

SuperKEKB/Belle II: design, status and prospect

Keisuke Yoshihara

25th August 2022, APPC15

In B-Factories, e+ and e- collide at 10.58 GeV to make *Y(4S)* resonance decaying In B-Factories, e+ and e- collide at 10.58 GeV to make *Y(4S)* BaBar (~0.5 ab⁻¹) played into B+B and B+B ange B+B in 96% of the time. Belle (~1 ab⁻¹) and BaBar (~0.5 ab⁻¹) played resonance decaying into B+B in geb in 96% of the time. Belle (~1 ab⁻¹) and BaBar (~0.5 ab⁻¹) played resonance decaying into B+B in geb in 96% of the time. Belle (~1 ab⁻¹) and BaBar (~0.5 ab⁻¹) played resonance decaying into B+B in geb in 96% of the time. Belle (~1 ab⁻¹) and BaBar (~0.5 ab⁻¹) played resonance decaying into B+B in geb in 96% of the time. Belle (~1 ab⁻¹) and BaBar (~0.5 ab⁻¹) played resonance decaying into B+B into B-meson system in the SM and

Introduction — Precision CKM measurement

Current status

Sensitivity projection

If **50** ab⁻¹ of data is collected, CKM parameters can be precisely measured.

A large improvement is expected in not only ϕ_1 but also in $|V_{ub}|$, ϕ_2 and ϕ_3 .

Precision of $|V_{cb}|$ and $|V_{td}|$ can be improved by phenomenology or better calculation of lattice QCD.

arXiv:1808.10567

Observable	Belle	Belle II (5 ab-1)	Belle II (50 ab-1)
IV _{cb} l incl.	1.8%	1.2%	1.2%
$ V_{cb} $ excl.	$3.0_{ex} \pm 1.4_{th}\%$	1.8%	1.4%
IV _{ub} l incl.	$6.0_{ex} \pm 2.5_{th}\%$	3.4%	3.0%
IV _{ub} l excl.	$2.5_{ex} \pm 3.0_{th}\%$	2.4%	1.2%
sin2φ1 (B->J/ψKs)	$0.667 \pm 0.023 \pm 0.012$	0.012	0.005
ϕ_2 [deg]	85 ± 4 (Belle +BaBar)	2	0.6
ϕ_3 [deg] (B->D ^(*) K ^(*))	63 ± 13	4.7	1.5

Introduction — B anomaly

as a function of dilepton mass squared q the $\psi_{\ell+\ell}^{\pm}$ sensitive to many possible new physics contribution

Nano beam scheme

Squeezing vertical β function (β_y^*) at Interaction Point (IP)

$$L = \frac{\gamma_{\pm}}{2er_e} \begin{pmatrix} I_{\pm}\xi_{y\pm} \\ \beta_{y\pm}^* \end{pmatrix} \begin{pmatrix} R_L \\ R_{\xi_y} \end{pmatrix}$$

- Small vertical beam size (σ_y~60 nm):
 β_y* ~0.3mm (x 1/20)
- Larger beam current (x 2)

- In the nano-beam scheme with large crossing angle, effective bunch length (*d*) can be much shorter (β_y* ~σ_z)
- Small β_x* and small emittance (ε_x) are also the key → positron DR
- Positron beam energy from 3.5 to 4.0 GeV to increase beam lifetime (still ~O(10) min maximum)

head-on collision

Due to hourglass effect, the luminosity does not increase when ${\beta_y}^\star < \sigma_z$.

Upgrading to "Super" KEKB

Belle II detector

Detector looking similar to Belle, but it is practically a brand new!

Improved vertex reconstruction

- Smaller beam pipe (ϕ 7.5 \rightarrow 5)
- A 2-layer silicon pixel detector (PXD)
- 4-layer silicon strip detector (SVD) extended to a larger radius
- Larger volume and smaller drift cell in tracking chamber (CDC)

Improved PID and energy measurement

- Improved K/ π separation (TOP and ARICH)
- Wave-form sampling robust against pile-up (ECL)
- Endcap RPC was replaced by scintillator in Muon/K_L detector (KLM)

Other improvements

- New triggers (e.g. dark sector searches)
- Analysis tools with decent machine learning techniques
- Grid computing

Belle II TDR, arXiv:1011.0352

Machine and detector commissioning

• Phase-1: Startup of the machine:

- commissioning without collision
- low emittance beam tuning
- vacuum scrubbing

Phase-2: Commissioning w/o VXD

- β* squeezing at IP
- DR commissioning
- collision tuning

• Phase-3: Commissioning w/ full Belle II detector

- collision tuning
- collimator tuning and background study
- continuous injection

VXD detector

Phase-3 operation summary

Delivered peak luminosity (10³⁴ /cm²/s)

500

400

300

200

100

0

2019-09 2020-03 2020-09

1.6

1.4

1.2

1.0

0.8

0.6 0.4

0.2 0

Daily max beam current (A)

○ Achieved (LER) ○ Achieved (HER) ○ Achieved (√LER·HER)

LER: 1.41 A

HER: 1.26 A

Integrated luminosity (fb⁻¹) ○ Achieved (recorded) ○ Achieved (delivered)

424 fb⁻¹ recorded for physics 491 fb⁻¹ delivered ~BaBar dataset 2020-03 2019-09 2022-03 2020-09 2021-03 2021-09

With remote+local operation scheme, we have been running during the pandemic. A new record for peak luminosity while integrating ~BaBar dataset.

2021-03

2021-09

2022-03

[[]Delivered $\mathcal{L}(plan)$] = Σ [Daily delivered $\mathcal{L}(plan)$]

Vertexing performance --- charm lifetime

1.75, 2.00] GeV/ c^2 and the difference between the D^{*+} and D^+ raasses in the range [138, 143] Me^V/ c^2 (±3 times

to the candidates in the signal region and sideband is berformed. The background fraction is Gaussian constrained in the fit to $(8.78 \pm 0.05)\%$, as measured in the $m(K^-\pi^+\pi^+)$ fit.

Time dependent CP asymmetry

<u>K11.03</u>: Recent Belle II results on decay-timedependent CP violation by Ming-Chuan Chang

 $S_{CP}(J/\psi K_S) = \sin(2\phi_1)$ meas. :

b \rightarrow ccs has a small unc. on theo. and exp. \rightarrow golden mode for φ_1

First meas. (190 fb⁻¹) of J/ψ K_S at Belle II $S_{CP} = 0.720 \pm 0.062$ (stat.) ± 0.016 (syst.) ($S_{PDG} = 0.701 \pm 0.017$)

φ₁ measurement in penguir

• Size of CP asymmetry in b \rightarrow sqq (lo (e.g J/W Ks) (tree). However, if a ne **CP asymmetry may change** ($\phi_1^{eff} = \phi_1 + \phi_1^{eff}$

0.4

- $B \rightarrow \phi K$, $\eta' K_s$, $K_s K_s K_s$ are golden mode (s
 - First measurement (63 fb⁻¹) of η'K_s Br is consistent with World Average (see <u>arXiv:2104.06224</u>)
 - First measurement (190 fb⁻¹) of K_sK_sK_s mode is consistent with unity: S_{CP} = -1.86 + 0.91 - 0.46 (stat.) ± 0.09 (syst.)

0,2

 $P(\chi^2) = 74\%$

0.6 R(D)

0.5

φ₂ measurement

- $B \rightarrow \pi \pi$ and $B \rightarrow \rho \rho$ are sensitive to ϕ_2 which is the least constrained CKM parameter. These decays are also sensitive to direct CP violation. Isospin analysis (+0,+-, 00) is performed to resolve interference between tree and penguin diagrams and extract ϕ_2
- Multidimensional fit in kinematic variables to extract branching fraction, longitudinal polarization fraction (f_L), charge asymmetry (A_{cp})

	$\mathcal{B}(imes 10^6)$	f_L	A _{CP}	O 400 ↓ L ↓ L ↓ L ↓ L ↓ J
$B o ho^+ ho^-$	$26.7 \pm 2.8 \pm 2.8$ (27.7 + 1.9)	$\begin{array}{c} 0.956 \pm 0.035 \pm 0.033 \\ (0.990^{+0.021}) \end{array}$	$(\mathcal{A} = 0.00 \pm 0.09, \mathcal{S} = -0.14 \pm 0.13)$	$ \begin{array}{c} \Psi \\ \Im \\ \Im \\ \Theta \\ \Theta$
$B \rightarrow a^+ a^0$	$\frac{(21.1 \pm 1.5)}{23.2^{+2.2}_{-2.1} \pm 2.7}$	$\frac{(0.330_{-0.019})}{0.943_{-0.033}^{+0.035} \pm 0.027}$	$-0.069 \pm 0.068 \pm 0.060$	$\begin{array}{c} O \\ O $
$D \rightarrow \rho^+ \rho$	(24.0 ± 1.9)	(0.950 ± 0.016)	(-0.05 ± 0.05)	
$B \to \pi^+ \pi^0$	$6.12 \pm 0.53 \pm 0.53$		$0.085 \pm 0.085 \pm 0.019$	
	(5.5 ± 0.4)		(0.03 ± 0.04)	
$B \to \pi^0 \pi^0$	$1.27 \pm 0.25 \pm 0.17$		$0.14 \pm 0.46 \pm 0.07$	
	(1.59 ± 0.26)		(0.33 ± 0.22)	Ξ^{CC} -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 $\cos\theta_{0^+}$

Belle II 190 fb⁻¹ result

See arXiv:2106.03766, 2107.02373, 2206.12362

helicity angle distribution

$\left|V_{ub}\right|$ and $\left|V_{cb}\right|$ measurement

• Semi-leptonic B decays are used to extract the CKM parameters $|V_{ub}|$ and $|V_{cb}|$.

B

- $B \to \pi \ell \nu$ and $B \to D \ell \nu$ are golden modes for $|V_{ub}|$ and $|V_{cb}|$ measurements.
- There exists a longstanding discrepancy (~3.3σ) between exclusive and inclusive meas.

B tagging technique

- Reconstruction of the B-meson in Tag-side (B_{tag})
 - Large statistics from B-factory is required because the reconstruction efficiency of B_{tag} is not so high.
 - B_{tag} is very important when there is a neutrino in final state in your signal.
- Full Event Interpretation (FEI, machine learning algorithm) improved the reconstruction efficiency compared to Belle's algorithm.

$B \rightarrow D^{(*)} \ell \nu \text{ for } |V_{cb}|$

- Untagged and hadronic tagged analyses were performed with 190 fb⁻¹.
- The reconstruction of low momentum pions from D* is challenging.
- For the tagged analysis, the missing mass squared (i.e. neutrino) is calculated from visible particles (B_{tag} , D^* , ℓ) and beam energy.
- Differential decay width is fit to extract $|V_{cb}|$ and a form factor.

$$\frac{d\Gamma}{dw} = \frac{\eta_{\rm EW}^2 G_F^2}{48\pi^3} m_{D^*}^3 (m_B - m_{D^*})^2 g(w) F^2(w) |V_{cb}|^2 \qquad w = \frac{m_{\rm D^{*+}}^2 + m_{\rm B^0}^2}{2m_{\rm B^0} m_{\rm D^*}}$$

$B \rightarrow D^{(*)} \tau \nu$

- Since B meson decays via W in the SM, the BF is large O (1) %
- This is a decay of 3rd gen. quark to 3rd gen. lepton
 - large coupling to heavy particle (e.g. charged Higgs)
 - Iarge coupling to 3rd gen. particles (e.g. LQ or Z' model)
- > 1 neutrino in the final state → Flavor tagging is a key

• Unc. can be suppressed by taking a ratio (LFU)

$$R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)} \tau \nu)}{\mathcal{B}(B \to D^{(*)} \ell \nu)}$$

	Eelle II (5 abri)	Belle II (50 ab-1)	
R _D	±6.0±3.9%	±2.0±2.5%	ab⁻¹)
R _{D(*)}	±3.0±2.5%	±1.0±2.0%	%
R _{D(*)}	±3.0±2.5%	±1.0±2.0)%

 $b \rightarrow s \ell^+ \ell^-$

- Flavor changing neutral current (FCNC) b→s (d) decay proceeds with a loop diagram. Hence it is suppressed in the SM.
 - Enhancement of new physics contribution (e.g. SUSY, Z', LQ model etc)

 b→sℓ+ℓ- is experimentally a clean signature. Unc. can be suppressed by taking a ratio:

$$R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)} \mu^+ \mu^-)}{\mathcal{B}(B \to K^{(*)} e^+ e^-)}$$

 In Belle II, in addition to R(K*), an inclusive measurement of R(Xs) is also possible. Flat sensitivity over q².

(*) all possible final states taken into account.

Sensitivity at Belle II

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$R_K ([1.0, 6.0] \mathrm{GeV}^2)$	28%	11%	3.6%
$R_K \; (> 14.4 {\rm GeV^2})$	30%	12%	3.6%
R_{K^*} ([1.0, 6.0] GeV ²)	26%	10%	3.2%
$R_{K^*} \ (> 14.4 {\rm GeV}^2)$	24%	9.2%	2.8%
$R_{X_s} \; ([1.0, 6.0] { m GeV^2})$	32%	12%	4.0%
$R_{X_s} \ (> 14.4 {\rm GeV}^2)$	28%	11%	3.4%

* Statistical uncertainty is dominant. Systematic unc. is negligible.

- inclusive B meson decay: semi-leptonic B decays
- M_{bc} and ΔE are used for signal extraction igodol
- Main source of systematic unc. : particle ID ightarrow

Branching fraction:

 $\mathcal{B}(B \to K^* \mu^+ \mu^-) = (1.19 \pm 0.31^{+0.08}_{-0.07}) \times 10^{-6},$ $\mathcal{B}(B \to K^* e^+ e^-) = (1.42 \pm 0.48 \pm 0.09) \times 10^{-6},$ $\mathcal{B}(B \to K^* \ell^+ \ell^-) = (1.25 \pm 0.30^{+0.08}_{-0.07}) \times 10^{-6}.$

Ц

$B {\longrightarrow} K^{(*)} \nu \nu$

• FCNC $b \rightarrow s$ (d) process

• Independent probe against $b \rightarrow s\ell^+\ell^-$ anomaly

 B_{tag} is a key since two neutrinos are in the final state. MVA analysis is employed to further improve the Belle II sensitivity.

- Binning with Kaon P_T to maximize the sensitivity
- Continuum BG is estimated by CR

PhysRevLett.127.181802

Discovery with 5-10 ab⁻¹ of Belle II data?

August 25, 2022, Keisuke Yoshihara

$Z' \rightarrow invisible$

- $U(1)_{L\mu-L\tau}$ model considers $L_{\mu}-L_{\tau}$ as a new charge:
 - ► Sensitive to $(g-2)_{\mu}$ anomaly or $b \rightarrow s\mu^{+}\mu^{-}$ anomaly
 - Z' couples to only τ , μ , $\nu_{\tau,\mu}$ in the SM

- Main BG
 - τ+τ- (1-prong) + missing energy (neutrino)
 - $\mu^+\mu^- + \gamma$ (being missing)
- Limit on Z'—SM coupling (g') g'> 5 x 10⁻² @ 90% CL

Dark Higgs strahlung

arXiv:2207.00509

- U(1)' vector portal extension of SM
- Dark photon (A') couples through kinematic mixing ε to SM and its mass can arise from SSB, introducing a dark higgs boson (h')
- h' becomes a long-lived particle if m(h') < m(A').
- Recoil mass M_{recoil} (~m(h')) is defined against M_{μμ}.
 Analysis scans 2D plane: M_{recoil} vs M_{μμ}.
- Main BG : $\mu^+\mu^- + \gamma$ (being missing),
 - $\tau^+\tau^-$ (1-prong) + missing energy (neutrino),

τLFV search

- Taus are also pair-produced at SuperKEKB $\sigma(\tau\tau)$: 0.9nb, $\sigma(Y(4S))$: 1.2nb
- τLFV decay proceeds via neutrino oscillation in the SM (~10⁻⁵⁴) which is expected to be much smaller than new physics contribution (10⁻⁷ - 10⁻¹⁰?)

Belle II is a unique experiment for τLFV

Challenges and prospect

Beam Background

Beam background crucial to maintain Belle II detector performance

Sudden beam loss

A significant beam loss at high beam current operation resulted in severe damage on a collimator or the vertex detector. Our abort system is not fast enough to protect such a sudden beam loss. \rightarrow A limitation toward higher beam current

Beam diagnosis system

Adding more "eyes" to find the hint for the cause of the loss!

 A new beam diagnosis system is developed to identify the location of the loss w/ accuracy of 20 m in the MR (corresponding to ~100 ns)

Motivation

-EMT delivered 11th Oct. Assembly and signal check is done. -PMT (R9980U-110) based but aluminum used for Photoelectric surface. R&D has been done by T2K for muon beam monitor.

At present, 7 loss model
 EMT) have been new main ring. White Rab for time synchronizat

Luminosity projection

Upgrade work in LS1

- PXD2 installation
 - PXD will be fully re-installed (\rightarrow PXD2).
 - New IP chamber also in production
 - synchrotron radiation shielding
- TOP MCP-PMT replacement
 - Some PMTs will be replaced with lifeextended ALD type PMTs
- Additional shields for BG mitigation
 - Concrete shield, PE shield, QCS bellows shield

August 25, 2022, Keisuke

PXD1 configuration

Due to problems in ladder gluing, only half of designed PXD (full L1+ 2 L2 ladders) was installed in 2018/2019.

- Collimator system upgrade
 - Non linear collimator installation (LER)
 - Robust collimator head (LER)
- Beam pipe upgrade at injection point (HER)

Summary

- SuperKEKB/Belle II is a new generation B-factory having unique capabilities for new physics search.
- Machine operation going well so far and 424 fb⁻¹ has been collected.
 - LER/HER: 1460/1260 mA
 - n. bunch: 2346 bunches (2-bucket spacing)
 - Peak luminosity: 4.65 x 10³⁴ cm⁻²s⁻¹
- During the LS1, detector and machine upgrade going on to aim for designed luminosity

 $10 \,\mu m(X) \times 50 \,nm(Y)$

Thank you!

Backup

$$\begin{bmatrix} 1 - |z|e^{-i\theta} \end{bmatrix} \end{bmatrix}$$

riangles of (a) Eq. (3) and (b) Eq. (4).

Belle II operation summary (2022ab)

- (Basically) stable operation at $\beta_y^* = 1$ mm optics with CW.
- A new luminosity world record (4.65 x 10³⁴ cm⁻² s⁻¹) achieved
- Belle II DAQ stable (DAQ eff ~87%) it was ~90%
 - Dead time (5.8%) dominated by injection veto (~5.2%)
 - DAQ trouble
 - Frequent HLT error at high L1 rate
 - Single Event Upset (iTOP and CDC)

LHCb vs Belle II

Credit: G. Ciezarak et al, Nature 546, 227 (2017)

- LHCb:
 - Large B-meson cross section (roughly 1 ab⁻¹ @Belle II ~ 1 fb⁻¹@LHCb)
 - Good sensitivity to all charged final states.
- Belle II: (simpler environment with no additional particles)
 - High reconstruction efficiency of B meson (tagging)
 - Inclusive processes can be measured
 - Neutral particles (photons, K_s, and neutrinos) can be measured
 - High statistics for electron channels as well as muons' → *lepton universality test*

Collimator system

• **31 collimators** (18 horizontal and 13 vertical ones) are installed in the ring to protect the Belle II and the accelerator components from the beam background.

Non linear collimator

Skew sextuple magnets are used for collimation. No additional impedance budget. Robust against the damage. Installation during LS1 at OHO wiggler section.

Trigger system

Trigger system has the capability to handle
 L1~30 kHz, while physics event rate is
 expected to be ~15kHz @ L=8 x 10³⁵ cm⁻² s⁻¹.

- Y(4S) events have to be > 99.9% efficient.
 - #CDC track >=3
 - #CDC track >=2 & $\Delta \phi$ > 90 deg.
 - ECL energy sum > 1GeV
 - #ECL cluster >= 4

• Dedicated triggers for dark sector searches

- #CDC-KLM matching >=1 (Z' search)
- ECL cluster back-to-back, E < 2GeV (ALP, two-photon fusion)
- ... and more

process	σ [nb]	Rate [Hz] @ L= 8 x 10 ³⁵ cm ⁻² s ⁻¹
Y(4S)	1.2	960
Continuum	2.8	2200
μμ	0.8	640
π	0.8	640
Bhabha ^(*)	44.0	350
γ-γ (*)	2.4	19
Two photon (**)	13.0	10,000
Total	67	~15,000

(*) Rate of Bhabha and γ - γ are pre-scaled by a factor of 100 (**) Rate are estimated by the luminosity component in Belle L1 rate

ALP search

- GeV scale ALP (a) as a pseudo portal mediator btw Dark Sector and SM
- Peak hunting by selecting events with three photons with invariant mass consistent with √s.
- Background dominated by (irreducible) ee
- Set upper limits on $\sigma(ee \rightarrow \gamma a)$
 - no excess in 0.2 < $m_a <$ 9.7 GeV/c²

4]

s-check to the anomalies in $B \rightarrow K^* \mu^+ \mu^-$ and $R_{K(*)}$

$\mathbf{\hat{e}}_{\mathbf{v}} = \mathbf{P'}_{5} + \mathbf{LHCb} \text{ data } = \mathbf{ATLAS} \text{ data}$	Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II 5 ab ⁻¹	¹ Belle II 50 ab ⁻¹
0.5 Belle data • CMS data	P_5' ([1.0, 2.5] GeV ²)	0.47	0.17	0.054
O SM from ASZB	P_5' ([2.5, 4.0] GeV ²)	0.42	0.15	0.049
	P_5' ([4.0, 6.0] GeV ²)	0.34	0.12	0.040
	$P_5' \ (> 14.2 {\rm GeV^2})$	0.23	0.088	0.027
-1 -1 -1 -1 -1 -1 -1 -1				
$q^2 \left[\operatorname{Gev}^2 / \mathcal{C}^4 \right]$	Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
	$R_K ([1.0, 6.0] \text{GeV}^2)$	2) 28%	11%	3.6%
	$R_K (> 14.4 {\rm GeV}^2)$	30%	12%	3.6%
	R_{K^*} ([1.0, 6.0] GeV	$^{(2)}$ 26%	10%	3.2%
	$R_{K^*} (> 14.4 \mathrm{GeV}^2)$) 24%	9.2%	2.8%
$\begin{array}{c} \bullet \\ 0.2 \end{array} \begin{bmatrix} \bullet \\ 0.2 \end{bmatrix} \begin{bmatrix} \bullet \\ 0.2 \end{bmatrix} \begin{bmatrix} \bullet \\ 0.1 \end{bmatrix} \begin{bmatrix}$	$R_{X_s} \ ([1.0, 6.0] \text{GeV})$	$^{(2)}$ 32%	12%	4.0%
$0.0 \begin{bmatrix} LHCb & & JC \\ 0.1 & 2 & 3 & 4 & 5 & 6 \end{bmatrix} 0.0 \begin{bmatrix} LHCb & & Belle \\ 0.0 & 5 & 10 & 15 \end{bmatrix}$	$R_{X_s} = R_{X_s} (> 14.4 \mathrm{GeV^2})$) 28%	11%	3.4%
$q^2 [{ m GeV}^2/c^4]$ $q^2 [{ m GeV}^2/c^4]$	[c ⁴]			

- In the area of EWK Penguin, sensitivity of ~5 ab⁻¹ Belle II data (~2024) will be comparable to 4.7 fb⁻¹ of LHCb
- Other important physics results will be also coming up in the similar timeline.

Fast beam abort

- According to the abort analysis, the first beam loss tends to be detected by D06 sensors (except for QCS quench events).
- The faster abort can be achieved by:
 1 having a sensor at better location
 - 2 faster sensor (Ivan's talk)
 - ③ shorter transmission path

Machine parameters (at design)

narameters		KEł	KB	SuperKEKB		unite
parameters		LER	HER	LER	HER	units
Beam energy	Eb	3.5	8	4	7.007	GeV
Half crossing angle	ф	11	l	41.5		mrad
# of Bunches	N	158	34	2500		
Horizontal emittance	٤x	18	24	3.2	5.3	nm
Emittance ratio	к	0.88	0.66	0.27	0.24	%
Beta functions at IP	β _x */β _y *	1200/5.9		3.2/0.27	2.5/0.30	mm
Beam currents	l _b	1.64	1.19	3.6	2.6	A
beam-beam param.	ξ _y	0.129	0.090	0.0886	0.081	
Bunch Length	SZ	6.0	6.0	6.0	5.0	mm
Horizontal Beam Size	sx*	150	150	10	11	um
Vertical Beam Size	sy*	0.9)4	0.048	0.062	um
Luminosity	L	2.1 x	10 ³⁴	8 x 10) 35	cm ⁻² s ⁻¹

Note: beam energy changed because positron beam (Touschek) lifetime is too short while accepting smaller boost ($\beta\gamma = 0.42 \rightarrow 0.28$) of decayed particles.

Unitarity triangle

CKM matrix

$$\left(\begin{array}{ccc} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array} \right) = \left(\begin{array}{ccc} 1 - \lambda^2/2 & \lambda & A\lambda^3(\varrho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^2(1 - \varrho - i\eta) & -A\lambda^2 & 1 \end{array} \right)$$

In B-factory, all parameters can be measured!!

A triangle can be defined from CKM parameters by imposing a unitarity requirement. Each parameter can be determined by measurement of semi-leptonic decay or $B-\overline{B}$ mixing. Any distortion of the triangle could be a signature of new physics.

Kπ puzzle

https://arxiv.org/pdf/2206.07453.pdf

$K\pi$ puzzle

 $K\pi$ puzzle: unexpected large difference between $\mathcal{A}_{K^+\pi^-}^{CP}$ and $\mathcal{A}_{K^+\pi^0}^{CP}$. **Isospin sum rule** provides null test of standard model:

$$I_{K\pi} = \mathcal{A}_{K^{+}\pi^{-}}^{\mathsf{CP}} + \mathcal{A}_{K^{0}\pi^{+}}^{\mathsf{CP}} \frac{\mathcal{B}_{K^{0}\pi^{+}}}{\mathcal{B}_{K^{+}\pi^{-}}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}}^{\mathsf{CP}} \frac{\mathcal{B}_{K^{+}\pi^{0}}}{\mathcal{B}_{K^{+}\pi^{-}}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{0}\pi^{0}}^{\mathsf{CP}} \frac{\mathcal{B}_{K^{0}\pi^{0}}}{\mathcal{B}_{K^{+}\pi^{-}}} \approx 0$$

Belle II is a unique place to measure all involved decays!

Previous tests of sum rule at Belle II using 62.8 fb⁻¹: Measurements of $B^0 \to K^+\pi^-$, $B^+ \to K^0_S\pi^+$ (arXiv:2106.03766), $B^0 \to K^0_S\pi^0$ (arXiv:2104.14871) and $B^+ \to K^+\pi^0$ (arXiv:2105.04111). **Today:** New measurement of \mathcal{B} and \mathcal{A}^{CP} of $B^+ \to K^+\pi^0$ based on 190 fb⁻¹. Update on $B^0 \to K^0_S\pi^0$ in Chiara La Licata's talk later today.

g-2 anomaly and vacuum polarization

- 4.2 σ deviation from the SM in $(g-2)_{\mu}$
 - new physics? (e.g. SUSY, LQ, ALP, ...)
- Dominant theo. unc. arises from QCD term (HVP term)

HVP: Hadronic Vacuum Polarization

$$a_{\mu} = rac{g-2}{2} = a_{\mu}^{QED} + a_{\mu}^{EW} + a_{\mu}^{QCD}$$

- Large diff. in measured xsec btw BaBar and KLOE
- $e^+e^- \rightarrow hadrons$ (e.g. $\pi^+\pi^-$) cross section at Belle II
 - Energy of hadrons scales with ISR γ recoil energy
 - Small statistics is OK?

BELLE2-NOTE-PL-2018-023

Angular analysis

Measurement of $B \rightarrow K^* \ell^+ \ell^-$ at Belle II is an important cross check for $B \rightarrow K^* \mu^+ \mu^-$ anomaly

Recent (2022ab) operation summary

- QCS quench and/or collimator damage
 - the machine condition sometimes changes after these accidents
 - collimator damage increased the beam background and the frequency of sudden beam loss events.
- $\beta_y^* = 0.8$ mm operation for short period of time.
 - It was very difficult to increase the beam current because the beam injection performance was poor (due to short lifetime and collimator damage)

IR upgrade (long term)

- IR upgrade (QCS and its beam pipes) is essential to achieve 50 ab⁻¹ (and peak luminosity of > 6 x 10³⁵ cm⁻²s⁻¹)
 - Strong beam-beam effect observed at high-bunch current
 - Narrow physical aperture in QCS beam pipes
 - Large beam background at Belle II
 - Narrow dynamic aperture at high-bunch current at small β_y^*

Details are still under discussion, these items are challenging

	Aim	Possible countermeasures	
(1)	Increase injection power (efficiency)	Linac upgrade to designed specification	
		Large physical aperture at electron injection point (HER)	
		Linac upgrade beyond designed specification	
		Rotatable sextuplole magnets	
(2)	Improve dynamic aperture	Perfect matching	
		QCS modification (Option#1): Move QC1RP to far side of IP	
		Large scale QCS modification (Option #8)	
	Improve physical	QCS cryostat front panel modification and additional shield to IP bellows	
(3)	aperture Lower BG	Optimization of collimator location	
		QCSR beam pipe enlargement (Option#3)	
(4)	Relax TMCI limit	Non-linear collimator	
(5)	Improvo otobility	Robust collimator	
	improve stability	Upgrade of beam abort system and loss monitor system	
(6)	Anti-aging measures Preparation of standby machines and spares, repair of facilities, etc.		