Recent results from Belle II

Valerio Bertacchi* on behalf of Belle II collaboration

Montpellier, 5 July 2022

* bertacchi@cppm.in2p3.fr - Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

Outline

- SuperKEKB and Belle II detector
- **Charm** physics
- SM precision: CKM Matrix
 - Semileptonic B decays (CKM elements)
 - Hadronic B decays (angles and CP violation)
 - Time dependent CP Violation
- Portals for **new physics**:
 - Rare B decays
 - Dark Sector

B-Factory idea

 $m_{\Upsilon(4S)} \simeq 10.58 \,\mathrm{GeV}/c^2$

 $\tau_B \simeq 1.5 \times 10^{-12} \,\mathrm{s}$

 $m_B \simeq 5.279 \ {
m GeV}/c^2$

- Asymmetric collider e^+e^- , $E_{cm} = m(\Upsilon(4S)) = 10.58$ GeV \Rightarrow coherent $B\overline{B}$ pairs
- Boost of center-of-mass ($\beta\gamma = 0.28$) \Rightarrow measure of Δz
- High luminosity \Rightarrow precision measurements

B=∢ba

• Hermetic detector, high precision in vertexing \Rightarrow closed kinematics

 l_1

$e^+e^- ightarrow$	Cross section
$\Upsilon(4S)$	1.05 ± 0.1
$c\overline{c}$	1.30
$s\overline{s}$	0.38
$u\overline{u}$	1.61
$d\overline{d}$	0.40
$ au^+ au^-(\gamma)$	0.919
$\mu^+\mu^-(\gamma)$	1.148
$e^+e^-(\gamma)$	300 ± 3

Belle II experiment at SuperKEKB collider

SuperKEKB

- Successor of KEKB (1999-2010, KEK, Japan)
- Target peak luminosity: $6 \cdot 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ (x 30 of KEKB)
- Target integrated luminosity: **50** ab^{-1} (x 70 Belle at $\Upsilon(4S)$)

Belle II

[Belle II Technical Design Report, arXiv:1011.0352]

Belle II experiment at SuperKEKB collider

SuperKEKB

 Successor of KEKB (1999-2010, KEK, Japan)

Current Status

- complete detector data taking started in 2019
- Current peak luminosity $4.7 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ (reached the 22/06/2022)
- current integrated luminosity: ~ 424 fb⁻¹ (~Babar~0.5 Belle)
- Long Shutdown 1 (LS1) is starting now for several upgrades (beam pipe, pixel, TOP PMT)

Luminosity [x10³⁵cm_s⁻¹] eak Ω

Belle II

Charm physics: lifetimes

- Motivation:
 - models uncertainties
 - measurement of lifetimes tests these model
- Opportunity:
 - $\sigma_{c\overline{c}} \simeq \sigma_{b\overline{b}} \Rightarrow$ high statistics
 - B-factory environment allow absolute (un-biased selection) lifetime measurements
 - SuperKEKB small interaction region and Belle II vertex detector provide strong constraints and improved resolutions
 - current sample is not sufficient for charm CPV measurements, but can produce world best lifetime measurements (constraints for the future)

- charm physics \Rightarrow low-energy QCD (nonperturbative/higher order correction) \Rightarrow effective

Charm physics: D^0 , D^+ and Λ_c^+ lifetimes

•
$$t = m_{D/\Lambda} \overrightarrow{L} \cdot \overrightarrow{p} / |\overrightarrow{p}|^2$$

 $(\overrightarrow{L} \sim 10^2 \,\mu \text{m})$

- 2D ML fit to $t \times \sigma_t$ distribution
- bkg: estimated from **sideband** in $m_{D/\Lambda}$

Belle II	World average
τ(D ⁰) = (410.5 ± 1.1 ± 0.8) fs	(410.1 ± 1.5) fs
τ(D+) = (1030.4 ± 4.7 ± 3.1) fs	(1040 ± 7) fs
τ(Λ _c +) = <mark>(204.1 ± 0.8 ± 0.7 - 1.4) fs</mark>	(202.4 ± 3.1) fs

Next steps:

- Additional lifetime measurements are coming
- Belle II is starting to enter in the **charm mixing/CPV** phase

CKM Matrix elements

- Unitarity triangle \Rightarrow Powerful test of the SM
- $V_{qq'}$ required for rare decays prediction \Rightarrow NP searches
- Focus: Longstanding tension (3 σ) between inclusive and exclusive determination of $|V_{cb}|$ and $|V_{ub}|$
- Semileptonic B decays \Rightarrow natural channels
- Several efforts in Belle II:
 - inclusive $B \to X_c \ell \nu$ $B^+ \left\{ \begin{smallmatrix} \mathbf{b} & -\mathbf{b} \\ \mathbf{u} & -\mathbf{c} \end{smallmatrix} \right\}$
 - $|V_{cb}|$ from $B \to D^* \ell \nu$ with hadronic tagging
 - $|V_{ub}|$ from $B \to \pi e \nu$ with hadronic tagging

- SM
- on inclusivo

B-tagging at Belle II

In channels with missing energy \Rightarrow use of the the **Rest of** the Event (ROE) information:

- 1. Reconstruction of one $B(B_{tag})$ using well-known channels
- 2. Using the $\Upsilon(4S)$ constraint, infer the information on the second $B(B_{sig})$: flavour, charge and kinematic constraints
- Hadronic tagging: lower efficiency, but full tag reconstruction
- **Semileptonic Tagging:** higher efficiency, but lower purity
- **Inclusive Tagging:** signal reconstruction first, and then use of the ROE to add information to the signal

Full Event Interpretation (FEI)

- MVA based B-tagging algorithm
- hierarchical approach to reconstruct $\mathcal{O}(10^4)$ decay chains
- $\varepsilon_{\rm had} \simeq 0.5 \,\%$, $\varepsilon_{\rm SL} \simeq 2 \,\%$

CKM Matrix: q^2 moments from $B \to X_c \ell \nu$

- Motivation:
 - Heavy Quark Expansion (**HQE**) \Rightarrow extract $|V_{cb}|$ from $\Gamma_{B \to X, \ell \nu}$
 - **Reparametrization invariance** to reduce 13 \rightarrow 8 matrix elements (up to $1/m_h^4$)
 - Required the spectral moments of $q^2 = (p_\ell + p_\nu)^2 = (p_b p_{X_c})^2$ [arXiv:1812.07472]
- Hadronic B-tagging, X_c as ROE of $B_{\mathrm{tag}} \mathscr{C}$ + kinematic fit + M_X template fit for bkg suppression

• input for the **fit** (eg. [arXiv:2205.10274]) $\Rightarrow |V_{cb}| = (41.69 \pm 0.63)$

3)
$$\cdot 10^{-3}$$
 (w.a. $42.19 \pm 0.78 \cdot 10^{-3}$)

•
$$w = \frac{m_B^2 + m_{D^*} - q_{\ell+\nu}^2}{2m_B m D^*} \Rightarrow$$
 Fit to: $\frac{d\Gamma}{dw} \propto \eta_{EW}^2 g(w) F^2(w) |V_{cb}|^2$

- lattice QCD [Nucl. Phys. B530, 153 (1998)]

CP Violation: $B^+ \rightarrow \rho^0 \rho^+$

- Motivation:
 - access direct CP violation (A_{CP} between $B^+ \rightarrow \rho^0 \rho^+$ and $B^- \rightarrow \rho^0 \rho^-$ in the interference between tree and penguins)
 - **measurement** α **angle** (time dependent CPV)
- Reconstruction: $\rho^0(\to \pi^+\pi^-)\rho^+(\to \pi^+\pi^0)$
- Bkg: $ee \rightarrow q\overline{q}$ suppressed with BDT
- Fit: **6D fit** (ΔE , bkg sup., $m_{\pi^+\pi^0}$, $m_{\pi^+\pi^-}$, $\theta_{\rho^{0,+}}^{\text{helicity}}$)
- Results: similar to luminosity-scaled Belle result (w.a. $A_{CP} = -0.05 \pm 0.05$)

 $\mathcal{B}(B^+ \to \rho^+ \rho^0) = [23.2^+_{-2.1}(\text{stat}) \pm 2.7(\text{syst})] \times 10^{-6},$ $f_{\rm L} = 0.943^+_{-0.033}({\rm stat}) \pm 0.027({\rm syst}),$ $\mathcal{A}_{\rm CP} = -0.069 \pm 0.068(\text{stat}) \pm 0.039(\text{syst}).$

CP Violation: $B^+ \rightarrow D(\rightarrow K_{S}h^-h^+)h^+$

- Motivation:
 - CPV in the interference $b \to c \overline{u}s$ and $b \to u \overline{c}s \Rightarrow \frac{A_{\sup}(B^- \to \overline{D^0}K^-)}{A_{fav}(B^- \to D^0K^-)} = r_B e^{i(\delta_B \phi_3)} \Rightarrow \gamma(\phi_3)$
 - Tree-dominated $\Rightarrow \Delta \gamma_{\text{theory}} / \gamma \sim 10^{-7}$
- self-conjugate D^0 decays: $D \to K^0_S \pi^+ \pi^-, K^0_S K^+ K^-$
- binning in Dalitz space \Rightarrow model independence
- Use of strong phases from **external input** (CLEO, BES III)
- simultaneous fit of $B^+ \to D(\to K_S hh)K^+$ and control sample $B^+ \to D(\to K_S hh)\pi^+$ to constrain the fraction of event in each dalitz bin
- Fit to $\Delta E \times C'_{\rm BDT}$
- Results: $\gamma[^{\circ}] = 78.4 \pm 11.4(\text{stat}) \pm 0.5(\text{syst}) \pm 1.0 \pm (\text{ext}) \quad (W.A=65.9^{+3.3}_{-3.5})$

2

TDCPV: *B*⁰ lifetime and mixing frequency

- Motivations: Δt and Δm_d are central ingredients for **TDCPV** analysis
- **Reconstruction:**
 - $B_{\rm sig}^0$ reconstruction in specific $D^{(*)}\pi^+/K^+$ modes
 - $B_{\rm tag}$ reconstruction from the Rest Of the Event tracks
 - Flavour tagging \Rightarrow Same Flavour / Opposite Flavour categories
- Bkg: $ee \rightarrow q\overline{q}, B\overline{B}$ suppressed with ΔE +BDT
- Fit: Δt using a model including wrong-tagging and vertex **resolution** effects
- Results: Not competitive, but syst. reduced compared to Belle

 $\tau_{B^0} = 1.499 \pm 0.013 \text{ (stat)} \pm 0.008 \text{ (syst) ps}$ $\Delta m_d = 0.516 \pm 0.008 \,(\text{stat}) \pm 0.005 \,(\text{syst}) \,\text{ps}^{-1}$

Next steps: add **semileptonic**, $\sin 2\beta$, increase **statistic** (Belle measurement is only 150 fb^{-1} , but included semileptonic)

TDCPV: $B^0 \rightarrow K_c^0 \pi^0$

- Motivation:
 - Suppressed in SM ($b \rightarrow sdd \log b$)
 - CPV direct (A_{CP}) or in mixing (S_{CP}), SM predict $A_{CP} \simeq 0$, $S_{CP} \simeq \sin 2\beta$
 - $K\pi$ -puzzle: $I_{K\pi} = \mathcal{A}_{K^+\pi^-} + \mathcal{A}_{K^0\pi^+} \frac{\mathcal{B}(K^0\pi^+)}{\mathcal{B}(K^+\pi^-)} \frac{\tau_{B^0}}{\tau_{B^+}} 2\mathcal{A}_{K^+\pi^0} \frac{\mathcal{B}(K^+\pi^0)}{\mathcal{B}(K^+\pi^-)} \frac{\tau_{B^0}}{\tau_{B^+}} + 2\mathcal{A}_{K^0\pi^0} \frac{\mathcal{B}(K^0\pi^0)}{\mathcal{B}(K^+\pi^-)} = 0$

Current measured value $I_{K\pi} = -0.11 \pm 0.13$, main unc. from $A_{K^0\pi^0}$ [Phys.Lett. B627 (2005) 82-88]

- Reconstruction: $K_S^0 \to \pi^+ \pi^-$, $\pi^0 \to \gamma \gamma + use of K_S^0$ vertex + flavour tag
- **4D ML fit** to $\Delta E, M'_{bc}, C'_{out}, \Delta t$
- Results: equivalent of full Belle precision

Observable	Fitted value	WA[1] value
$\mathscr{B}(B^0 o K^0 \pi^0) imes 10^{+6}$	$11.0 \pm 1.2(\textit{stat}) \pm 1.0(\textit{syst})$	9.9 ± 0.5
\mathcal{A}_{CP}	$-0.41^{+0.30}_{-0.32}(\textit{stat})\pm 0.09(\textit{syst})$	-0.01 ± 0.10

- Next steps:
 - perform a full TDCPV analysis: $\mathcal{P}(\Delta t) =$ $4\tau_{B^0}$ $(S_{CP}, \Delta m \text{ kept fixed in current fit})$
 - In the same fashion $B^0 o K^0_S \pi^0 \gamma$ analysis: currently only BR, but TDCPV with more statistics [more details in the backup]

 $-[1 + q\{\mathcal{A}_{CP}\cos(\Delta m_d\Delta t) + \mathcal{S}_{CP}\sin(\Delta m_d\Delta t)\}]$

Rare B decays

- sensitive to NP
- SM BR $\mathcal{O}(10^{-5} 10^{-7})$ with 10-30% uncertainty, but ratios, asymmetries, angular distributions can be used
- Opportunity to test LFU and LFV (eg. $R_{K^{(*)}}, B \rightarrow K\ell\ell'$)
 - NB: Belle II has similar (and good) performance both in electron and muons
- Most of the channels in Belle II will become **competitive with few ab^{-1}**, now Belle II is statistically limited
- Several unique opportunities in Belle II (radiative, multiple neutrinos)

• $b \rightarrow s$ transitions are **FCNC** \Rightarrow SM suppressed (forbidden at tree level) \Rightarrow

Rare B decays: $B \rightarrow K^* \ell \ell$

- First step towards R_{K^*} (currently 2-3 σ discrepancy with SM)
- Bkg: BDT (for $ee \to q\overline{q}, BB...$) + veto on $M(J/\psi, \psi(2S) \to \ell\ell)$
- 2D Fit to $M_{bc} \times \Delta E$ distribution
- Results **statistically limited**:

Rare B decays: $B^+ \rightarrow K^+ \nu \bar{\nu}$

- Unique opportunity in Belle II
- Reconstruction: **inclusive tagging**, $K^+ = \text{highest } p_T$ track, ROE information, validated with $B^+ \rightarrow J/\psi (\rightarrow \mu \mu) K^+$
- Bkg: **2 BDT in cascade** to exploit the event information and suppress the bkg
- Results:
 - No signal observed \Rightarrow Upper limit
 - signal strenght compatible with SM prediction at 1σ or bkgonly at 1.3σ
 - Inclusive tagging ($\varepsilon = 4.3\%$) \Rightarrow x3.5 better of hadronic tag, 20% better of SL tag
- Next steps: results with the **new sample (190 fb^{-1}) and extra channels** (K^*, K_S) are coming

Dark sector: Dark Higgsstrahlung

- Opportunity:
 - Unique reach in light DM (MeV-GeV) scale
 - Hermetic detector, clean events
 - Dedicated low-multiplicity trigger
 - Large statistics
- Next-to-Minimal dark photon Model:
 - dark photon (A') mixed with γ_{SM}
 - A' mass via SSB \Rightarrow dark higgs (h') with no SM coupling
 - mass hierarchy: $m_{h'} < m_{A'} \Rightarrow h'$ emitted via higgstrahlung and long-lived, $A' \rightarrow \mu \mu$
- Analysis Strategy: Scan of $M_{\mu\mu} \times M_{\rm rec}$ (rec= recoil against dimuon)
- Results: **no excess found** but world **best UL** for 1.65 GeV $< m_{A'} < 10.51$ GeV

KLOE

The Belle II physics program - coming soon

Not covered sector:

• Quarkonium [*see S. Jia's talk*]

20

BACKUP SLIDES

B factory variables

•
$$\Delta E = E_B^* - E_{beam}^*$$

• Expected $\Delta E \simeq 0$ for properly reconstructed signal

- $m_{ES} = m$
- Expected $m_{bc} \simeq m_B$ for properly reconstructed signal

$$n_{bc} = \sqrt{E_{\text{beam}}^* - \vec{p}_B^2}$$

- 2 variable mostly uncorrelated
- tag-signal relation:

•
$$E_{B_{\text{tag}}}^* = E_{B_{\text{sig}}}^* = \sqrt{s/2}$$
,

•
$$\overrightarrow{p}_{B_{\text{tag}}}^* = -\overrightarrow{p}_{B_{\text{sig}}}^*$$

Source	$\tau(D^*)$ [18]	i(D) [15]
Resolution model	0.16	0.39
Backgrounds	0.24	2.52
Detector alignment	0.72	1.70
Momentum scale	0.19	0.48
Total	0.80	3.10

- $\Gamma_{B \to X_c \ell \nu}$ expanded in power of Λ_{QCD}/m_b
- Bkg suppression: **Template fit** to M_X with 3 components (signal, $ee \to q\overline{q}, B\overline{B}_{bkg}$), $q^2 > 1.5 \,\text{GeV}$

$$\langle q^{2n} \rangle = \frac{\sum_{i} w_i(q^2) q_{\text{cal},i}^{2n}}{\sum_{i} w_i(q^2)} C_{\text{cal}} C_{\text{gen}} \text{, with: } w_i = \frac{N_i^{\text{data}} - N_i^{2n}}{N^{\text{data}}}$$

• central moments: $\langle (q^2 - \langle q^2 \rangle)^n \rangle$ --> less correlation with q_{thr}^2

• Most recent Belle measurement: 58%

systematic uncertainties

bkg

2 categories: bkg subtraction, calibration

$|V_{cb}|$ from $B \rightarrow D^* \ell \nu$ extra information

- BR $(B \to D^* \ell \nu) = (5.27 \pm 0.22 \pm 0.38)\%$
- $\eta_{EW}F(1) |V_{cb}| = (3.54 \pm 0.4) \cdot 10^{-3}, \ \rho^2 = 0.94 \pm 0.21$
- $|V_{cb}| = (37.9 \pm 2.7) \cdot 10^{-3}$
- binned ML fit:

• g(w) = phase space

$$F(w)$$
 = form factor

 $R_1(1), R(2), \rho$ combination of form factors

$R_2(1)$	0.852
Correlation coefficient of $R_1(1)$ and $R_2(1)$	-0.

Systematic sources	Relative uncertainty (%)
FEI efficiency	3.9
Low momentum π efficiency	4.1
Tracking efficiency	0.9
Lepton particle identification	2.0
Background	1.2
$N_{B\overline{B}}$	2.9
f_{+0}	1.2
$\mathcal{B}\left(D^{*-} \to \pi^{-} \overline{D}^{0}\right)$	0.7
$\mathcal{B}\left(\overline{D}^0 \to K^+ \pi^-\right)$	0.8
ECL energy	1.0
Form factor	0.1
MC statistics	1.8
Total	7.3

 $|V_{ub}|$ from $B \rightarrow \pi e \nu$ extra information $|V_{ub}|^{\alpha = \phi_2}$

$$|V_{ub}| = (3.88 \pm 0.45) \cdot 10^{-3}$$

Source		% of $\Delta \mathcal{B}_i(B^0 \to \pi^- \ell^+ \iota)$	/)
	$0~{\rm GeV^2} \leq q^2 < 8~{\rm GeV^2}$	$8~{\rm GeV^2} \leq q^2 < 16~{\rm GeV^2}$	$16~{\rm GeV^2} \leq q^2 \leq 26.4$
f_{+0}		1.17	
FEI calibration		3.68	
$N_{B\bar{B}}$		2.31	
Tracking		1.38	
onstruction efficiency ϵ_i	0.90	0.81	0.99
Lepton ID	0.60	0.40	0.87
Pion ID	0.35	0.30	0.30
Total	4.84	4.80	4.90

$B^+ \rightarrow \rho^0 \rho^+$ extra information

α measurement information

- α measured from TDCPV analysis of $b \rightarrow \iota$ transition
- $b \rightarrow u$ tree transition $\Rightarrow \alpha$ phase
- $b \rightarrow d$ penguin transition $\Rightarrow \Delta \phi_2$ penguin pollution
- Penguin pollution estimated from isospin analysis BR($\rho^+\rho^-$, $\rho^0\rho^0$, $\rho^+\rho^0$) and direct violation parameter A_{CP}
- $B \rightarrow \rho \rho$ is the (set of) channel with the lowest penguin pollution
- Only the **longitudinal-polarized** component can be used for the measurement

	v v		
μπd	source	\mathcal{B} [%]	f_L [%]
	Tracking	0.6	-
	π^0 and PMVA	7.7	-
	PID	0.8	-
	Continuum suppression	2.1	-
	$N_{B\bar{B}}$	2.9	-
	Single candidate selection	1.5	0.8
	Signal model	2.4	2.0
	Self cross-feed model	$^{+2.7}_{-0.9}$	< 0.1
	Continuum model	1.3	0.7
	$B\bar{B} \mathrm{model}$	2.0	2.2
CP	peaking background model	0.4	0.7
	$\cos \theta_{\rho^{\pm}}$ mismodel	4.4	0.3
	Fit bias	0.9	1.0
	MC stat.	1.0	0.2
	Total	$^{+10.9}_{-10.6}$	± 3.4

 $B^+ \rightarrow D(K_{S}h^-h^+)h^+$ extra information

Improvement compared to Belle

- added $K_S K^+ K^-$
- Better K_{S} selector (lowered stat. unc.)
- improved bkg suppression
- new BES III input (lowered syst. unc.)
- better signal description
- Conclusion: equivalent to a factor 2 in the luminosity

- **Bkg suppression**
- Bkg: BDT suppressed $\Rightarrow C'_{BDT}$

• Fit to $\Delta E \times C'_{BDT}$ with signal+ $ee \rightarrow q\overline{q}, B\overline{B}$ +peaking mislD bkg

Systematic difect canteres						
Source	$\sigma_{x_+^{DK}}$	$\sigma_{y_+^{DK}}$	$\sigma_{x_{-}^{DK}}$	$\sigma_{y_{-}^{DK}}$	$\sigma_{x_{\xi}^{D\pi}}$	$\sigma_{y_{\xi}^{D\pi}}$
Input c_i, s_i	0.22	0.55	0.23	0.67	0.73	0.82
PDF parametrisation	0.07	0.08	0.12	0.16	0.12	0.12
PID	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01
Peaking background	0.03	0.05	0.03	0.04	0.02	0.10
Fit bias	0.16	0.06	0.12	0.16	0.49	0.10
Bin migration	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.03
Total	0.18	0.11	0.17	0.23	0.51	0.19
Statistical	3.15	4.20	3.27	4.20	4.75	5.44

Table 3. Systematic uncertainty summary. All values are quoted in units of 10^{-2} .

Time-Dependent CPV analysis scheme

CP-asymmetry in interference between mixing and decay:

$$\mathcal{A}_{\rm CP}(t) = \frac{N(B^0 \to f_{\rm CP}) - N(\overline{B}^0 \to f_{\rm CP})}{N(B^0 \to f_{\rm CP}) + N(\overline{B}^0 \to f_{\rm CP})}(t) = (S_{\rm CP} \sin(\Delta m_d t) + A_{\rm CP} \cos(\Delta m_d t))$$

with S_{CP} : time-dependent asymmetry and A_{CP} : direct *CP*-asymmetry.

 $B^0 - \overline{B}^0$ mixing:

$$\mathsf{mix}(t) = \frac{N(B^0 \to B^0) - N(B^0 \to \overline{B}^0)}{N(B^0 \to B^0) + N(B^0 \to \overline{B}^0)}(t) = \cos(\Delta m_d t)$$

with Δm_d the oscillation frequency.

[From Thibaud Humair, Moriond EW 22]

B^0 lifetime extra information

• Δt obtained projecting the two vertices in the direction of $\Upsilon(4S)$ momentum:

 $\Delta t^{\rm MC} = \frac{\Delta \ell^{\rm MC}}{\beta \gamma \gamma^*}. \qquad \Delta t = \frac{\Delta \ell}{\beta \gamma \gamma^*}.$ $f_{\rm phys}^{i}(\Delta\tau,q) = n_{i} \frac{1}{4\tau} \exp\left(\frac{-|\Delta t^{\rm MC}|}{\tau}\right) \cdot (1 + q(1 - 2w_{i})\cos(\Delta m_{d}\Delta t^{\rm MC})).$

Previous measurements:

Collaboration+year	$ au_B [\mathrm{ps}]$	Δm
BaBar 2005 [3]	$1.504 \pm 0.013 \pm 0.016$	0.511 ± 0
Belle 2005 [2]	$1.534 \pm 0.008 \pm 0.010$	0.511 ± 0
LHCb 2016 [5]	_	0.505 ± 0
LHCb 2014 [6]	$1.524 \pm 0.006 \pm 0.004$	
Belle II 2020 [1]	_	0.531 ± 0
PDG [4]	1.519 ± 0.004	0.5065

$$b_{d} \, [{
m ps}^{-1}] \ 0.007 \pm 0.007 \ 0.005 \pm 0.006 \ 0.002 \pm 0.001 \ - 0.046 \pm 0.013 \ 5 \pm 0.0019$$

Uncertainty	$ au[ext{ps}]$	$\Delta m_d[{ m p}$
Statistical	0.0130	0.00
Analysis bias	0.0003	0.00
Alignment	0.0027	0.00
Resolution function	0.0063	0.00
Momentum scale	0.0002	0.00
Multiple candidates	0.0024	0.00
Binning of $\sigma_{\Delta t}$	0.0005	0.00
$B^0 \to D^{(*)+}\pi^-$ fraction	0.0007	0.00
ΔE ; LTBDT shapes		
$\rightarrow b\overline{b} \ \Delta E \ \text{shapes}$	0.0004	0.00
$\rightarrow q\overline{q} \ \Delta E \ \text{shapes}$	0.0006	0.00
\rightarrow LTBDT shapes	0.0004	0.00
Beam		
\rightarrow Beam spot	0.0021	0.00
\rightarrow Boost vector	0.0003	0.00
\rightarrow CoM energy	0.0007	0.00
Total systematic	0.0077	0.00

$B \rightarrow K\pi puzzle$

$$\frac{\Gamma(\overline{B}_d^0(t) \to \pi^0 K_{\rm S}) - \Gamma(B_d^0(t) \to \pi^0 K_{\rm S})}{\Gamma(\overline{B}_d^0(t) \to \pi^0 K_{\rm S}) + \Gamma(B_d^0(t) \to \pi^0 K_{\rm S})} = A_{\rm CP}^{\pi^0 K_{\rm S}} \cos(\Delta M_d t) + S_{\rm CP}^{\pi^0 K_{\rm S}} s$$

- where $A_{CP}(B \to f) \equiv \frac{\Gamma(\bar{B} \to \bar{f}) \Gamma(B \to f)}{\Gamma(\bar{B} \to \bar{f}) + \Gamma(B \to f)}$.
- Expected **equal asymmetries** between $B^0 \to K^+ \pi^-$ and $B^+ \to K^+ \pi^0$ at LO
- Isospin sum rule:

$$I_{K\pi} = \mathcal{A}_{K^+\pi^-} + \mathcal{A}_{K^0\pi^+} \frac{\mathcal{B}(K^0\pi^+)}{\mathcal{B}(K^+\pi^-)} \frac{\tau_{B^0}}{\tau_{B^+}} - 2\mathcal{A}_{K^+\pi^0} \frac{\mathcal{B}(K^+\pi^0)}{\mathcal{B}(K^+\pi^-)}$$

in the limit or isospin symmetry and no EW penguins

- if EWP are considered, still precision below 1% with largest uncertainties from $B\to K^0\pi^0$
- Deviation can be NP or enhancement of color suppressed tree

$B^0 \to K^0_{\rm S} \pi^0$ extra information

 Δt fit PDF (w=wrong tag, μ =difference in tag eff., $R_{\rm sig}$ =resolution)

$$\mathcal{P}_{\text{sig}}(\Delta t, q) = \frac{\mathrm{e}^{-|\Delta t|/\tau_{B^{0}}}}{4\tau_{B^{0}}} [\{1 - q\Delta w_{r} + q\mu_{r}(1 - 2w_{r})\} + \{q(1 - 2w_{r})\}$$

Source	$\delta {\cal B} \ (\%)$	$\left \delta \mathcal{A} \right $
Tracking efficiency	0.6	-
K_{S}^{0} reconstruction efficiency	4.2	-
π^0 reconstruction efficiency	7.5	-
Continuum suppression efficiency	1.6	-
Number of $B\overline{B}$ pairs	3.2	
Flavor tagging	— (0.0
Resolution function	—	0.0
External inputs	0.4	0.0
$B\overline{B}$ background asymmetry	—	0.0
Signal modelling	1.0	0.0
Background modelling	0.9	0.0
Possible fit bias	2.0	0.0
Tag-side interference	—	0.0
Total	9.6	0.0

 $2w_r$) + $\mu_r(1 - q\Delta w_r)$

5.29

TDCPV: $B^0 \rightarrow K_{c}^0 \pi^0 \gamma$

- Motivation: $b \rightarrow s\gamma$ suppressed in SM and chiral $\Rightarrow B^0 \overline{B}^0$ interference suppressed \Rightarrow time dependent CP-violation sensitive to NP
- Fit: ML fit to ΔE
- Result:
 - forerunner of complete TDCPV analysis
 - compatible with world average

 $BR(B^0 \to K_S^0 \pi^0 \gamma) = (7.3 \pm 1.8 \text{ (stat)} \pm 1.0$

[BELLE2-TALK-CONF-2022-031]

MC sample size MC generation Belle II data π^0 reconstruction $\int L \, dt = 190 \, \text{fb}^{-1}$ K_S^0 reconstruction π^0 - η veto γ selection 🔶 Data Continuum suppression — Signal+Bkg ---- Signal Total efficiency Background Fit bias Number of $B^0\overline{B}{}^0$ pairs -0.4 -0.3 -0.2 -0.1 0.5 0.1 0.3 0.2 0.4 0 f^{00} systematic ΔE [GeV] Total systematic on \mathcal{B}

w.a. $(7.0 \pm 0.4) \cdot 10^{-6}$

$$(syst)) \cdot 10^{-6}$$

Candidates / (0.0625 GeV

45

40

35

30

25

20

15

10

5

-0.5

	0.2%	
	2.0%	
	5.5%	
	3.5%	
	1.9%	
	0.3%	
L	3.0%	
		and the second
	1.1%	
	11.5%	
	11.5% 2.9%	
	11.5% $2.9%$ $1.2%$	
	11.5% $1.2%$ $14.2%$	

R_{K^*} extra information

$$R_{K^{(*)}} = \frac{BR(B \to K^{(*)}\mu\mu)}{BR(B \to K^{(*)}ee)}$$

- decay chain: $K^* \to K^+ \pi^-, K^0_S \pi^+, K^+ \pi^0$
- Belle II measurement
- $\mathcal{B}(B \to K^* \mu^+ \mu^-) = (1.28 \pm 0.29^{+0.08}_{-0.07}) \times 10^{-6}$ (PDG: $(1.06 \pm 0.09) \times 10^{-6}$) $\mathcal{B}(B \to K^* e^+ e^-) = (1.04 \pm 0.48^{+0.09}_{-0.09}) \times 10^{-6}$ (PDG: (1.19±0.20)×10⁻⁶) $\mathcal{B}(B \to K^* \ell^+ \ell^-) = (1.22 \pm 0.28^{+0.08}_{-0.07}) \times 10^{-6}$ (PDG: $(1.06 \pm 0.10) \times 10^{-6}$)
- LHCb [https://doi.org/10.1007/JHEP04(2017)142] $\mathcal{B}(B^0 \to K^*(892)^0 \mu^+ \mu^-) = (0.904^{+0.016}_{-0.015} \pm 0.010 \pm 0.006 \pm 0.061) \times 10^{-6},$

• LHCb R_{K^*} [https://doi.org/10.1007/JHEP08(2017)055]

 $R_{K^{*0}} = \begin{cases} 0.66 \stackrel{+}{_{-}} \stackrel{0.11}{_{0.07}} (\text{stat}) \pm 0.03 \,(\text{syst}) & \text{for } 0.045 < q^2 < 1.1 \ \text{GeV}^2/c^4 \,, \\ 0.69 \stackrel{+}{_{-}} \stackrel{0.11}{_{0.07}} (\text{stat}) \pm 0.05 \,(\text{syst}) & \text{for } 1.1 & < q^2 < 6.0 \ \text{GeV}^2/c^4 \,. \end{cases}$

 $B \rightarrow K^* \ell \ell$ extra information

systematic uncertainties

Source	Systema
Kaon identification	0.
Pion identification	2.
Muon identification	$+1 \\ -0$
Electron identification	+0 -0
K_S^0 identification	2.
π^{0} identification	3.
Tracking	1.2 –
MVA selection	1.3 -
Simulated sample size	< (
Signal cross feed	< 2
Signal PDF shape	0.5 -
$\mathcal{B}(\Upsilon(4S) \to B^+B^-)[(\mathcal{B}(\Upsilon(4S) \to B^0\overline{B^0}))$	1.
Number of $B\overline{B}$ pairs	2.
Total	+6

1%

1.0%

 $\mathbf{2}$

$B^+ \rightarrow K^+ \nu \bar{\nu}$ extra information

- Leading systematic uncertainty: background normalization
- Calibration: $B^+ \to K^+ J/\psi (\to \mu \mu)$ without reconstructing the 2 muons
- Fit: performed in $p_T \times C_{BDT2}$ in signal region and 3 control regions (lower BDT values)

Dark sector (1/3)

- B-Factory opportunity:
 - Unique reach in light DM (MeV-GeV) scale
 - Hermetic detector, clean events
 - Dedicated low-multiplicity trigger (suppress QED)
 - Large statistics

Dark Sector Candidates, Anomalies, and Search Techniques

Dark sector (2/3): Dark Higgsstrahlung

- Next-to-Minimal dark photon Model:
 - dark photon (A') mixed with γ_{SM}
 - A' mass via SSB \Rightarrow dark higgs (h') with no SM coupling
 - mass hierarchy: $m_{h'} < m_{A'} \Rightarrow h'$ emitted via higgstrahlung and long-lived, $A' \to \mu \mu$
- Analysis Strategy: Scan of $M_{\mu\mu} \times M_{\rm rec}$ (rec= recoil against dimuon)
- Results: **no excess found** but world **best UL** for $1.65 \text{ GeV} < m_{A'} < 10.51 \text{ GeV}$

 α_D

X

 \sim

Dark sector (3/3): invisible Z' decay

- Model:
 - new massive gauge boson, coupling with μ and $\tau: (L_{\mu} L_{\tau})$
 - Consequences: solution of DM, $(g 2)_{\mu}$ anomaly, $b \rightarrow s\ell\ell$ anomalies [JHEP, 1612 (2016), 106], [Phys. Rev. D 89, 13004] (2014)]
 - Can decay in $\nu\nu, \chi\bar{\chi}$ or $\mu\mu, \tau\tau$ depending on $m_{Z'}$
- Strategy:
 - $e^+e^- \rightarrow \mu^+\mu^-Z' \Rightarrow 2$ tracks and missing energy
 - look for peak in M_{rec}
 - Bkg: radiative <u>QED</u> processes $(\ell \ell \gamma) \Rightarrow$ NN-based Punzi-loss selection [EPJC 82 (2022) 121]

0.3 (80

Invisible Z' decay extra information

• Mass hierarchy:

 $2M_{\mu} < M_{Z'} < 2M_{\tau} \implies BF[Z' \to \text{invisible}] \simeq 1/2,$

if $M_{Z'} > 2M_{\chi}$ $BF(Z' \to \chi \bar{\chi}) = 1$

- $M_{Z'} < 2M_{\mu} \implies BF[Z' \to \text{invisible}] = 1,$ $M_{Z'} > 2M_{\tau} \implies BF[Z' \to \text{invisible}] \simeq 1/3.$

Dark higgssralhung extra information

Preliminary ----- $M_{A'} = 2 \, \text{GeV}/c^2$ $---- M_{A'} = 4 \, \text{GeV}/c^2$ $---- M_{A'} = 6 \, \text{GeV}/c^2$ $---- M_{A'} = 8 \, \text{GeV}/c^2$

References

- Model: [Phys. Rev. D 79, <u>115008 (2009)]</u>
- Babar: [Phys. Rev. Lett. 108, <u>211801(2012)]</u>
- Belle: [Phys. Rev. Lett. 114, <u>211801 (2015)]</u>
- KLOE-2: [Phys.Lett.B, 747 <u>(2015)]</u>

41

Lepton Flavour Universality $R_{D^{(*)}}$

$$R_{D^{(*)}} = \frac{BR(B \to D^{(*)}\tau\nu_{\tau})}{BR(B \to D^{(*)}\ell\nu_{\ell})}$$

- 3.1σ deviation from SM
- Pro: Theory uncertainties in $|V_{ch}|$ and form factor mostly cancel out
- Cons: Large Background (multiple neutrinos, low p_T)
- Belle II projection:

Belle II performance

[From D. Tonelli]

