation 4π detector
- It is designed to withstand extreme luminosity
- Currently it is undergoing upgrade (LS1) to boost data-taking capability

Improvements over Belle

- Addition of PXD to VXD with close proximity to IP improves vertex reconstruction
- Larger CDC with more sense wires
- Improvement in PID using Cherenkov imaging technique (TOP)
- Electronics improvement in the ECL
- Addition of inner layers to KLM

Other improvements

- New triggers introduced for dark matter searches
- Use of advanced analysis tools and techniques
- Optimal use of machine learning techniques

KL and muon detector: **Resistive Plate Counter (barrel)** Scintillator + WLSF + MPPC (end-caps) **EM Calorimeter:** Csl(TI) + waveform sampling (barrel + endcaps) Particle Identification Time-of-Propagation counter (barrel) electron (7GeV) Prox. focusing Aerogel RICH (fwd) Beryllium beam pipe 2cm diameter Vertex Detector 2 layers DEPFET + 4 layers DSSD positron (4GeV) **Central Drift Chamber** He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

HEPMAD 2022

Current status of data taking at Belle II

- Belle II collected data mainly at e^+e^- CM energy of 10.56 GeV
- This CM energy corresponds to the threshold production of $B\bar{B}$ events from $\Upsilon(4S)$ resonance
- Reached a world record of peak intantaneous luminosity of 4.71×10^{34} cm⁻²s⁻¹

• Recorded total integrated luminosity of $\sim 424 \text{ fb}^{-1}$

Physics programs at Belle II

Charm Lifetime measurements

Motivation to study charm

Lifetime differences among mesons and baryons

- Charm is the only up type quark whose hadronic weak decays can be analyzed, as the top quark decays much before it can hadronize
 - Their lifetime (\mathcal{T}) measurements can be used to 'test' models explaining strong interactions in the charm sector. Spectator model term Weak Annihilation, Pauli Interference term(Heavy Quark Expansion)

- Precise au measurements are used to calculate partial decay widths from experimentally measured decay fractions.
- Additionally, it can be used to extract Standard Model (SM) parameters $(|V_{cs}|, |V_{cd}|)$

Take spectator quarks into account

Pre-Belle II status of charm lifetime measurements

Before 2000 (From theoretical predictions)

 $\tau(D^+) > \tau(D_s^+) > \tau(D^0) > \tau(\Xi_c^+) > \tau(\Lambda_c^+) > \tau(\Xi_c^0) > \tau(\Omega_c^0)$

Before 2018 (From experimental measurements)

 $\tau(D^+) > \tau(D_s^+) > \tau(\Xi_c^+) > \tau(D^0) > \tau(\Lambda_c^+) > \tau(\Xi_c^0) > \tau(\Omega_c^0)$

After 2018 (From experimental measurements) (Emerging)

 $\tau(D^{+}) > \tau(D_{s}^{+}) > \tau(\Xi_{c}^{+}) > \tau(D^{0}) > \tau(\Omega_{c}^{0}) > \tau(\Lambda_{c}^{+}) > \tau(\Xi_{c}^{0})$

https://cerncourier.com/a/new-charmed-baryon-lifetime-hierarchy-cast-in-stone

Hadron	Lifetimes (fs)	Experiment	Year
D^+	$1039.4 \pm 4.3 \pm 7.0$	FOCUS	2002
D_s^+	$506.4 \pm 3.0 \pm 1.7 \pm 1.7$	LHCb	2017
Ξ_c^+	$456.8 \pm 3.5 \pm 2.9 \pm 3.1$	LHCb	2019
D^0	$409.6 \pm 1.1 \pm 1.5$	FOCUS	2002
Ω_c^0	$268 \pm 24 \pm 10 \pm 2$	LHCb	2018
Λ_c^+	$203.5 \pm 1.0 \pm 1.3 \pm 1.4$	LHCb	2019
Ξ_c^0	$154.5 \pm 1.7 \pm 1.6 \pm 1.0$	LHCb	2019

First uncertainty is stat., second is syst., third is due to $\tau(D^+)$

- D^0 and D^+ lifetime measurements are two decades old
- LHCb's measurements are relative and dominated by $\tau(D^+)$ uncertainties

Advantages at Belle II

- Large production cross-section of charm quarks, $\sigma_{c\bar{c}} \sim \sigma_{b\bar{b}}$
- Absolute measurement of lifetimes of all charm hadrons
- e^+e^- provides a 'clean' environment for reconstruction
- Better vertex resolution due to close proximity (1.4cm from IP) of the pixel detector in comparison to Babar and Belle

Lifetime measurements of $D^+, D^0, \Lambda_c^+, \Omega_c^0$

• The hardons are considered from $e^+e^- \rightarrow c\bar{c}$ $D^0 \to K^- \pi^+$ **Belle II** 10^{4} **Belle II Preliminary** $\Lambda_c^+ \to p K^- \pi^+$ 10^{4} $\int L dt = 72 \, \text{fb}^{-1}$ events produced near $\Upsilon(4S)$ resonance $L dt = 207.2 \text{ fb}^{-1}$ 10^{3} 10^{3} Data • Lorentz boost provides the separation between the • Data 10^{2} 10² - Total fit — Fit Candidates per 70 fs production and decay vertex (d) per 70 fs 10 10 --- Background ····· Background • The decay time is calculated using, Candidates 10⁴ mass $D^+ \to K^- \pi^+ \pi^+$ $t_H = \frac{m_H}{2} \vec{d} \cdot$ 10^{3} momentum 10^{2} 10² 10 Background shapes are determined using side-band data ٠ • The lifetime is extracted from a fit to (t, σ_t) distributions, 0 10 -20 2 10 12 6 *t* [ps] where σ_t is the uncertainty in t Decay time [ps] $\Omega_c^+ \to \Omega^- \pi^+$ Belle II preliminary • Data (207 fb⁻¹) $\Omega^- \to \Lambda^0 K$ (fs) Hadron Belle II (fs) References — Fit $10 \models \Lambda^0 \rightarrow p\pi$ ----- Background $1039.4 \pm 4.3 \pm 7.0$ PRL 127 211801 (2001) $1030.4 \pm 4.7 \pm 3.1$ (FOCUS) D^+ Candidates per 80 fs 6 9 D^0 $409.6 \pm 1.1 \pm 1.5$ $410.5 \pm 1.1 \pm 0.8$ (FOCUS) arXiv: 2208.08573v1 Ω_c^0 $243 \pm 48 \pm 11$ $268 \pm 24 \pm 10 \pm 2$ (LHCb) (PRD accepted) arXiv: 2206.15227v1 Λ_c^+ 10 $203.20 \pm 0.89 \pm 0.77$ $203.5 \pm 1.0 \pm 1.3 \pm 1.4$ (LHCb) (PRL accepted) World's precise measurement for D^+, D^0, Λ_c^+ lifetimes ! -3 -22 3 -10 1

Confirms Ω_c^0 is not the shortest living charmed baryon ! **HEPMAD 2022** 10

$|V_{cb}|$ and $|V_{ub}|$ measurements

Cabibbo-Kobayashi-Maskawa (CKM) matrix

Overconstrain the Unitarity Triangle by precisely measuring the sides and angles

Present status of $|V_{cb}|$ and $|V_{ub}|$ measurements

orViv.2206 07501

Inclusive : Sum over all possible hadronic final states $(B \to X_{c/u} \ l\nu)$ Exclusive : Consider a specific final state $(B \to (D/D^*/\pi) \ l\nu)$

These measurements are theoretically and experimentally independent !

Complementary measurements are important ! Apart from, constraining the UT triangle,

- V_{cb} and V_{ub} values are determined from tree level processes, assuming no new physics (NP)contributions
- These values are then used to make SM predictions for loop level processes which are sensitive to new physics (NP)

			al Alv.2200.07301
	Туре	V_{cb}	V_{ub}
t I	Inclusive	$(42.19 \pm 0.78) \times 10^{-3}$	$(4.19 \pm 0.17) \times 10^{-3}$
	Exclusive	$(39.10 \pm 0.50) \times 10^{-3}$	$(3.51 \pm 0.12) \times 10^{-3}$
	Deviation	3.3σ	3.3σ
$ V_{ub} [10^{-3}]$	$4.8 \qquad Excl 4.6 \qquad Excl 4.4 \qquad Excl 4.2 \qquad V_{ub} \qquad HFL 2.0 \qquad Excl 4.4 \qquad Excl 4.2 \qquad HFL 4.2 \qquad HFL$	lusive V _{cb} lusive V _{ub} // V _{cb} LAV Average	$\Delta \chi^2 = 1.0 \text{ contours}$ Inclusive $ V_{ub} : \text{ GGOU}$ $ V_{cb} : \text{ global fit}$
	3.8 3.6 3.4 		
	3		$ HFLAV 2021 P(\chi^2) = 8.9\% 1 $
	36	38 40	42 44

 $|V_{cb}| [10^{-3}]$

Untagged $|V_{cb}|$ measurement: $B \rightarrow Dl\nu$

Analysis strategy

Events / (0.2

dΓ/dw [10⁻¹⁵ GeV²

25

• Signal: $B \to Dl\nu \ (B^0 \to D^- l^+ \nu, B^+ \to \overline{D}^0 l^+ \nu)$

Belle II Preliminary $B^- \rightarrow D^0 e^- \overline{\nu}_e$

 χ^2 /ndf: 18.2/14

• $D^- \to K^+ \pi^- \pi^-, D^0 \to K^+ \pi^-, l = e, \mu$

 $\cos\theta_{BY}$

- Continuum is the dominant: Continuum Suppression
- Other backgrounds of conceren are: other *B* decays, $B \rightarrow D^* l \nu$

Signal extraction: Angle between B and $Dl (cos \theta_{BY})$ • Use D^* veto to reject these backgrounds


```
High efficiency/Low purity
```

Extraction of $|V_{cb}|$

• The partial decay rates are extracted in bins of *w* by performing a combined fit to the BGL expression and QCD form factors

$$\eta_{\rm EW} |V_{cb}| = (38.53 \pm 1.15) \times 10^{-3}$$

stat. + syst. + theoretical

Consistent with exclusive world average values !

1.1

1.2

1.3

W

1.4

1.5

1.6

1.7

1.0

BGL N = 3

1σ 2σ

3σ

Data

Tagged $|V_{cb}|$ measurement: $B \rightarrow D^* l \nu$

- Signal: $B \to D^* l \nu \ (B^0 \to D^{*-} l^+ \nu)$
- $D^{*-} \rightarrow \overline{D}^0 \pi^-, D^0 \rightarrow K^+ \pi^-, l = e, \mu$
- Reconstruction of low momentum pions from D^* is challenging
- FEI using HT algorithm to identify B_{tag} candidates

Untagged $|V_{ub}|$ measurement: $B \rightarrow \pi l \nu$

• Signal: $B \to \pi l \nu \ (B^0 \to \pi^{\pm} l^{\mp} \nu), \ l = e, \mu$

- Continuum is the dominant: Continuum Suppression (BDT)
- Everything else including the other *B* is included as the rest-of-events to determine p_{μ}
- Other backgrounds of concern are: other *B*

Extraction of $|V_{\mu b}|$

 $M(l\bar{l}$

• The partial decay rates are extracted in bins of q^2 by performing a combined fit to the BCL expression and QCD form factor

 $\frac{d\Gamma(B \to \pi l\nu)}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} |p_\pi|^3 |f_+(q^2)|^2$

ICHEP 2022

form factor

$$|V_{ub}|_{B^0 \to \pi^- l^+ \nu_l} = (3.54 \pm 0.12_{\text{stat.}} \pm 0.15_{\text{syst.}} \pm 0.16_{\text{theo.}}) \times 10^{-3}$$

Consistent with exclusive world average values !

Tagged $|V_{ub}|$ measurement: $B \rightarrow \pi e \nu$

- Signal: $B \to \pi e \nu \ (B^0 \to \pi^+ e^- \bar{\nu_e}, B^+ \to \pi^0 e^+ \nu_e)$
- FEI using HT algorithm to identify B_{tag} candidates
- MC simulations are considered for background studies

• Cross-feeds:
$$B^0 \to \rho^- l^+ \nu_l$$

• Continuum backgrounds, generic $B\overline{B}$, and $B \to X_u l \nu$

Signal extraction:
$$M_{miss}^2 \equiv p_{miss}^2 = (p_{B_{sig}} - p_{e\pi})^2$$

$$\frac{d\Gamma(B \to \pi l \nu)}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} |p_{\pi}|^3 |f_+(q^2)|^2$$

$$\underbrace{M(l\bar{l})}$$
 contain form factors

Extraction of $|V_{cb}|$

• The partial decay rates are extracted in bins of q^2 by performing a combined fit to the BCL expression and QCD form factors

arXiv:2206.08102
$$|V_{ub}| = (3.88 \pm 0.45) \times 10^{-3}$$

stat. + syst. + theoretical

Consistent with exclusive world average values !

Rare B meson / Charmless B decays

HEPMAD 2022

Isospin sum rule in $K\pi$ decay channels

Assuming isospin symmetry in the dominant Feynman diagrams (QCD penguin),

$$\Gamma(K^+\pi^-) \approx \Gamma(K^0\pi^+) \approx 2\Gamma(K^+\pi^0) \approx 2\Gamma(K^0\pi^0)$$

$$\mathcal{A}_{\rm CP}(K^+\pi^-) + \mathcal{A}_{\rm CP}(K^0\pi^+) \approx \mathcal{A}_{\rm CP}(K^+\pi^0) + \mathcal{A}_{\rm CP}(K^0\pi^0)$$

In SM, $I_{\kappa\pi} = 0$

Isospin sum rule in terms of CP asymmetries

$$I_{K\pi} = \mathcal{A}_{K^{+}\pi^{-}} + \mathcal{A}_{K^{0}\pi^{+}} \frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}} \frac{\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{0}\pi^{0}} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}$$

(1,0)

Determination of α/ϕ_2 using $\pi\pi$ decay channels

Extraction of α/ϕ_2 is complicated by the presence of tree and penguin diagrams.

• To disentangle them, an isospin analysis is necessary which requires precision measurement of the \mathcal{B} and CP asymmetry.

Direct CP asymmetry determination using three body decays

- Dalitz decays are useful to understand the relative contribution of tree and penguin amplitudes.
- Moreover, they are good places to look for direct CP asymmetries.

Belle II provides unique oppurtunity to measure all these decays consistently !

Isospin analysis

arXiv:2106.03766v1

PRD 69, 111102 (2004)

	Quantity	Belle II [69M $B\bar{B}$]	Belle [$85M B\bar{B}$]
$B^+ \rightarrow K^0 \pi^+$	${\mathcal B}$	$(21.4^{+2.3}_{-2.2}(\text{stat.}) \pm 1.6(\text{syst.})) \times 10^{-6}$	$(22.0 \pm 1.9(\text{stat.}) \pm 1.1(\text{syst.})) \times 10^{-6}$
	${\mathcal A}$	$-0.01 \pm 0.08 (\text{stat.}) \pm 0.05 (\text{syst.})$	—

Consistent with previous Belle measurement

- An updated measurement with a better fit strategy : 3D fit
- Validation of analysis procedure: $B^0 \to \overline{D}(\to K^+\pi^-)\pi^0$
- Use of off-resonance data and control mode: shift and scaling parameter

	arXiv:2209.05154	PRL 99 121601 (2007)
Parameter	Belle II (~197 M BB pairs)	Belle (449 M BB pairs)
$\mathscr{B}(B^+\to K^+\pi^0)$	$(14.30 \pm 0.69 \pm 0.79) \times 10^{-6}$	$(12.4 \pm 0.5 \pm 0.6) \times 10^{-6}$
\mathcal{A}_{CP}	$0.014 \pm 0.047 \pm 0.010$	-
HEPMAD 2022	First uncertainty: stat.; second: sy	'st. 22

$$\mathcal{A}_{CP} = \frac{N(B^+) - N(B^-)}{N(B^+) + N(B^-)}$$

Within 1.5σ of the previous Belle result even with 2.3 times less statistics

Flavor tagging at Belle II

- B_{tag} is reconstructed from (after applying selection criteria in ROE events) inclusive B decays.
- They are so chosen that the flavor of the B_{tag} (B or \overline{B}) can be determined. Eg. $B^0 \to X^- l^+ \nu$
- They are not 100% efficienct in correctly identifying the flavor of B_{tag} .
- Hence, dilution factors are introduced to quantify the mistag probability (w). No flavor info.

Output of the Flavor Tagger

q
$$\in [+1(B^0), -1(\bar{B}^0)]$$

r = $(1 - 2w)$

10

 $\Delta t (ps)$

5

Perfect reconstruction
 Resolution effects + Dilution factor

$$\overline{B}^{0}$$
 \overline{B}^{0}
 \overline{B}^{0}
 \overline{B}^{0}
 \overline{B}^{0}

-5

$$\xrightarrow{\Delta z \approx \beta \gamma \Delta t} B_{\rm rec} / B_{\rm cP} / B_{\rm sig}$$

B_{CP}

_____J/ψ

 B_{tag}

····· e⁺ Υ(4S)

$$\epsilon_{eff} = (28.8 \pm 1.2 \text{ (stat.)} \pm 0.4 \text{ (syst.)})\%$$

-10

0

-5

Arbitrary scale

5

10

 $\Delta t (ps)$

Isospin sum rule : $B^0 \to K^0 \pi^0$

190 fb^{-1}

5.29

$I_{K\pi} = \mathcal{A}_{K^{+}\pi^{-}} + \mathcal{A}_{K^{0}\pi^{+}} \frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}} \frac{\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{0}\pi^{0}} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{0}\pi^{0})} \frac{\mathcal{B}($

- Fit strategy: 4D fit
- Challenging $B^0 \to K_s^0 \pi^0$ decay vertex reconstruction
- Continuum is the dominant background
- Use of Belle II flavor tagging algorithm to measure Δt to enhance the sensitivity to \mathscr{A}_{CP}
- First measurement of \mathscr{A}_{CP} in $B^0 \to K_s^0 \pi^0$ to use timedependent analysis.

Experiment	Values
Belle II (197 M BB pairs)	$\mathcal{B} = (11.0 \pm 1.2 \pm 1.0) \times 10^{-6}$ $\mathcal{A}_{CP} = -0.41^{+0.30}_{-0.32} \pm 0.09$
Belle (449 M BB pairs)	$\mathscr{B} = (9.2 \pm 0.7 \pm 0.6) \times 10^{-6}$

First uncertainty: stat.; second: syst.

PRL 99 121601 (2007)

Consistent with previous Belle measurement !

HEPMAD 2022

α/ϕ_2 determination

α/ϕ_2 determination: $B \rightarrow \pi \pi / B \rightarrow \rho \rho$

- Target: Measurement of ${\mathscr B}$ and ${\mathscr A}_{CP}$
- Process mediates via $b \rightarrow u$ diagrams
- Interference between 'tree' and 'penguin' diagrams
- Multivariate analysis to suppress continuum
- 3D signal extraction function
- Validation of analysis procedure: $B^+ \to \overline{D}(\to K^+\pi^-\pi^0)\pi^+$

$B^0 \to \pi^+ \pi^-$		$B^0 \to \rho^+ \rho^-$
$B^0 o \pi^0 \pi^0$	or,	$B^0 \to \rho^0 \rho^0$
$B^+ \to \pi^+ \pi^0$		$B^+ \to \rho^+ \rho^0$

PRL 99 121601 (2007)

 \mathbf{n}

 $\mathbf{\Omega}$

ΔE [GeV]

Parameter	Belle II (~197 M BB pairs)	Belle (449 M BB pairs)
$\mathcal{B}(B^+ \to \pi^+ \pi^0)$	$(6.12 \pm 0.53 \pm 0.53) \times 10^{-6}$	$(6.5 \pm 0.4 \pm 0.4) \times 10^{-6}$
\mathcal{A}_{CP}	$-0.085 \pm 0.085 \pm 0.019$	-

ICHEP 2022

First uncertainty: stat.; second: syst. Consistent with previous Belle measurement !

HEPMAD 2022

α/ϕ_2 determination: $B^0 \to \pi^0 \pi^0$

• Feasible only at e^+e^- colliders like Belle II

ICHEP 2022

PRD 96 032007 (2017)

Parameter	Belle II (~197 M BB pairs)	Belle (771 M BB pairs)
$\mathscr{B}(B^0\to\pi^0\pi^0)$	$(1.32 \pm 0.25 \pm 0.18) \times 10^{-6}$	$(1.31 \pm 0.19 \pm 0.19) \times 10^{-6}$
\mathscr{A}_{CP}	$+0.14 \pm 0.46 \pm 0.07$	$+0.14 \pm 0.36 \pm 0.10$

First uncertainty: stat.; second:,syst.

Comaprable sensitivity with 1/4th of data!

HEPMAD 2022

α/ϕ_2 determination: $B^0 \to \rho^+ \rho^-$

- 'Golden' channel for ϕ_2 measurement: small contribution from 'penguin' diagram
- Relies on the excellent neutral performance of the Belle II detector
- Target: \mathcal{B} and polarization

Analysis strategy

• 6D fit is performed to extract the yields

 $383 \times 10^6 \ B\bar{B} \ 197 \times 10^6 \ B\bar{B}$

This study

- Continuum and peaking background (with similar final state) complicates the analysis
- Validation: analysis procedure and continuum suppression inputs arXiv: 2208.03554v1

-0.25

 $\cos\theta_{0}$

Belle II (Preliminary)

 $\int Ldt = 189 \, \text{fb}^{-1}$

PDG2022

Total

Stat.

Belle

BaBar

 $771 \times 10^{6} B\bar{B}$

PDG2022

Total

Stat.

Belle

3.0

2.8

2.4

2.2

Br(10⁻⁵) 9.2

Consistent with previous measurements

1.02

1.00

0.98

0.94

0.92

0.96 ^{لي}

 $\cos\theta_{0}$

- ALI

Longitudinal sign

Self crossfee

ansverse sign

elf crossfee

Belle II (Preliminary)

 $\int Ldt = 189 \, \text{fb}^{-1}$

200

28

This study

BaBar

α/ϕ_2 determination: $B^+ \to \rho^+ \rho^0$

- Relies on the excellent neutral performance of the Belle II detector
- Target: \mathcal{B} , $\mathcal{A}_{CP},$ and polarization

Analysis strategy

- 6D fit is performed to extract the yields
- Continuum and peaking background (with similar final state) complicates the analysis
- Validation: analysis procedure and continuum suppression inputs

Experiment	Values
Belle II	$\mathcal{B} = (23.2 \stackrel{+2.2}{_{-2.1}} \pm 2.7) \times 10^{-6}$
(197 M BB pairs)	$f_L = 0.943 \stackrel{0.035}{_{-0.033}} \pm 0.027$
arXiv: 2206.12362	$\mathcal{A}_{CP} = -0.069 \pm 0.068 \pm 0.060$
BaBar	$\mathscr{B} = (23.7 \pm 1.4 \pm 1.4) \times 10^{-6}$
(465 M BB pairs)	$f_L = 0.950 \pm 0.015 \pm 0.006$
PRL 102 141802 (2	$\mathscr{A}_{CP} = -0.054 \pm 0.055 \pm 0.010$

Consistent with previous measurements, however, dominated

by systematic uncertainties HEPMAD 2022

Time-dependent CPV measurement

3 body decays: Time dependent CPV analysis: $B^0 \to K_s^0 K_s^0 K_s^0$

- Target: \mathscr{B} and CP aysymmetry
- Process mediates via $b \rightarrow sq\bar{q}$ transition
- It is sensitive to non-SM effects
- Important for understanding the CP asymmetry

Any significant deviation of \mathscr{A}_{CP} and \mathscr{S}_{CP} from prediction of SM may be a hint of NP !

Analysis strategy

- Sigal extraction using a 3D fit function comprising of: $M_{\rm bc}$, $M(K_s^0 K_s^0 K_s^0)$, \mathcal{O}'_{CS}
- Continuum events pose as dominant background: BDT classifiers for suppression
- Additional backgrounds from, $B^0 \to X(\to K^0_s K^0_s) K^0_s$ due to $b \to c$ transitions
- Veto $b \to c$ transitions through invariant mass, $M(K_s^0 K_s^0)$ selection criterion
- For CPV studies, Belle II flavor tagger algorithm is used to identify B_{tag} flavor
- Challenge is to correctly reconstruct K_s^0 vertex

Time dependent CPV: $B^0 \rightarrow K_s^0 K_s^0 K_s^0$

First uncertainty: stat.; second: syst.

Electroweak and radiative penguin decays

Electroweak and radiative 'penguins': $b \rightarrow s$

- A *b* quark decaying to an *s/d* quark requires the presence of a neutral vector boson at the vertex and a change of flavor (*Flavor changing neutral current*: FCNC)
- These, $b \rightarrow s$ FCNC processes are suppressed at 'tree' level within SM due to GIM
- However, can occur through loop-level within the SM
- New particles can couple to the SM particles an can influence its predictions, thereby making FCNC decays potent probe for NP searches

Theoretical Challenges

• Need to consider different kinematic regions to probe the complete q^2 spectrum

arXiv: 2205.05222v1

A single measurement is not sufficient!

34

Experimental challenges: missing particles / inclusive measurements

- Missing final state particles or inclusive measurements are experimentally very challenging
- e^+e^- colliders such as Belle II are best suited for such kind of measurements because of 4π coverage
- These measurements are performed using the principle of conservation of momentum and identifying the conjugate *B*-meson very precisely (the tagging approach)
- Three types of tagging: Exclusive (hadronic), Semi-exclusive (semi-leptonic), and inclusive tagging

Search for $B^+ \to K^+ \nu \bar{\nu}$ using inclusive tagging method

- Vary challenging due to missing particles in the signal-side *B* meson
- An inclusive tag approach adopted for the first time at Belle II

Analysis strategy

- Charged tracks and neutral clusters are identified with preliminary selection criteria to remove backgrounds
- Multivariate analysis techniques: 2 BDT classifiers used in cascade to separate signal from background, additional binary classifier to correct for mismodelling of qqbar events

Signal yield = 4.2 + 3.4 = -3.2

 $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = (1.9 \begin{array}{c} +1.3 \\ -1.3 \end{array} \begin{array}{c} +0.8 \\ -1.3 \end{array}) \times 10^{-5}$ First uncertainty: stat.; second: syst.

Ul on the $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu})$ at 90% CL < 2.3 × 10⁻⁵

PRL 127 181802 (2021)

Radiative decay $B \rightarrow X_s \gamma$

- Target: Measurement of inclusive \mathscr{B} for different E_{γ}^{B} threshold
- Experimentally challenging

Analysis strategy

- No kinematic selection criteria applied to select X_s
- The tag side is reconstructed using hadronic decay channels
- Signal region is identified to be $1.8 < E_{\gamma}^B < 2.7$ (GeV)
- Fit strategy:

1. Determine the well-reconstructed B_{tag} candidates using M_{bc}

as a fit variable

2. Background subtraction in E_{γ}^{B} distribution is carried out using MC simulation

	ICHEP 2022
E^B_{γ} lower threshold	$rac{1}{\Gamma_B}rac{d\Gamma_i}{dE_\gamma}(10^{-4})$
1.8	$3.55 \pm 0.78 (\text{stat.}) \pm 0.84 (\text{syst.})$
2.0	$3.07 \pm 0.56 (\text{stat.}) \pm 0.48 (\text{syst.})$
2.1	2.50 ± 0.47 (stat.) ± 0.35 (syst.)

BaBar's hadronic tag result, $E_{\gamma}^{B} > 1.9$ (GeV) (210 fb⁻¹)

 $(3.66 \pm 0.85 \pm 0.60) \times 10^{-4}$

Competitive with BaBar's measurement !

HEPMAD 2022

37

Preparations to test Lepton Flavor Universality

Preparations to test LFU: $\Re(X_{e/\mu}) = \Re(B \to X_c e\nu) / \Re(B \to X_c \mu\nu)$

- The SM predicts the coupling strength of the weak interaction to be uniform for all of the lepton families: LFU
- This prediction needs to be experimentally verified and complementary measurements are a necessity
- SM prediction, $\mathscr{B}(B \to X_c \tau \nu) = (2.45 \pm 0.10) \%$ and sum of exclusive decays,

 $\mathscr{B}(B \to D\tau\nu) + \mathscr{B}(B \to D^*\tau\nu) = (2.30 \pm 0.67)\%$ (dominated by large uncertainties)

• Target: To measure light lepton ratio and validate the analysis strategy

HEPMAD 2022

✓ Presented results corresponding to an integrated luminosity of 190 fb^{-1} on the following topics

- * Charm lifetime measurements
- * Tagged and untagged exclusive measurements on $|V_{cb}|$ and $|V_{ub}|$
- * Measurements to verify the isospin sum rule
- * α/ϕ_2 measurement
- * Time dependent CP violation measurements on three body decays
- * Electroweak and radiative peguin decays
- * Preparations to test the lepton flavor universality
- ✓ All these measurements agree well with the world average values and in some does better than the previous generation e^+e^- colliders (Babar/Belle) with limited statistics
- Some interesting results from the dark sector, charmonium and τ physics could not be accomodated here, due to the broad physics program of Belle II

Future prospects

Observables	Exp. theor. accuracy	Exp. experim. uncertainty	50 ab^{-1}
UT angles and sides			
ϕ_1 [°]	***	0.4	Belle II
ϕ_2 [°]	**	1.0	Belle II
ϕ_3 [°]	***	1.0	LHCb/Belle II
$ V_{cb} $ incl.	***	1%	Belle II
$ V_{cb} $ excl.	***	1.5%	Belle II
$ V_{ub} $ incl.	**	3%	Belle II
$ V_{ub} $ excl.	**	2%	Belle II/LHCb
CP violation			
$S(B \to \phi K^0)$	***	0.02	Belle II
$S(B \rightarrow n'K^0)$	***	0.01	Belle II
$\mathcal{A}(B \rightarrow K^0 \pi^0)$ [10 ⁻²]	***	4	Belle II
$\mathcal{A}(B \rightarrow K^+\pi^-)$ [10 ⁻²]	***	0.20	LHCb/Belle II
(Sami)lentonia			
$\mathcal{B}(B \rightarrow \tau v)$ [10 ⁻⁶]	**	30%	Belle II
$\mathcal{B}(B \rightarrow \psi)$ [10 ⁻⁶]	**	7%	Belle II
$\mathcal{D}(B \rightarrow \mu \nu) [10]$	***	30/2	Belle II
$R(B \rightarrow D^*\tau u)$	***	2%	Belle II/I HCh
$\mathbf{R}(\mathbf{D} \rightarrow \mathbf{D} \ t \ \mathbf{V})$		270	Dene II/LIICO
Radiative and EW penguins			
$\mathcal{B}(B \to X_s \gamma)$	**	4%	Belle II
$A_{\rm CP}(B\to X_{s,d}\gamma) \ [10^{-2}]$	***	0.005	Belle II
$S(B \to K_{\rm S}^0 \pi^0 \gamma)$	***	0.03	Belle II
$S(B o ho \gamma)$	**	0.07	Belle II
$\mathcal{B}(B_s \to \gamma \gamma) [10^{-6}]$	**	0.3	Belle II
$\mathcal{B}(B \to K^* \nu \overline{\nu}) \ [10^{-6}]$	***	15%	Belle II
$R(B \to K^* \ell \ell)$	***	0.03	Belle II/LHCb
Charm			
$\mathcal{B}(D_s \to \mu \nu)$	***	0.9%	Belle II
$\mathcal{B}(D_c \to \tau \nu)$	***	2%	Belle II
$A_{\rm CP}(D^0 \to K_c^0 \pi^0)$ [10 ⁻²]	**	0.03	Belle II
$ a/p (D^0 \to K_0^0 \pi^+ \pi^-)$	***	0.03	Belle II
$A_{\rm CP}(D^+ \to \pi^+ \pi^0) [10^{-2}]$	**	0.17	Belle II
Tau			
$\tau \rightarrow \mu \gamma [10^{-10}]$	***	< 50	Belle II
$\tau \rightarrow e \gamma [10^{-10}]$	***	< 100	Belle II
$\tau \rightarrow \mu \mu \mu [10^{-10}]$	***	< 3	Belle II/LHCh
		- 5	Dene II/LITCO

Belle II holds promise in giving us new

insights through precision measurements

41

Int. L[ab⁻¹]

After LS1 upgrade (estimated) Int. Lumi (Delivered) [fb-1] 5000 Int. Lumi (Delivered) 1000 2021c 2022ab Target 800 4000 Target 600 510fb-1 480fb-400 3000 200 Base 21/10/1 21/11/30 22/1/30 22/4/1 22/6/1 22/8/1 2000 1000 Base 0 21/4/1 23/4/1 24/4/1 20/4/1 25/4/1 26/4/1 4/1 YY/M/D We are here

Thank You

Additional slides

Types of colliders

• At present (on earth), colliders are the only way to create an environment similar to our early universe

Hadron Collider

- Energy frontier (13.6 TeV, $\sim 2.06 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$)
- Capability to produce almost all SM particles
- Huge amount of backgrounds from *pp* collisions
 (~20 inelastic events per crossing (30M crossing/sec))

Electron-Positron Collider

(Belle II)

- Luminosity frontier (Design $\mathcal{L} = 6 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$)
- Threshold production of particles
- Compared to *pp* collisions, *e⁺e⁻* collisions produce fewer backgrounds: a clean environment

Both frontiers are necessary for understanding the Nature !

HEPMAD 2022

Lifetime measurements of D^+ , D^0 , Λ_c^+ , Ω_c^0

$$t_h = \frac{m_h}{p^2} \overrightarrow{d} \cdot \overrightarrow{p}$$

 D^0 lifetime distribution comparison D^0 lifetime distribution comparison $Belle II, 10 fb^{-1}$ $D^* \rightarrow D^0 \pi_s^*$ $D^0 \rightarrow K\pi$ $D^0 \rightarrow K\pi$ 10^0 $D^0 \rightarrow K\pi$ 10^0 $D^0 \rightarrow K\pi$ 10^0 $D^0 \rightarrow K\pi$ 10^0 10^0

Improvement of Belle 2 over Belle

- 2 times better vertex resolution
- 20 times smaller beam spot size

Behind the scenes: Time dependent CPV decays

$$\mathcal{A}_{\rm CP}^{B \to f}(\Delta t) \equiv \mathcal{S} \sin(\Delta m_{\rm d} \Delta t) + \mathcal{A} \cos(\Delta m_{\rm d} \Delta t) \qquad \text{Sensitive to } \Delta t$$

Determination of Δt :

- Requires the measurement of Δz .
- Δz measurement requires the correct reconstruction of B_{tag} and B_{rec} vertices.
- Vertex reconstruction can be done only from tracks.
- First, *B*_{rec} is fully reconstructed and the remaining tracks are assigned to rest-of-event (ROE) category.
- ROE events are subjected to selection criteria (min. hits in vtx. detector, IP constraints etc.)
- Subsequently, all tracks from ROE are combined to form the B_{tag} vertex (on the basis of some FOM, X²)

Factors affecting Δt **resolution** :

- B_{tag} , B_{rec} vertex resolution
- Resolution of the boost factor, βγ determined from the beam energy

- For a typical $\Delta z \sim 100 \ \mu {\rm m}$
- Δt resolution is 0.6 ps $< \tau_B(1.5 \text{ps})$
- Δt resolution is 0.6 ps $< \tau_{B \to \bar{B}}(12.5 \text{ps})$

 B_{tag} is B or \overline{B} ? \rightarrow Flavor tagging

Charmless *B* decays : Isospin sum rule

- Target : Measurement of \mathcal{B} and direct \mathcal{A}_{CP} Process mediates via $b \to sq\bar{q}$ 'loop' diagrams. To address the $K\pi$ puzzle, precise measurement of \mathcal{B} and \mathcal{A}_{CP} is impor- $\begin{bmatrix} B^{+} \to K^{0}\pi^{+} \\ B^{+} \to K^{+}\pi^{0} \\ B^{0} \to K^{0}\pi^{0} \end{bmatrix}$ 190 fb⁻¹ tont

2D signal extraction function

- $M_{bc} = \sqrt{E_{beam}^{*2} p_B^{*2}}$
- $\Delta E = E_B^* E_{beam}^*$
- M_{bc} and ΔE correlations are taken into account

Backgrounds analyzed

- $e^+e^- \rightarrow q\bar{q} \ (q = u, d, s, c)$
- $b \rightarrow c$ mediated decays
- $b \rightarrow u, d, s$ mediated decays
- Multivariate analysis is employed to suppress continuum

Charged track identification

- Tracks momentum information from dE/dx in CDC
- Particle identification using Cherenkov detectors
- pion/Kaon misidentification is 9%/11%

Neutral pion reconstruction

- Reconstructed from γ 's deposited in ECL
- ECL selection criteria (forward/barrel/backward)

K_s^0 reconstruction (challenges)

- Dipion invariant mass 'cuts'
- K_s^0 flight distance
- Angle between dipon momentum and K_s^0 flight direction

Analyses mostly affected by continuum backgrounds

$|V_{cb}|$ and $|V_{ub}|$ measurements strategy

- $|V_{cb}|$, $|V_{ub}|$ measurements are experimentally very challenging owing to missing particles in the final state
- Both untagged and tagged approaches are adopted to complement each other.
- Untagged approach provides higher efficiency in signal reconstruction with a trade-off in signal purity
- Whereas tagged approach has lower signal efficiency but has higher purity

Advantages at Belle II

- Threshold production of $B\overline{B}$ pairs
- e^+e^- provides a 'clean' environment for reconstruction
- Missing momentum of undetected particles can be calculated due to 4π detection of other particles in an event