

Recent quarkonium results at Belle II

Dmytro Meleshko *(on behalf of Belle II collab.)* October 11, 2022

Justus-Liebig-Universitaet, Giessen, Germany

Excited QCD, Sicily, Italy.

Quarkonium(-like) mess

- Below DD̄/BB̄ thresholds cc̄ and bb̄ match QCD;
- Many exotic states observed in the past decade are hard to fit these spectra.

Belle II experiment overview

SuperKEKB:

- Asymmetric e⁺e⁻ collider at KEK (Tsukuba, Japan);
- Energy adjustment: 3.5/8.0 GeV (Belle) \rightarrow 7.0/4.0 GeV (Belle II);
- "Nano-beams" × current increase (x2) = x40 inst. luminosity increase;

Belle II detector upgrade:

- Higher background:
 - Radiation damage;
 - Detector readout;
- Higher event rate:
 - Trigger, DAQ, computing;
- Boost change:
 - Vertexing improvement;

- 2016: "Phase 1":
 - Beam commissioning;
- 2017: Detector roll-in;
- 2018: "Phase 2":
 - Background study w. partial detector;
 - First collisions/data (28.04.2018);
- 2019: "Phase 3":
 - Nominal start of operations;
 - 2021: inst. lumin. record: $> 4.7 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$;
 - 2021: Non ↑(4S) energy scan;
- 2022-2023: "Long Shutdown 1":
 - Detector/accelerator upgrades;
- 2023-2027: Resume operations, target: 5 ab⁻¹;
- 2027+: "Long Shutdown 2" upgrade (?), continue up to 50 ab⁻¹.

Belle II quarkonium potential

- Many flavor physics contributions, particularly in hadron spectroscopy;
- Advantages:
 - "Clean" environment;
 - Full event reconstruction, decays with neutral/soft particles;
 - Nominal $\sqrt{s} = 10.58 \text{ GeV} = m(\Upsilon(4S))$, potential to reach 11 GeV;
 - Decay with neutrals $(\gamma, \pi^0, K_l, \nu)$ in final state;
 - Multiple production mechanisms;
 - Large statistics;
 - Complementary to LHC.

Charmonium(-like) studies at Belle II

Charmonium(-like) studies at Belle II: B-decays

- B-decays
 - $B \rightarrow K X_{c\bar{c}}$: CKM favored process \rightarrow large branching fractions $(10^{-3} \sim 10^{-4});$
 - Absolute $\mathcal{B}_f(B \to X(3872, 3915)K);$
 - X(3872) width measurement with $D^0 \overline{D}{}^0 \pi^0$;
 - Confirm Z_c states and search for neutral partners.

First observation of X(3872) at Belle II: 14.4±4.6 events (4.6 σ)

State	Production and decay	N
X(3872)	$B ightarrow$ KX(3872), X(3872) $ ightarrow$ $J/\psi \pi^+\pi^-$	pprox 14400
Y(4260)	ISR, Y(4260) $\rightarrow J/\psi \pi^+\pi^-$	pprox 29600
Z(4430)	$B ightarrow {\cal K}^{\mp} Z$ (4430), Z (4430) $ ightarrow J/\psi \pi^{\pm}$	pprox 10200

* $\varepsilon(\psi(2S))$ +=20% (w.r.t. Belle)

Charmonium(-like) studies at Belle II: $\Gamma(X(3872))$

- Features:
 - Study of X(3872) in D⁰D
 ⁰π⁰ is a new approach;
 - Extremely small Q value gives an advantage;
- Possibilities:
 - (684 \pm 8) keV mass resolution (vs. 1.93 \pm 0.04 for $J\psi\pi\pi$)
 - Push $\Gamma^{UL}(X(3872))$ down to ≈ 280 keV (Note: Flatté fit 220^{+70+11}_{-6-130});
 - Allows to decrease systematic uncertainty down to 110 keV;
 - possibility to combine $D^0 \overline{D}^0 \pi^0$ and $J/\psi \pi \pi$.
- Another idea: search for exotics at $D^* \overline{D}^*$ threshold.

Phys Rev. Lett. 127 (2021) 211801

Further improvement is possible after PXD is fully functional

8

Charmonium(-like) studies at Belle II: other processes

- Initial-state radiation (ISR):
 - Continuous mass range $>4.7 \text{ GeV}/c^2$;
 - $Y \rightarrow c$ -baryon pairs $(\Lambda_c^+, \Sigma_c^-, \Sigma_c^+ \Sigma_c^-)$, *cs*-meson pairs $(D_s D_{s2}(2573), D_s D_{s0}^+(2317));$
 - Search for Z_{cs} states decaying into $K^{\pm}J/\psi$, $D_s^-D^{*0}$ +c.c.;
 - Y(4260) rediscovery (expected 60 events per 100 fb⁻¹) + line shape;

 * clear observation of very clean ISR $\psi(2S)$ signals

- Two-photon process:
 - J^{PC} of $X(3915) \rightarrow \omega J/\psi;$
 - Confirm $X(4350) \rightarrow \phi J/\psi$;
- Double charmonium:
 - $e^+e^-
 ightarrow (c\bar{c})_{J=1}(c\bar{c})_{J=0}$ production rule;
 - J^{PC} of X(3940).

Initial state radiation

Bottomonium(-like) studies at Belle II

Bottomonium: life outside $\Upsilon(4S)$

- B-factories' advantages for bottomonium research:
 - Able to adjust E_{CM} in 9.4-11.2 GeV region;
 - Pole-position for Υ , Y_b and Z_b states.
- B-factories legacy in bottomonium field:
 - BaBar Υ(3S): discovery of η_b(1S) arXiv:0809.1672v1 [hep-ex] 9 Sep 2008;
 - Belle $\Upsilon(5S)$: dicovery of $h_b(1P, 2P)$, $\eta_b(2S)$, $Z_b(10610, 10650)^{\pm}$ PRL108,032001(2012), arXiv:1205.6351, arXiv:1105.5492;
 - Belle: Y_b(10753) discovery
 JHEP 06 (2019) 220;

- Belle II data acquisition target:
 - 100 fb⁻¹ at Υ(6S);
 - 1 ab⁻¹ at Υ(5S).
- Principal ROI:
 - $\Upsilon(6S)$ vs. $\Upsilon(5S)$ in $\pi\pi\Upsilon$ and $\pi\pi\eta$ decays: is $\Upsilon(5S)$ a $b\bar{b}$ state?
 - Deeper study of 10.750 GeV/c² vicinity;
 - cc vs. bb spectrum discrepancy;

Prelude to energy scan analysis

- ISR processes:
 - $\gamma_{ISR}\Upsilon(2S) \rightarrow \pi^+\pi^-\Upsilon(1S);$
 - $\gamma_{ISR}\Upsilon(3S) \rightarrow \pi^+\pi^-\Upsilon(1S,2S);$
- Direct transitions: Υ(4S) → π⁺π⁻Υ(1S, 2S);
- First-look results:
 - Improvement w.r.t. Belle;
 - The $3S \rightarrow 2S$ transition is seen;
 - $\Upsilon(4S) \rightarrow \pi^+ \pi^- \Upsilon(nS)$ Datitz analysis is ongoing;

Belle II Energy Scan (Nov 2021)

- Considerations:
 - · Early physics at Belle II: fruitful field.
 - Major constraint: limited luminosity: O(15fb⁻¹).
 - Prospects: cover ↑(6S) region and beyond after detector upgrade.
- Status:
 - Energy scan operation was successful: x4 higher statistic w.r.t. Belle is accumulated.

Belle II potential: 10.75 GeV

• First observation (Belle, 2019) in $\sigma(e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-)$ vs. *E* ($\sqrt{s} = 10.6 - 11.2$ GeV).

R. Mizuk et al., J. High Energy Phys. 10, 220 (2019).

- Unclear nature

Godfrey, Moats, Phys. Rev. D 92 (2015) no.5, 054034.

Molecule? Too far from the threshold.

• ...

 Fast lane to today's aspects of XYZ puzzle in charmonium.

Conventional $b\bar{b}$ interpretation:

Bai, Li, Huang, Liu, Matsuki, Phys. Rev. D 105, 074007 (2022).

Li, Bai, Huang, Liu, Phys. Rev. D 104, 034036 (2021).

Li, Liu, Liu, Gui, Zhong, Eur. Phys. J. C 80, 59 (2020).

Chen, Zhang, He, Phys. Rev. D 101, 014020 (2020).

Giron and Lebed, Phys. Rev. D 102, 014036 (2020).

Kher, Chaturvedi, Devlani, Rai, Eur. Phys. J. Plus 137, 357 (2022).

Li, Bai, Liu, arXiv:2205.04049.

Liang, Ikeno, Oset, Phys. Lett. B 803, 135340 (2020).

Hüsken, Mitchell, Swanson, arXiv:2204.11915.

Beveren, Rupp, Prog. Part. Nucl. Phys. 117, 103845 (2021).

Tetraquark interpretation:

Ali, Maiani, Parkhomenko, Wang, Phys. Lett. B 802, 135217 (2020). Bicudo, Cardoso, Müller, Wagner, Phys. Rev. D 103, 074507 (2021). Bicudo, Cardoso, Müller, Wagner, arXiv:2205.11475.

Wang, Chin. Phys. C 43, 123102 (2019).

Hybrid interpretation:

Castella, Passemar, Phys. Rev. D 104, 034019 (2021). Brambilla, Eidelman, Hanhart, Nefediev, Shen, Thomas, Vairo, Yuan, Phys. Rept. 873, 1 (2020).

- Theoretical background:
 - $\mathcal{B}(Y(10753)) \rightarrow \omega \chi_{bJ} = 10^{-3}$ for $4S 3D \ b\bar{b}$ mixture. Li, Bai, Huang, Liu, Phys. Rev. D 104, 034036 (2021)
- X_b: X(3872) conterpart candidate?
 Choi et al., Phys. Rev. Lett. 91, 262001 (2003)
 - The $\pi\pi J/\psi$ and $\pi\pi\Upsilon$ cross section spectrum similarity hints at similar nature.
 - Y(4220) was observed by BESIII in $\gamma X(3872)$ and $\omega \chi_{c0}$ decays.
 - Should we expect Y(10753) to decay into $\gamma X(3872)$ and $\omega \chi_{c0}$? Worth checking!

Observation of $e^+e^- \rightarrow \omega \chi_{bJ}(1P)$ and search for $X_b \rightarrow \omega \Upsilon(1S)$ at \sqrt{s} near 10.75 GeV

I. Adachi, L. Aggarwal, H. Ahmed, H. Aihara, N. Akopov, A. Aloisio, N. Anh Ky, T. Aushevl, V. Aushev, H. Bae, P. Bambade, Sw. Banerjee, J. Baudot, M. Bauer, A. Beaubien, J. Becker, P. K. Behera, J. V. Bennett, E. Bernieri, F. U. Bernlochner, V. Bertacchi, M. Bertemes, E. Bertholet, M. Bessner, S. Bettarini, B. Bhuyan, F. Bianchi, T. Bilka, D. Biswas, D. Bodrov, A. Bolz, A. Bondar, J. Borah, A. Bozek, M. Bračko, P. Branchini, T. E. Browder, A. Budano, S. Bussino, M. Campajola, L. Cao, G. Casarosa, M.-C. Chang, P. Cheema, V. Chekelian, Y. Q. Chen, K. Chilkin, K. Chirapatpimol, H.-E. Cho, K. Cho, S.-J. Cho, S.-K. Choi, S. Choudhury, D. Cinabro, L. Corona, S. Cunliffe, S. Das, F. Dattola, E. De La Cruz-Burelo, S. A. De La Motte, G. De Nardo, M. De Nuccio, G. De Pietro, R. de Sangro, M. Destefanis, S. Dey, A. De Yta-Hernandez, R. Dhamija, A. Di Canto, F. Di Capua, Z. Doležal, I. Domínguez Jiménez, T. V. Dong, M. Dorigo, K. Dort, S. Drever, S. Dubev, G. Dujany, M. Eliachevitch,

(The Belle II Collaboration)

We study the processes $e^+e^- \rightarrow \omega \chi_{kJ}(1P)$ (J=0, 1, or 2) using samples at center-of-mass energies $\sqrt{s} = 10.701, 10.745$, and 10.805 GeV, corresponding to 1.6, 9.8, and 4.7 fb⁻¹ of integrated luminosity, respectively. These data were collected with the Belle II detector during a special run of the SuperKEKB collider above the $\Upsilon(4S)$ resonance. We report the first observation of $\omega \chi_{kJ}(1P)$ signals at $\sqrt{s} = 10.745$ GeV. By combining Belle II data with Belle results at $\sqrt{s} = 10.867$ GeV, we find energy dependencies of the Born cross sections for $e^+e^- \rightarrow \omega \chi_{kJ,k2}(1P)$ to be consistent with the shape of the $\Upsilon(10753)$ state. Including data at $\sqrt{s} = 10.653$ GeV, we also search for the bottomonium equivalent of the X (3872) state decaying into $\omega \Upsilon(1S)$. No significant signal is observed for masses between 10.45 and 10.65 GeV/c².

arXiv:2208.13189v1 [hep-ex] 28 Aug 2022

- $e^+e^- \rightarrow \omega \chi_{cJ} (\sigma_b)$
 - Born cross section measurement (σ_b) at $\sqrt{s} = 10.701$, 10.745, 10.805 GeV.
 - Combining Belle results at $\sqrt{s}=$ 10.867 GeV to study σ_b energy dependence.

arXiv:1408.0504v2 [hep-ex] 11 Sep 2014

- $e^+e^- \rightarrow \gamma X_b$
 - Search for X_b signal at $\sqrt{s} = 10.653$, 10.701, 10.745, 10.805 GeV.
- Strategy
 - EvtGen: PHOKHARA and PHSP.
 - Geant4.
 - Offline analysis within Belle II framework.
- Events selection
 - Standard POCA and PID requirements are set charged tracks selection (90%+ eff.).
 - Bremsstrahlung and FSR suppression + E(γ) > 50 MeV.
 - Accurate π^0 combination.
 - χ^2 -based BCS is applied.

- 2D UML fit of $M(\gamma Y(1S))$ vs. $M(\pi^+\pi^-\pi^0)$ distribution.
- Model: signal (CB for χ_{bJ} , Voigt for ω) + peaking bkg. (same) + comb. bkg.

χ_{b1}/χ_{b2} 1: agrees with HQET.
 arXiv:hep-ph/9908366v1 16 Aug 1999

$^*BW(\sqrt{s}) =$	$\sqrt{12\pi\Gamma_{ee}\mathcal{B}_{f}\Gamma}$	$\Phi_1(\sqrt{s})$
	$s - M^2 - iM\Gamma$	$\Phi_2(M)$

Г <i>Р</i>	Solution I	Solution II
$\Gamma_{ee}D_f$	(constructive interference)	(destructive interference)
$\Gamma_{ee}\mathcal{B}_f(\Upsilon(10753) \to \omega \chi_{b1})$	$(2.01 \pm 0.38 \pm 0.46)$ eV	$(0.63 \pm 0.39 \pm 0.20)$ eV
$\Gamma_{ee}\mathcal{B}_f(\Upsilon(10753) o \omega \chi_{b2})$	$(0.53 \pm 0.46 \pm 0.15) \; \text{eV}$	$(1.32\pm0.44\pm0.55)$ eV

- Search for resonances in $\omega \Upsilon(1S)$ in each energy scan.
- ωχ_{bJ} reflection is accounted.
- No evidence for X_b signal.
- $\sigma_{X_b}^{UL}$ upper limit is set** for each E_{CM} and $M(X_b) \in [10.45, 10.65]$ GeV.

\sqrt{s} (GeV)	M_{X_b} (GeV)	$\sigma_{X_b}^{UL}$
10.653	10.59	0.55
10.701	10.45	0.84
10.745	10.45	0.14
10.805	10.53	0.47

Summary

- B-factories founded the XYZ studies, they are now complemented by other studies:
 - Many statistics-dominated B-decay modes covered by LHCb;
 - BES III energy scans extending range above 4.9 GeV;
- Still well-known for this legacy (X(3872) is still the most cited paper) and essential for full understanding of new states;
- Key future contributions:
 - Models with neutrals (e.g. neutral Z partners, π^0 transitions/decays)
 - Unique double-charmonium $(e^+e^- \to c\bar{c} c\bar{c})$ and two-photon $(e^+e^- \to e^+e^- c\bar{c})$ production;
 - Statistics-dominated: results will come with the raise of integrated luminosity.

The future of Bottomonium at Belle II

- Open questions Belle II can give answers to:
 - α_s -suppressed $\Upsilon(nS)$ radiative transitions? (possible at Belle II only):
 - Y_b nature;
 - Z_b decomposition (only seen in $\Upsilon(5S)$ decays so far). Other . molecular states?
- Long-term non- $\Upsilon(4S)$ possibilities:
 - Revisit $\Upsilon(6S)$ with 10x+ statistics; .
 - LFV/spectroscopy in $\Upsilon(2S, 3S)$ decays; .
 - Higher statistics scan of entire region and $\Upsilon(5S)$;
 - E_{CM} to $\Lambda_b \overline{\Lambda_b}$ (requires further SuperKEKB upgrades).

Gol	den Modes
e^+e^-	$^- \rightarrow \pi^+ \pi^- \Upsilon(pS) (\rightarrow \ell^+ \ell^-)$
$B\overline{B}$	decomposition
$\pi^+\pi$	– Dalitz
Y_b –	$\rightarrow \omega \eta_b(1S)$
Y_b -	$\rightarrow \omega \chi_{bJ}(1P)$
Silve	er Modes
Y_b –	$\rightarrow \pi^+\pi^- X$ (inclusive)
Y_b –	$\rightarrow \eta X$ (inclusive)
Y_b –	$\rightarrow \eta \Upsilon(1S, 2S) (\rightarrow \ell^+ \ell^-)$
Y_b –	$\rightarrow \eta' \Upsilon(1S) (\rightarrow \ell^+ \ell^-)$
Y_b –	$\rightarrow \Upsilon(1S)$ (inclusive)
Bro	nze Modes
Y_b –	$\rightarrow \gamma X_b$
Y_b –	$\rightarrow \pi^0 \pi^0 \Upsilon(pS) (\rightarrow \ell^+ \ell^-)$
Y_b –	$\rightarrow KK(\phi)\Upsilon(pS)(\rightarrow \ell^+\ell^-)$
Y_b –	$\rightarrow \pi^0 \pi^0 X$ (inclusive)
Y_b –	$\rightarrow \pi^0 X$ (incl. or excl.)

Belle Phys. Rev. Lett. 100, 112001 (2008)

Summary: Belle II take-off

- Huge experiment: 1100+ members, 123 institutions, 26 countries;
- Run time is scheduled until 2031+;
- First major upgrade is ongoing;
- Next long-term data collection period is to be launched in the next year.

