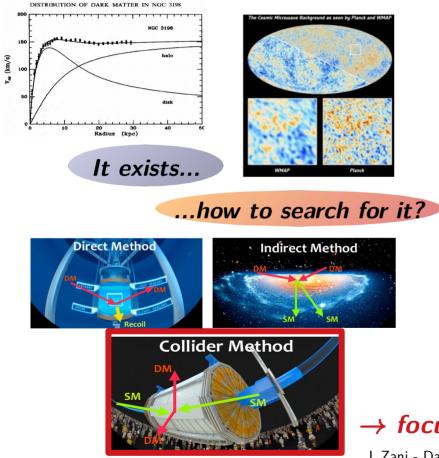
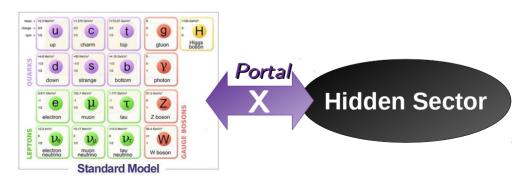


Probes of the Dark sector from the Belle II experiment

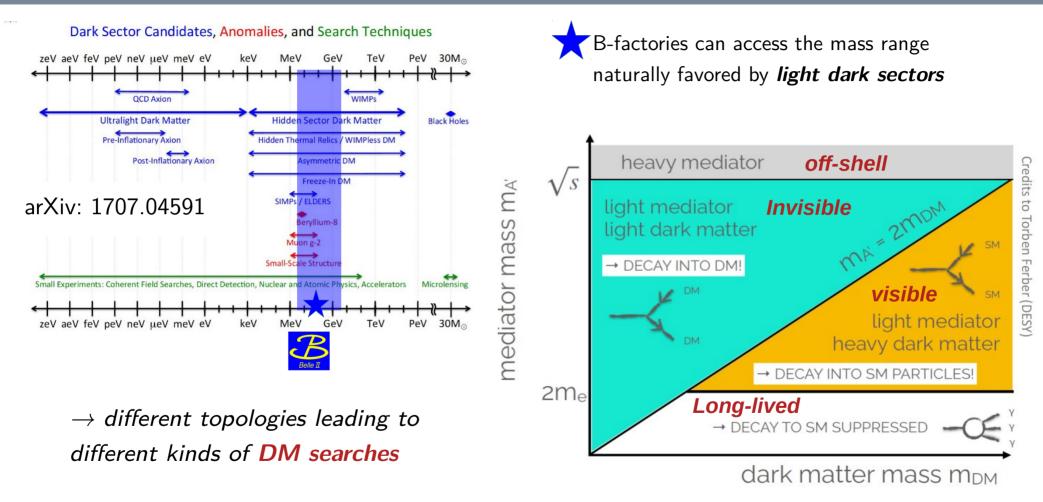
Laura Zani*


On behalf of the Belle II collaboration – Château de Blois, 2022/05/25

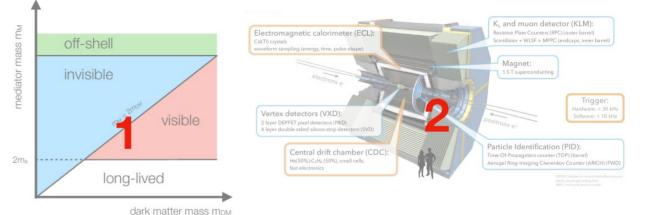
*zani@cppm.in2p3.fr - Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France


Dark matter puzzle

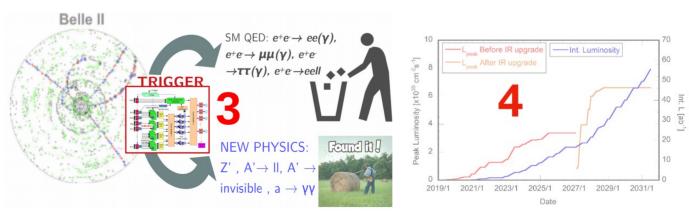
• Dark Matter (DM) is one of the most compelling reasons for NP searches


Possible sub-GeV scale DM scenario: *light dark sector* weakly coupled to SM through a light *mediator X*

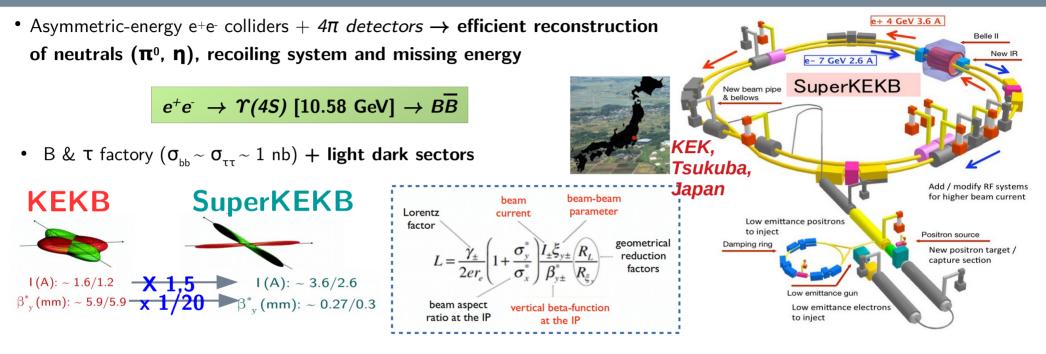
- Vector portal \rightarrow Dark Photons (A'), Z' bosons
- Pseudo-scalar portal \rightarrow Axion Like Particles (ALPs)
- Scalar portal \rightarrow **Dark Higgs/Scalars**
- * Neutrino portal \rightarrow Sterile Neutrinos


 \rightarrow focus on dark sector searches at e⁺e⁻ colliders

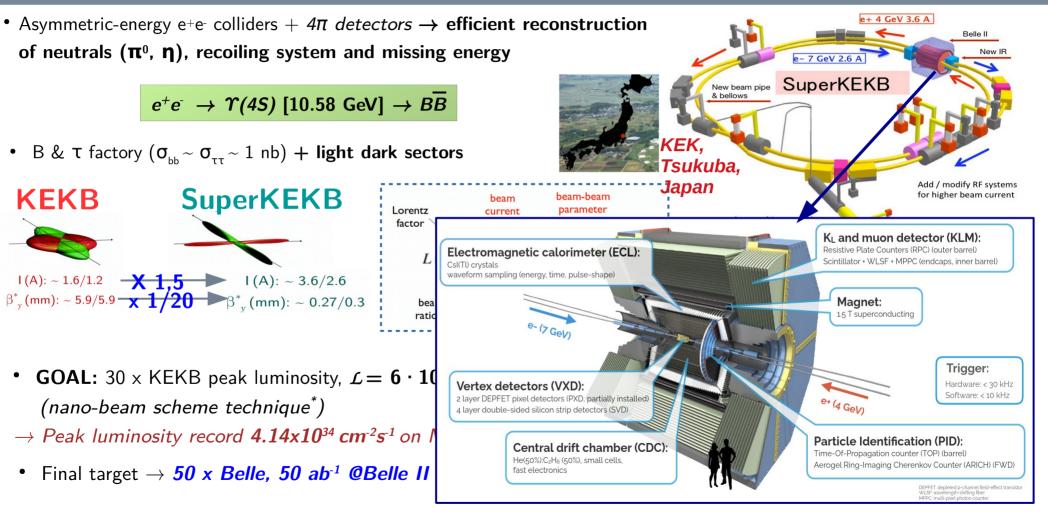
Light dark sectors



Key ingredients


- No leading model, possibly very small couplings:
 - 1) Be signature-based
 - 2) Profit of clean environment at lepton colliders + hermetic detector → known initial state
 - 3) Devise specific *low-multiplicity triggers*
 - \rightarrow Suppress high-cross section QED processes BUT NOT KILL the signal
 - \rightarrow Requires detailed knowledge of the detector efficiencies
 - 4) Collect largest statistics

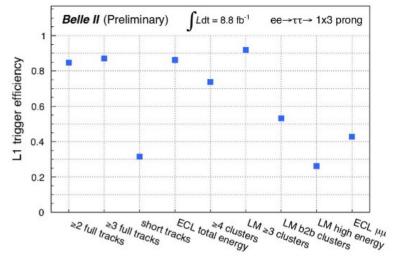
Signature first!

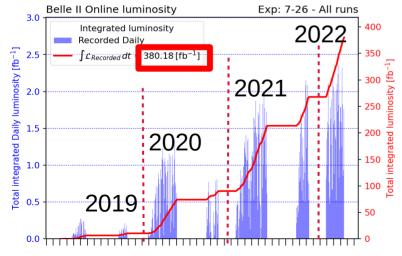


SuperKEKB accelerator

- GOAL: 30 × KEKB peak luminosity, L = 6 · 10³⁵cm⁻²s⁻¹ (nano-beam scheme technique^{*})
- ightarrow Peak luminosity record **4.14x10**³⁴ cm⁻²s⁻¹ on May 17th

SuperKEKB and Bellell

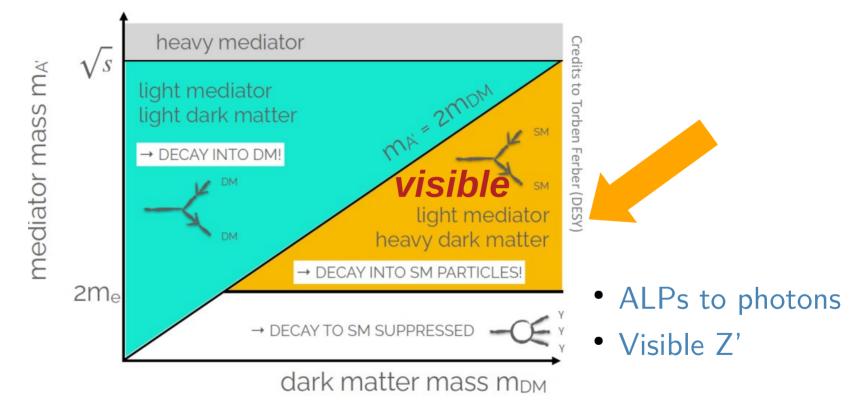

L.Zani - Dark sector probes at Belle II. Blois, May 2022


*https://arxiv.org/abs/0709.0451

Belle II triggers and data sets

- Hardware-based trigger (L1) combines information from several sub-detectors (*CDC*, *ECL*, *TOP* and *KLM*)
 - Novel menu of low multiplicity triggers unavailable at Belle (single photon, single muon, single track with neural network reconstruction)

Main challenge: trigger on two-track + missing energy signal processes <0(10 fb) without being saturated by QED processes 0(1-300 nb)

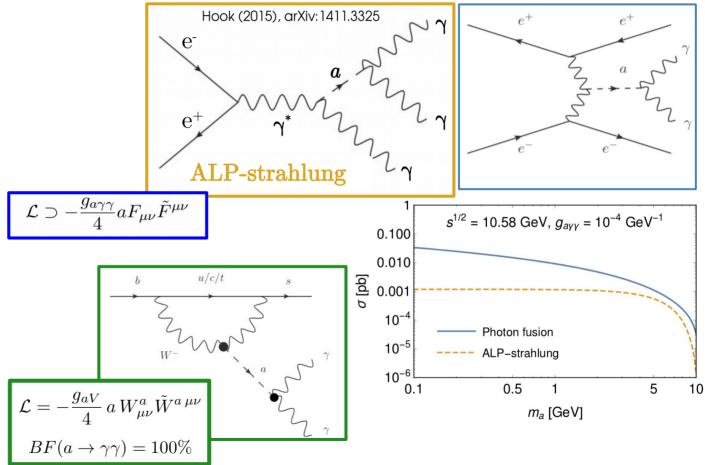


- collected **0.5 fb**⁻¹ during the **2018 pilot run** (without vertex detector): $Z' \rightarrow invisible PRL 124$ (2020) 141801, $ALPs \rightarrow \gamma\gamma PRL 125$ (2020) 161806
- On data > 2019: Dark Higgsstrahlung, Z' update

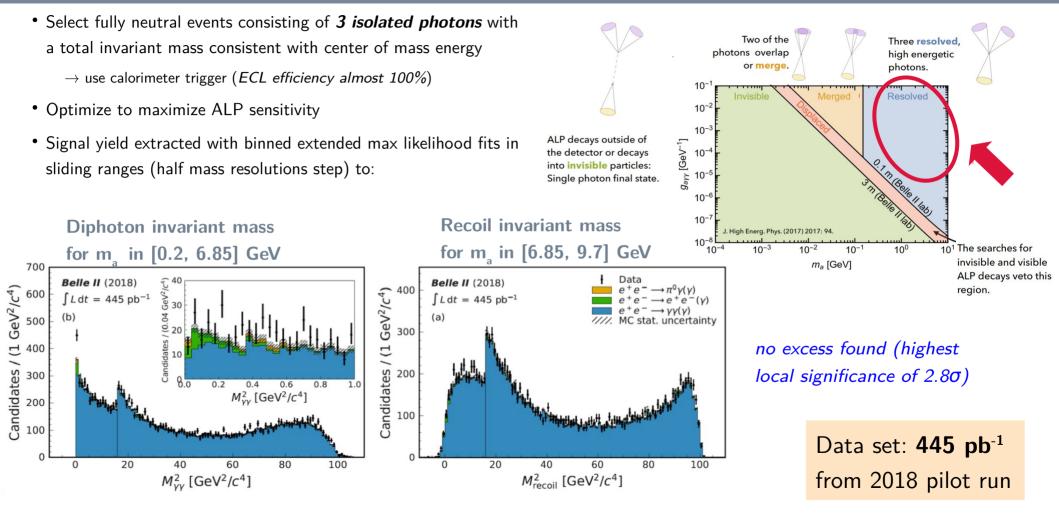
talk by Huw Haigh in the parallel session

Shut-down from July 2022, resuming operation in 2023 Accumulated 0.4 ab⁻¹ (40% of Belle) \rightarrow many analyses in the pipeline

Searches for visible decays

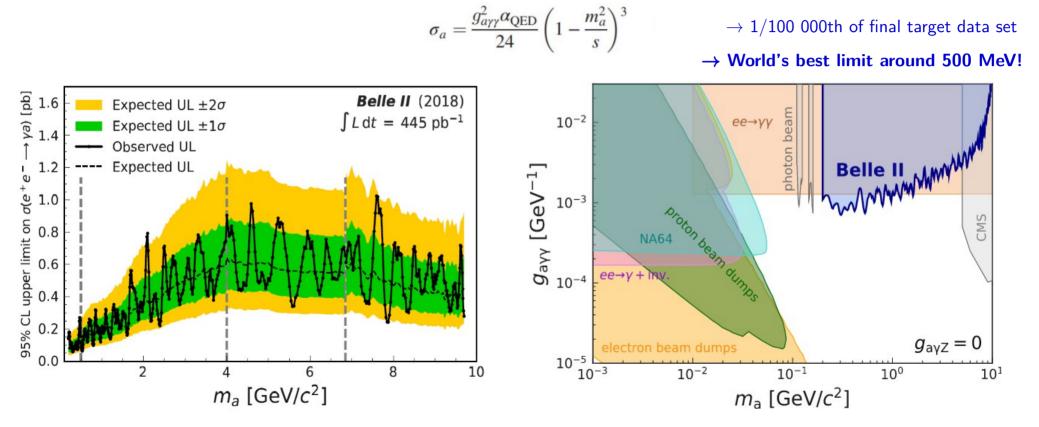


Axion-like particles


- Axion-like particles (ALPs) are pseudo-scalars coupling mainly to bosons, with non-renormalizable coupling constants $[g_{aV}] \sim 1/M$
- Explored photon coupling g_{aγγ} in *ALP-strahlung* processes

(*photon fusion:* sensitivity under study)

Exploit flavor changing neutral current and rare meson decays to investigate g_{aW} coupling ongoing studies for B→Ka


ALPs: a $\rightarrow \gamma \gamma$

L.Zani - Dark sector probes at Belle II. Blois, May 2022

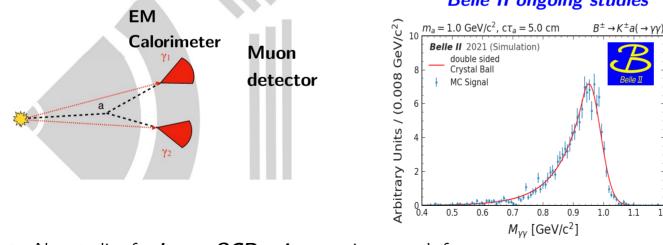
ALPs: a $\rightarrow \gamma\gamma$ results

• Set 95% CL upper limits on the signal cross section and translated in $g_{a\gamma\gamma}$ limits

PRL 125 (2020) 161806

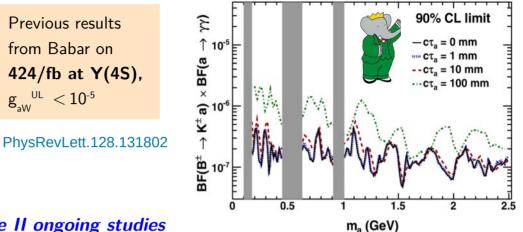
ALPs in meson decays

Previous results


from Babar on

 g_{aW}^{UL} < 10⁻⁵

424/fb at Y(4S),


 $b{\rightarrow}$ syy is extremely rare in the SM and uniquely sensitive to very small **ALP-W** coupling g_{aw}^*

- For $m_a \ll m_w$ naturally *long-lived* ALPs mainly decay into photons
- Search for $B^{\pm} \rightarrow K^{\pm}a$, $a \rightarrow \gamma \gamma$ as narrow peaks in the diphoton invariant mass vetoing peaking background regions, both *prompt* and *long-lived* searches.

Also studies for *heavy QCD axion* ongoing, search for a $\rightarrow \eta \pi \pi$, $\eta \rightarrow \gamma \gamma$

Belle II ongoing studies

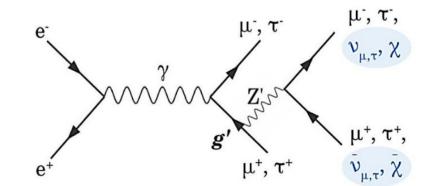
*E. Izaguirre, T. Lin, B. Shuve, PRL 118 (2017)

- Belle II will extend the searched range to $m_1 > 2.5$ for larger lifetimes (up to cτ₂ ~ 40 cm)
 - \rightarrow Competitive sensitivity with 100/fb

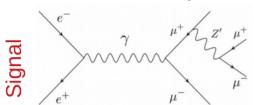
L.Zani - Dark sector probes at Belle II. Blois, May 2022

1.2

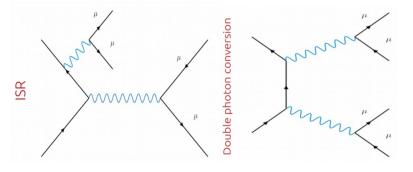
Z' boson: $L_{\mu}-L_{\tau}$ model


- New gauge boson Z' coupling only to the 2nd and 3rd generation of leptons (L_μ-L_τ) may explain:
 - DM puzzle
 - long-standing (g-2)_u anomaly!

B.Shuve and I.Yavin (2014) Phys. Rev. D 89, 113004. Altmannshofer et al JHEP 1612 (2016) 106.


• Search for the process:

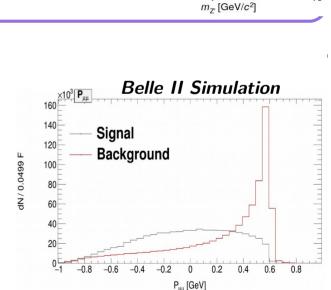
$$e^+e^-
ightarrow \mu^+\mu^- Z'$$
 , $Z'
ightarrow I, v, X$



Z' $ightarrow \mu^+ \mu^-$

- Search for a di-muon invariant mass peak in $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^$
 - events

 Main backgrounds from QED processes: μ+μ-μ+μ-, ISR, double photon conversion, combinatorial


Competitive with early data set (~ 200 fb⁻¹) **due to aggressive background suppression!**

Babar: 514 fb⁻¹, PRD

94, 011102 (2016)

Belle: 643 fb⁻¹,

arXiv:2109.08596v2

10-

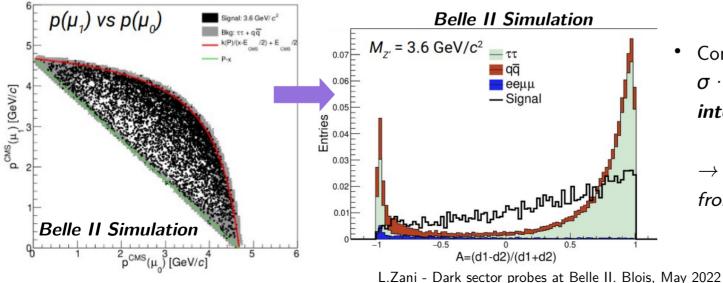
ັດ₁₀₋₂'

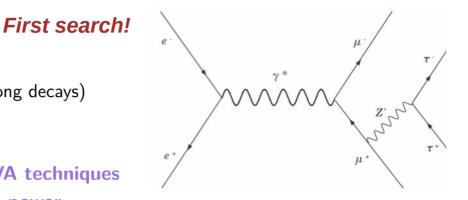
10

arXiv:2109.08596v2

Belle (Born) Belle (visible) BABAR

CHARM-I


CCFR


• Neural Network (*MLP*, *MultiLayer Perceptron*) exploiting dimuon momentum ($P_{\mu\mu}$) and other 14 discriminating variables in 4 different mass ranges to reject background \rightarrow suppression factor between 2-14 on the searched di-muon mass range

$Z' {\rightarrow} \tau \tau$

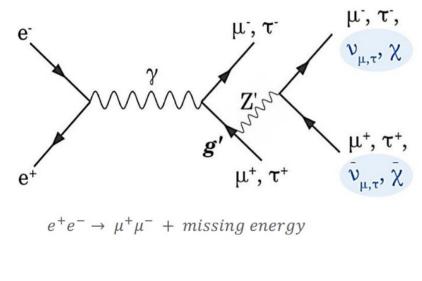
- - Almost model independent analysis
 - $^-$ Selection optimized for the final state $\mu\mu\tau\tau$ ($\tau \rightarrow$ l/h , 1-prong decays)
 - Sensitive to any di-tau resonance in the searched final state

Challenging due to high background and neutrinos \rightarrow MVA techniques based on *transformed variables* to optimize discriminating power



• Compute upper limits on the product $\sigma \cdot B(X \rightarrow \tau \tau) \rightarrow could \ be \ re$ *interpreted by different models*

 \rightarrow Expected sensitivity to $\sigma \sim 1$ fb from pseudo-data simulation


15

Searches for invisible decays

Search for Z' to invisible

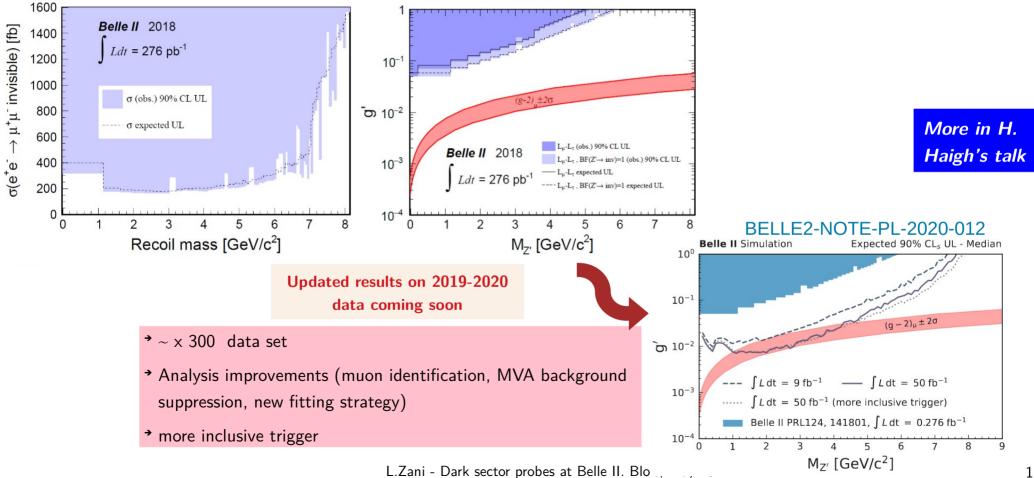
- Search for a peak in the mass spectrum of the recoil against a $\mu^+\mu^-$ pair in events where **nothing** else is detected.
- Only 276 pb⁻¹ of 2018 pilot run data usable due to trigger conditions.

Invisible signature investigated for the first time! $\begin{array}{c} \textbf{Branching ratios:}\\ M_{\mathbf{z}}, < 2\,M_{\mu} \rightarrow \Gamma(Z' \rightarrow \text{inv.}) = 1\\ 2\,M_{\mu} < M_{\mathbf{z}}, < 2\,M_{\tau} \rightarrow \Gamma(Z' \rightarrow \text{inv.}) \sim 1/2\\ M_{\mathbf{z}}, > 2\,M_{\tau} \rightarrow \Gamma(Z' \rightarrow \text{inv.}) \sim 1/3 \end{array}$

More in H. Haigh's talk

If light DM is accessible, BR(Z' \rightarrow DM)~1

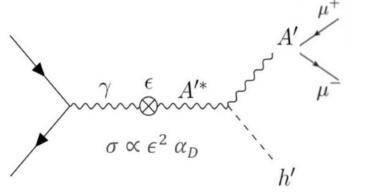
• Dominant backgrounds radiative QED processes:


$$^{-}e^{+}e^{-} \rightarrow \mu^{+}\mu^{-}(\gamma)$$

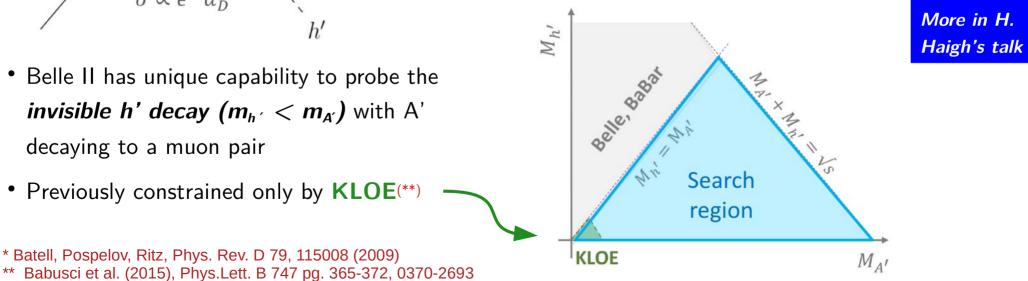
- *− e+e*-→**τ**+**τ**-(γ)
- $e^+e^- \rightarrow e^+e^- \mu\mu$

 \rightarrow Rejected by exploiting $pT_{\mbox{\tiny rec}}$ and FSR properties of the emitted Z' candidate

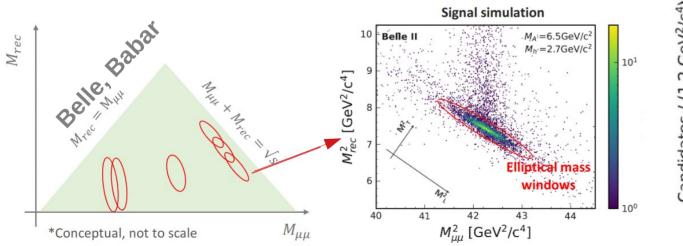
Search for Z' to invisible

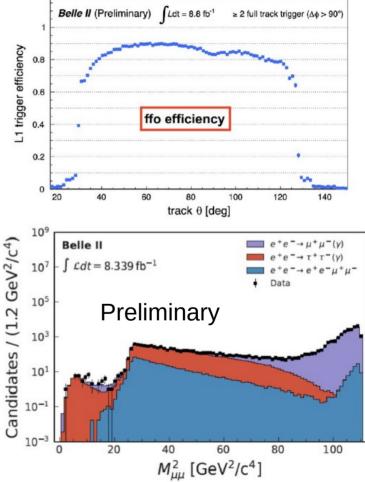

- No significant excess found, first limits set on $m_{Z^{'}} < 2m_{\mu}$

PRL 124 (2020) 141801

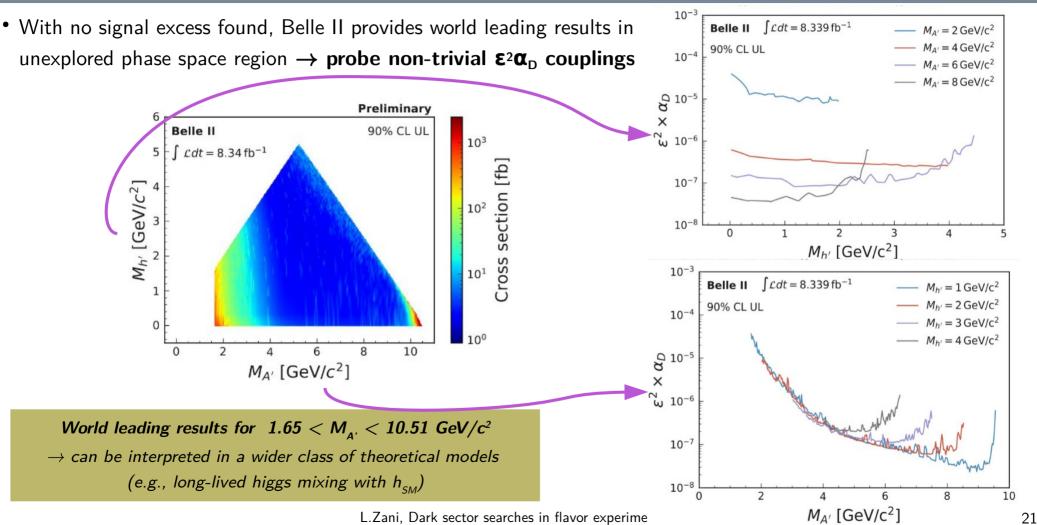

Dark Higgsstrahlung

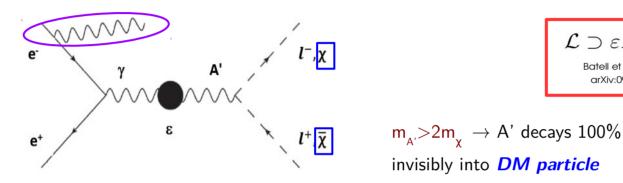
• Dark photon (A') mass can be generated via a spontaneous symmetry breaking^(*) mechanism, by adding a dark Higgs boson (h'): dark Higgsstrahlung process, $e^+e^- \rightarrow A'^* \rightarrow h' A'$

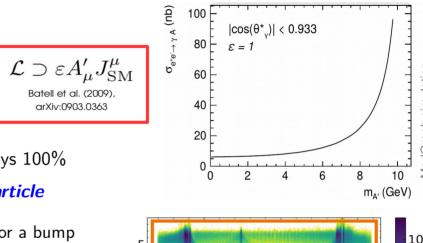

- Belle II has unique capability to probe the *invisible h' decay* $(m_{h'} < m_{A'})$ with A' decaying to a muon pair
- Previously constrained only by KLOE(**)

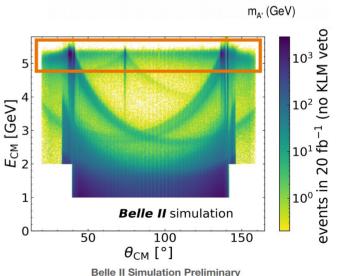

• 4 parameters (no mixing with SM Higgs assumed): $m_{h'}$, $m_{A'}$, $\boldsymbol{\varepsilon}$, $\boldsymbol{\alpha}_{D}$ • $M_{h'} > M_{A'}$: visible dark higgs, already searched by Belle, Babar • $M_{h'} < M_{A'}$: invisible decays of h'

Dark Higgsstrahlung: analysis strategy


- Search in 8.34/fb data (2019)
- A' reconstructed as muon pairs, $M_{\mu\mu} > 1.65$ GeV for trigger requirements (two track+ opening angle trigger from the CDC, *ffo*)
 - $\rightarrow\,$ same final state as for the invisible Z', similar backgrounds
- Scan dimuon and recoil mass searching for peaks in 9000 sliding elliptical windows
- Apply Bayesian counting technique (challenging look-elsewhere effect)


L.Zani - Dark sector probes at Belle II. Blois, May 2022


Dark Higgsstrahlung results


$A' \rightarrow invisible$: single photon search prospects

• New massive boson A' coupling to the SM photon through the kinetic mixing with strength ε . At e⁺e⁻ colliders investigate the ISR production $e^+e^- \rightarrow \gamma A'$.

- Select events with **nothing** but a single high energetic *ISR photon*. Look for a bump in the reconstructed photon energy $E_{\gamma} = (s m_{A'}^2)/2\sqrt{s}$
- Background: QED processes $e^+e^- \rightarrow \gamma \gamma(\gamma)$ (low mass region) and radiative Bhabha $e^+e^- \rightarrow e^+e^- \gamma(\gamma)$ (high mass region) + cosmics



L.Zani - Dark sector probes at Belle II. Blois, May 2022

0636

$A' \rightarrow invisible$: single photon search prospects

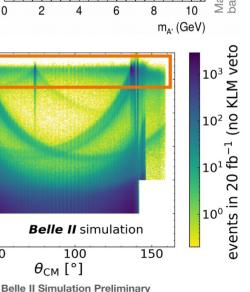
 New massive boson A' coupling to the SM photon through the kinetic mixing with strength ε. At e⁺e⁻ colliders investigate the ISR production $e^+e^- \rightarrow \gamma A'$.

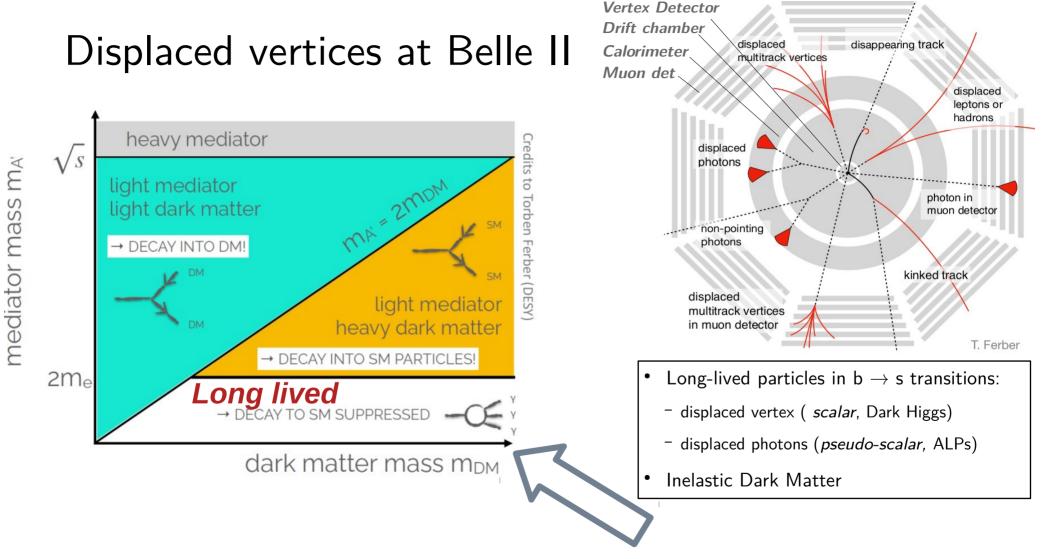
E_{CM} [GeV]

1

50

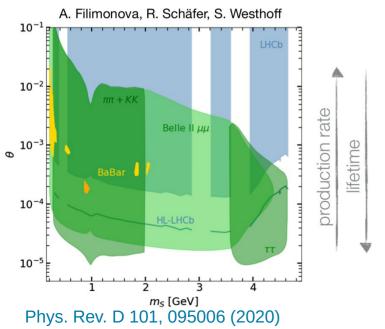
100 θ_{CM} [°]




- Select events with **nothing** but a single high energetic *ISR photon*. Look for a bump in the reconstructed photon energy $E_v = (s - m_{A'}^2)/2\sqrt{s}$
- **Background:** QED processes $e^+e^- \rightarrow \gamma \gamma (\gamma)$ (low mass region) and radiative Bhabha $e^+e^- \rightarrow e^+e^- \gamma(\gamma)$ (high mass region) + cosmics

Unholy grail

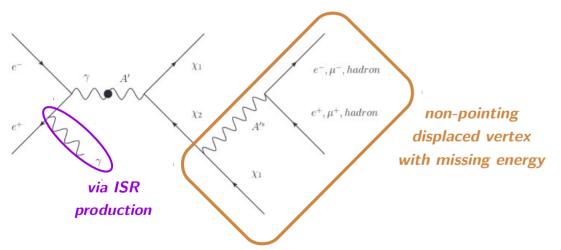
- \rightarrow Dedicated **single photon trigger** (none at Belle, at Babar on 10% of the data)
 - Crucial for Belle II to be competitive to exploit KLM as veto, currently **missing**→ detector studies ongoing

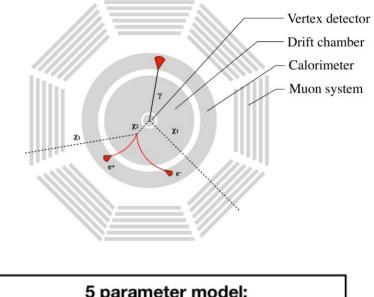


L.Zani - Dark sector probes at Belle II. Blois, May 2022

Long-lived (scalar) particles at Belle II

- Reconstruct B meson decay
 - prompt Kaon + two opposite-sign tracks forming a displaced vertex (LLP)
 - Exploit B-factory closed kinematics constraint to reject background, look for a bumb in the LLP invariant mass
 - Dominant background: SM long-lived, $K_{s}\,\text{and}\,\Lambda$




• Compute limits on cross-sections $\sigma(e^+ e^- \rightarrow \Upsilon(4S) \rightarrow [B \rightarrow KLLP]\overline{B})$ for different lifetimes and translate into model dependent limits on $m_s \& \theta_s$, where $c\tau_s = f(m_s, \theta_s)$

Inelastic Dark Matter

Dark photon A' and dark matter states $\chi 1$ and $\chi 2$ with a small mass splitting:

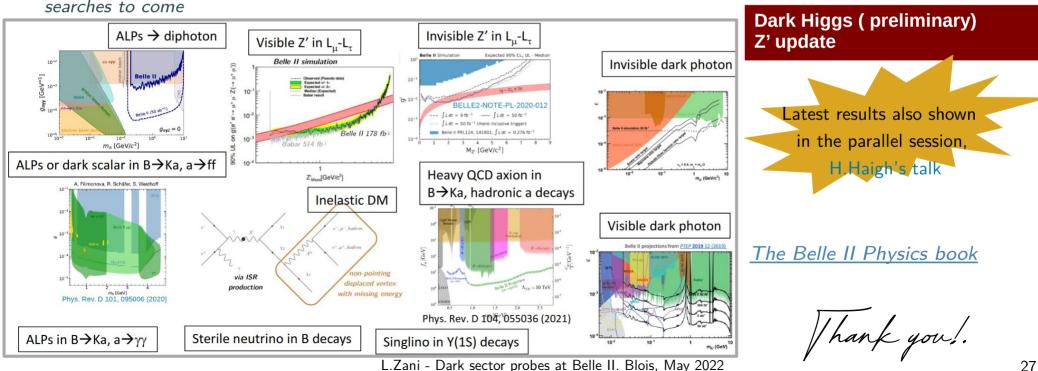
- $^ \chi 1$ is stable (relic)
- unconstrained by direct detection experiments, both inelastic and elastic scattering suppressed
- focus on $m_{A'}~>m_{\chi 1}+m_{\chi 2},$ such that $A'\!\to\chi 1~\chi 2$ is dominant decay

 $\begin{array}{c} 5 \text{ parameter model:} \\ m_{A'} \text{ (fixed relative to } m_{\chi 1} \text{)} \\ m_{\chi 1} \text{ (scan)} \\ mass difference \Delta = m_{\chi 2} - m_{\chi 1} \text{ (categorical)} \\ dark \ coupling \ \mathfrak{a}_D \text{ (fixed to benchmarks)} \\ kinetic \ mixing \ parameter \ \epsilon \text{ (limit)} \end{array}$

- Mandatory to implement new trigger for displaced vertex detection
- Belle II could constrain the kinetic mixing $arepsilon < 10^{-4}$ with $\sim 100/{
 m fb}$

Journal of High Energy Physics volume 2020, Article number: 39 (2020)

Conclusions


Very active and wide-ranging program of searches for dark sectors at lepton colliders \rightarrow competitive *limits on several models* to probe the DM puzzle

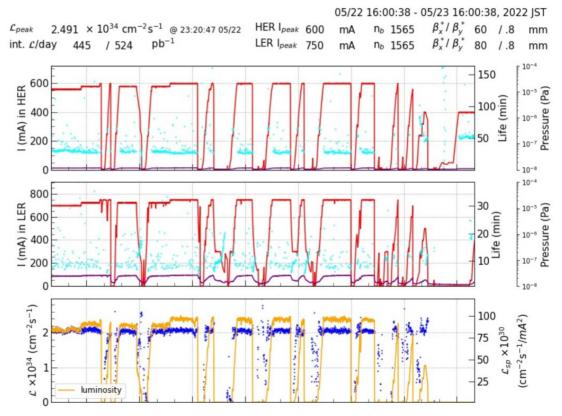
Z' → inv PRL 124 (2020) 141801

a → γγ PRL 125 (2020) 161806

- Belle II proved already its capability to produce *world leading results* even on a minimal data set
 - \rightarrow with increasing luminosity, improved performance/strategies more

searches to come

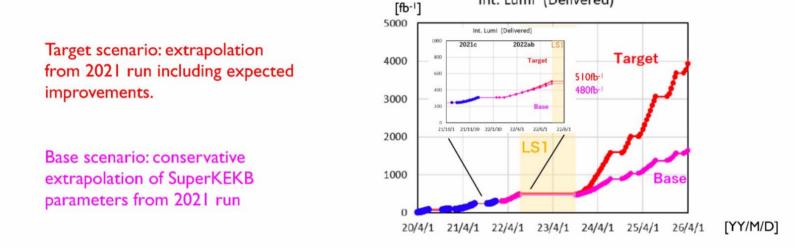
Thanks for your attention.



Peak luminosity record at SuperKEKB

https://www-linac.kek.jp/skekb/snapshot/dailysnap.html

SuperKEKB 24-Hour Operation Summary


New peak luminosity 4.14 x 10^34 (cm-2s-1), May 17, 2022.

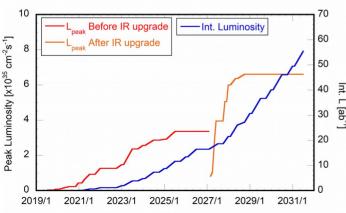
Belle II prospects

Projection of integrated luminosity delivered by SuperKEKB to Belle II

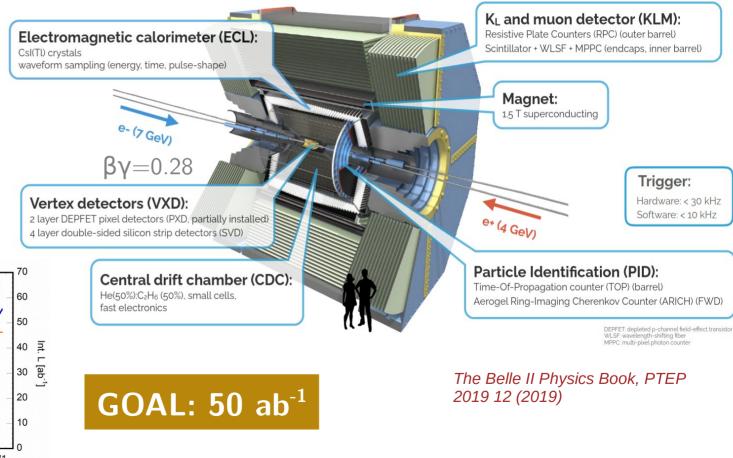
Int. Lumi (Delivered)

- We start long shutdown I (LSI) from summer 2022 for 15 months to replace VXD. There will be other maintenance/improvement works of machine and detector.
- We resume physics running from Fall 2023.
- A SuperKEKB International Taskforce (aiming to conclude in summer 2022) is discussing additional improvements.
- An LS2 for machine improvements could happen on the time frame of 2026-2027

Cross section in e^+e^- collision at 10.58 GeV

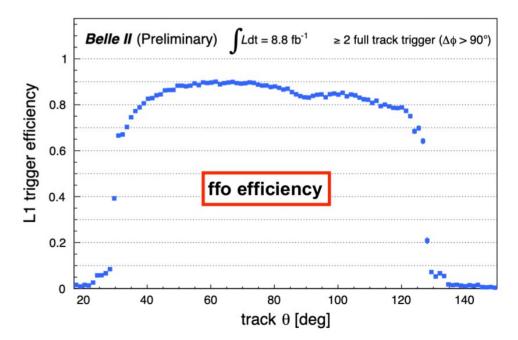

Physics process	Cross section [nb]	Selection Criteria	Reference
$\Upsilon(4S)$	1.110 ± 0.008	-	[2]
$uar{u}(\gamma)$	1.61	-	KKMC
$dar{d}(\gamma)$	0.40	-	KKMC
$sar{s}(\gamma)$	0.38	-	KKMC
$c\bar{c}(\gamma)$	1.30	iās.	KKMC
$e^+e^-(\gamma)$	$300\pm3~({\rm MC~stat.})$	$10^\circ < \theta_e^* < 170^\circ,$	BABAYAGA.NLO
		$E_e^* > 0.15 {\rm GeV}$	
$e^+e^-(\gamma)$	74.4	$p_e > 0.5{\rm GeV}/c$ and e in	-
		ECL	
$\gamma\gamma(\gamma)$	$4.99\pm0.05~(\mathrm{MC}~\mathrm{stat.})$	$10^{\circ} < \theta_{\gamma}^* < 170^{\circ},$	BABAYAGA.NLO
		$E_{\gamma}^* > 0.15 \mathrm{GeV}$	
$\gamma\gamma(\gamma)$	3.30	$E_{\gamma} > 0.5 \text{GeV}$ in ECL	-
$\mu^+\mu^-(\gamma)$	1.148	-	KKMC
$\mu^+\mu^-(\gamma)$	0.831	$p_{\mu} > 0.5 \text{GeV}/c$ in CDC	-
$\mu^+\mu^-\gamma(\gamma)$	0.242	$p_{\mu} > 0.5 \text{GeV}$ in CDC,	-
		$\geq 1 ~\gamma ~(E_{\gamma} > 0.5 {\rm GeV})$ in	ECL
$\tau^+\tau^-(\gamma)$	0.919	-	KKMC
$ uar u(\gamma)$	0.25×10^{-3}	-	KKMC
$e^{+}e^{-}e^{+}e^{-}$	$39.7\pm0.1~({\rm MC~stat.})$	$W_{\ell\ell} > 0.5{\rm GeV}/c^2$	AAFH
$e^+e^-\mu^+\mu^-$	18.9 ± 0.1 (MC stat.)	$W_{\ell\ell} > 0.5 \mathrm{GeV}/c^2$	AAFH

The Belle II Physics Book [arXiv:1808.10567]

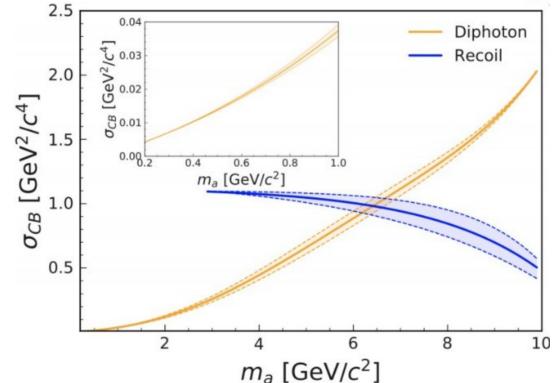

- Low multiplicity event cross sections rapidly diverge compared to hadronic ones
- Selections applied at MC generator level to reduce the effective cross section (acceptance, particle momentum selections)
- W_{\parallel} is the minimum invariant secondary fermion pair mass

Belle II detector

- Updated detector:
 - provide comparable/better
 efficiencies and resolutions
 in a higher background
 - Improved dedicated triggers for low multiplicity and missing energy final states



Date

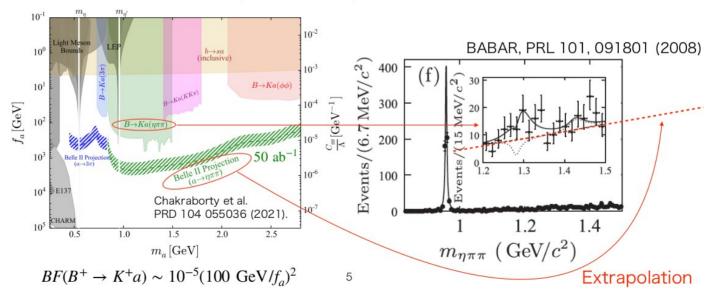

Triggers

- Belle II hardware-based (Level 1) trigger combines information from CDC, ECL, TOP and KLM.
 - Designed to reduce rate to at most 30 kHz, while delivering ~100% efficiency for $\Upsilon(4S) \rightarrow B\bar{B}$ events
 - Novel menu of triggers unavailable in Belle enable a compelling low-multiplicity program!
- Main trigger types for Tau & Dark Sector physics:
 - CDC number of full tracks
 - CDC number of short tracks
 - ECL total energy threshold
 - ECL number of isolated clusters
 - ECL low multiplicity
 - ECL di-muon
- In the dark Higgsstrahlung analysis events are required to fire the so-called "ffo" trigger:
 ≥ 2 full tracks, pair with Δφ > 90°, bhabha-veto

ALPs at Belle II: resolutions

• Signal resolutions for di-photon and recoil masses

L.Zani - Dark sector probes at Belle II. Blois, May 2022

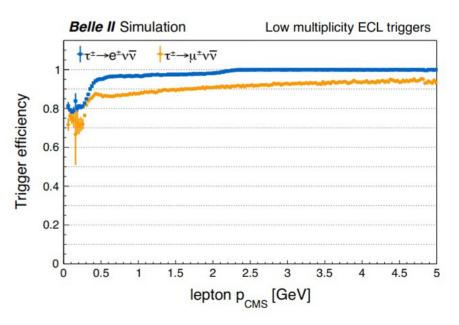

$B \rightarrow Ka, a \rightarrow hadrons$

- Chakraborty et al. (PRD 104 055036 (2021)) estimated sensitivity of heavy QCD axion using some (not DM search) experimental data.
 - *a* → $\eta \pi^+ \pi^-$: BABAR, PRL 101, 091801 (2008),

 $B^+ \to \eta_X K^+, \eta_X \to \eta \pi^+ \pi^-, \sim 400 \text{ fb}^{-1}.$

- $a \rightarrow \pi^0 \pi^+ \pi^-$: Belle, PRD 90, 012002 (2014),

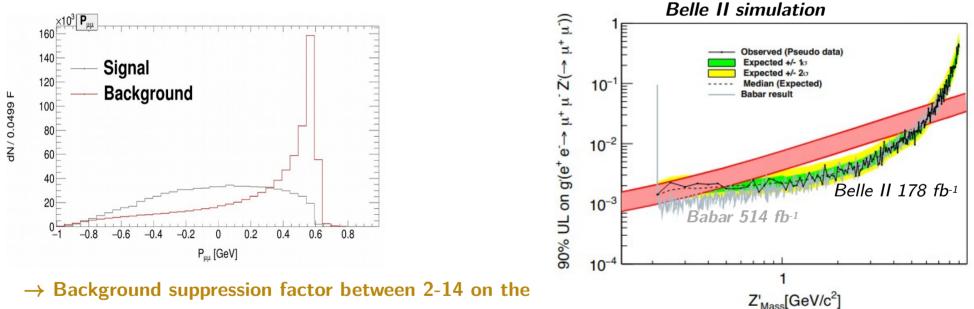
 $B^+ \to \omega K^+, \omega \to \pi^0 \pi^+ \pi^-, \sim 700 \text{ fb}^{-1}.$


L.Zani - Dark sector probes at Belle II. Blois, May 2022

Low multiplicity triggers

- Events are required to fire the logical OR of several unprescaled low-multiplicity (ImI) ECL triggers
- Iml0 : \geq 3 clusters with at least one having $E^* > 300$ MeV, $1 < \theta_{ID} < 17$ (corresponding to $12.4^{\circ} < \theta < 154.7^{\circ}$, full ECL) and not an ECL Bhabha.
- **lml1** : exactly 1 cluster with $E^* > 2$ GeV and $4 < \theta_{ID} < 14$ (32.2° $< \theta < 124.6^\circ$)
- **Iml2** : ≥ 1 cluster with $E^* > 2$ GeV, $\theta_{ID} = 2$, 3, 15, or 16 (18.5° $< \theta < 32.2°$ or 124.6° $< \theta < 139.3°$) and not an ECL Bhabha.
- Iml
4 : \geq 1 cluster with $E^*>2$ GeV,
 $\theta_{ID}=1$ or 17 (12.4° $<\theta<154.7^\circ)$ and not an ECL Bhabha.
- **Im16** : exactly 1 cluster with $E^* > 1$ GeV, $4 < \theta_{ID} < 15$ ($32.2^\circ < \theta < 128.7^\circ$, full ECL barrel) and no other cluster with E > 300 MeV anywhere.
- **Im17** : exactly 1 cluster with $E^* > 1$ GeV, $\theta_{ID} = 2$, 3 or 16 (18.5° $< \theta < 31.9^{\circ}$ or 128.7° $< \theta > 139.3^{\circ}$) and no other cluster with E > 300 MeV anywhere.
- lml8 : cluster pair with $170^{\circ} < \Delta \phi < 190^{\circ}$, both clusters with $E^* > 250$ MeV and no 2 GeV cluster in the event.
- **Iml9** : cluster pair with $170^{\circ} < \Delta \phi < 190^{\circ}$, one cluster with $E^* < 250$ MeV with the other having $E^* > 250$ MeV, and no 2 GeV cluster in the event.
- **Iml10** : cluster pair with $160^\circ < \Delta \phi < 200^\circ$, $160^\circ < \sum \theta < 200^\circ$ and no 2 GeV cluster in the event.
- Iml12 : \geq 3 clusters with at least one having $E^* > 500$ MeV, $2 < \theta_{ID} < 16$ (corresponding to $18.5^{\circ} < \theta < 139.3^{\circ}$, full ECL) and not an ECL Bhabha. (θ_{ID} values have to be double checked).

Absolute trigger efficiency in MC (TSIM, release-05-02-00):


 $\epsilon_{L1} = \frac{\text{lml0 or lml1 or lml2 or lml4 or lml6 or lml7 or lml8 or lml9 or lml10 or lml12}}{\text{all events}}$

 For this trigger configuration, TSIM has been shown to reproduce data efficiency within ~1%.

$Z' \rightarrow \mu^+ \mu^-$: background rejection

 Neural Network (*MLP, MultiLayer Perceptron*) exploiting dimuon momentum (P_{µµ}) and other 14 discriminating variables in 4 different mass ranges to reject background

searched di-muon mass range

$Z' \rightarrow \tau \tau$: background rejection (I)

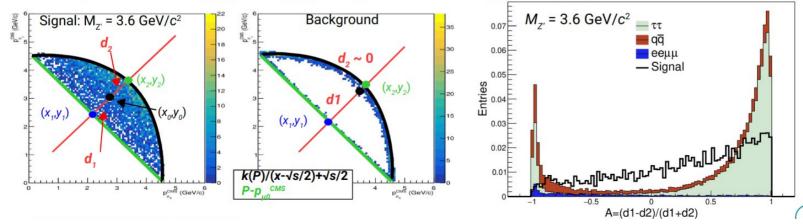
Class-1) Sensitive to a resonance

 $p(\tau_{n})$ $p(\mu)$ Discriminant variables sensitive to the presence of a resonance in the recoil system ___w.r.t the two tagging muons $-p(\mu^{+}) vs p(\mu^{-})$ - p_T^{MAX} vs p_T^{MIN} : transverse component of recoil (Z' for signal) ZS momentum along the direction of the max/min lepton momentum $-p(\tau_{D}^{-} + \tau_{D}^{+}) \text{ vs } M(\tau_{D}^{-} + \tau_{D}^{+})$ All momenta are expressed in the center of mass frame $p(\mu^{+})$ Also sensitive to the FSR $p(\tau_{0}^{+})$ Signal and background in mass bins $M_{T} \pm 5\sigma_{\text{peak}}$ production of the resonance $p(\tau_{D}^{+} + \tau_{D}^{+})$ vs $M(\tau_{D}^{+} + \tau_{D}^{+})$ p_Max VS p_Min $p(\mu_1) vs p(\mu_0)$ ignal: 6.6 GeV/c² ignal: 3.6 GeV/c Bkg: tt + gg ^{tS}(μ) [GeV/c] [GeV/c] **)**() $M(\tau_{D,0}, \tau_{D,1}^{3})$ [GeV/ c^{2}] Dark Sector Meeting. $Z' \rightarrow \tau \tau$. Luigi Corona

L.Zani - Dark sector probes at Belle II. Blois, May 2022

Credit to Luigi Corona

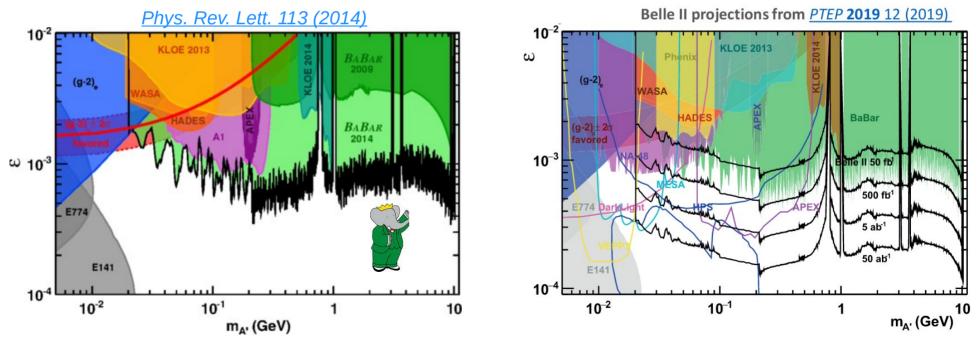
$Z' \rightarrow \tau \tau$: background rejection (II)


Credit to Luigi Corona

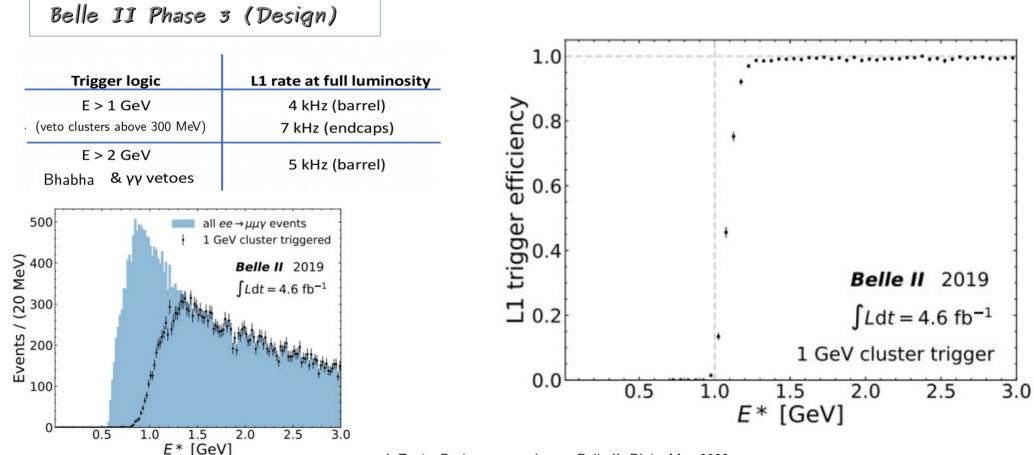
Class-1) for MVA: $p(\mu_1)$ vs $p(\mu_0)$

 Momentum P: the maximum Z' momentum that corresponds to a final state with a Z' and a particle of mass 2m,

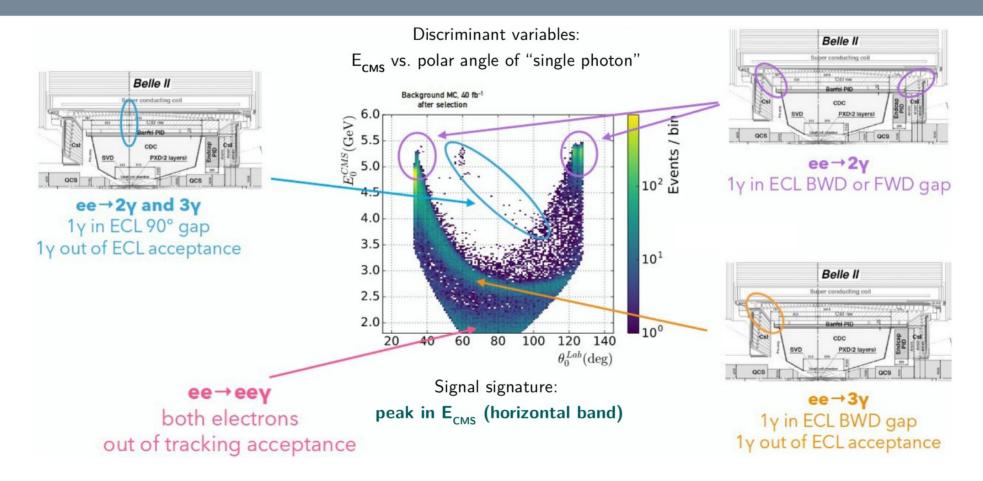
$$P = \frac{\sqrt{(s + M_{Z'}^2 - (2m_\mu))^2 - 4sM_{Z'}^2}}{2\sqrt{s}}$$


- $p(\mu_{\eta}) vs p(\mu_{\theta}) \rightarrow background accumulates around a straight line (green) and a hyperbole ($ **black**), whose analytical expressions depend only on*P* $and <math>\sqrt{s/2}$
- $A = (d_1 d_2)/(d_1 + d_2) \rightarrow$ considering the **red line** perpendicular to the **green line** passing for a generic point (*x*0,*y*0) of the scatter plot:
 - \Rightarrow d_1 is the distance of (x_0, y_0) from (x_1, y_1) , and d_2 is the distance of (x_0, y_0) from (x_2, y_2)

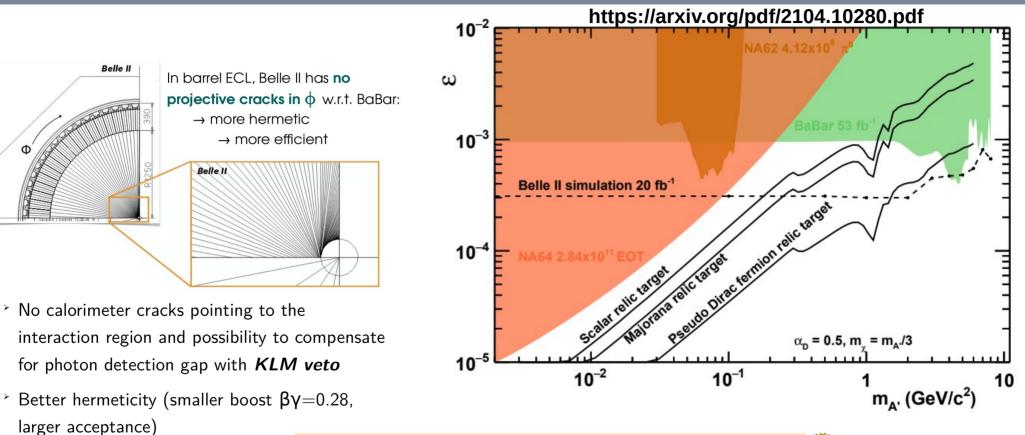
L.Zani - Dark sector probes at Belle II. Blois, May 2022


Visible dark photon

- Existing results by BaBar, currently the best limits in all the GeV range:
 - ⁻ bump search in the reconstructed di-lepton spectrum from the full data set (514 fb⁻¹)
- * Belle II will lead the sensitivity with the final data set of 50 ab $^{\mbox{--}1}$


L.Zani - Dark sector probes at Belle II. Blois, May 2022

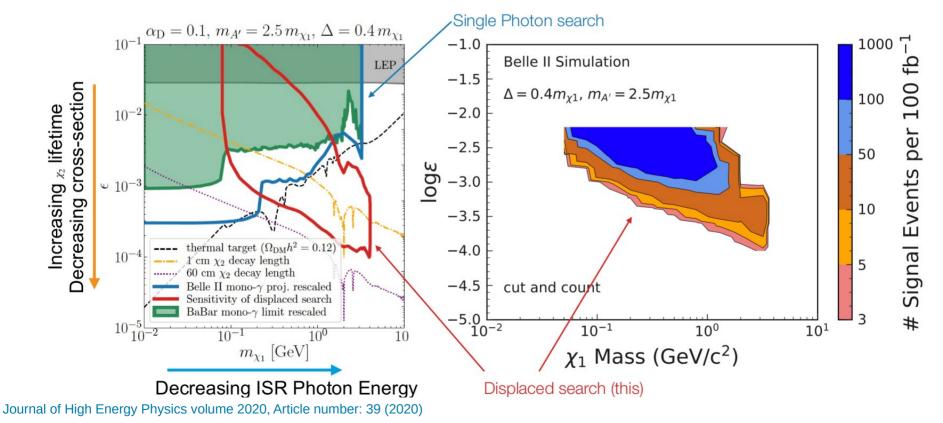
Dark photon to invisible: single photon trigger



L.Zani - Dark sector probes at Belle II. Blois, May 2022

Dark photon to invisible: backgrounds

Invisible dark photon sensitivity at Belle II



ightarrow dedicated single photon trigger ightarrow not available at Belle, at BaBar only for ~10% data (53 fb⁻¹)

Improved hardware trigger lines

IDM sensitivity at Belle II

• Belle II can explore a large region of new iDM parameter space, constraining with $\sim 100/{
m fb}$ the kinetic mixing parameter down to 10^{-4}

L.Zani - Dark sector probes at Belle II. Blois, May 2022