

University of Melbourne On Behalf of Belle and Belle II Collaborations

5/30/2022

M.E. Sevior "Status and prospects of Non-leptonic B meson decays" Seigen, 2022

- Introduction
- Recent results
 - Measurement of the B and CP asymmetry in $B^0 \rightarrow \overline{D^0}\pi^0$ and $B^+ \rightarrow \overline{D^0}\pi^+$ decays. (Belle) T. Bloomfield et al. <u>PRD 105, 072007</u> (2022) arXiv:2111.12337
 - Combined analysis of Belle and Belle II data to determine the CKM angle Φ_3 using of $B^+ \rightarrow D(K_s^0 h^- h^+)h^+$ decays (Belle + Belle II)

<u>N. Rout</u>, et al. <u>JHEP 02 **2022**</u>, 063 (2022) <u>arXiv:2110.12125</u>

- Study of $\overline{B^0} \rightarrow D^+ + h^-$ (h=K/ π) decays at Belle (Belle) E. Waheed et al. <u>PRD **105, 012003**</u> (2022) <u>arXiv:2111.04978</u>
- Measurements of the branching fractions for $\overline{B^0} \to D^{*+} + \pi^-$ and $\overline{B^0} \to D^{*+} + K^-$ and QCD factorization tests (Belle)

J.F. Krohn et al. (Belle, 2022) to be submitted to PRD

- Updated B-mixing B-lifetime measurements at Belle II (T. Humair, Moriond EW)
- Summary

Belle/Belle II

5/30/2022

M.E. Sevior "Status and prospects of Non-leptonic B meson decays" Seigen, 2022

Direct CP Violation

• Direct CP violation when $|A(f)| \neq \overline{|A(f)|}$

- $\phi_{1,2}$ CP violating weak phase (CKM)
- $\delta_{1,2}$ CP invariant strong phase (differing mechanisms)

•
$$A_{CP}(P \to f) \equiv \frac{\Gamma(P \to f) - \Gamma(\overline{P} \to \overline{f})}{\Gamma(P \to f) + \Gamma(\overline{P} \to \overline{f})} \propto \sin(\phi_1 - \phi_2) \sin(\delta_1 - \delta_2)$$

• ∴Need possesses with both strong and weak phase difference.

Signal Reconstruction

- Charged particles from hadron ID and tracking.
- Neutral particles from decays:
 - $\pi^0 \rightarrow \gamma \gamma$, pairs in ECL.
 - $K_s \rightarrow \pi^+ \pi^-$
- Kinematic variables for fitting: Exploit very well known (e^+e^-) initial state

Continuum Suppression

- $e^+e^- \rightarrow q\overline{q} \ (q \in u, d, s, c)$ dominant background. ~3 times $e^+e^- \rightarrow \Upsilon(4S)$ cross-section.
- Discriminate using event topology.
- Modified Fox-Wolfram moments

$$R_2 = \frac{\sum_{i,j} |p_i| |p_j| P_2(\cos \theta_{i,j})}{\sum_{i,j} |p_i| |p_j|}$$

- Combine with other variables using Machine learning (BDT, NN)
- Transform to fit:

$$C'_{NN} = \log(\frac{C_{NN} - C_{NN}^{cut}}{C_{NN}^{max} - C_{NN}})$$
, μ -transfrom

C'

- Kernel density estimation models dataset by superposition of kernel function (Gaussian) for each datapoint.
- Use adaptive bandwidth to adjust Gaussian width based on local event density.
- Retains information in high density areas while smoothing low density.

T. Bloomfield

- Both commonly used control mode in other analysis, allow for high-precision validations of techniques.
 - Important for Belle II precision frontier.

- $B^0 \rightarrow \overline{D^0} \pi^0$ notably large non-factorisable components.
 - $\mathfrak{B} \gg$ 'naïve' factorisation predictions.
 - Constraints for models of final state interactions
 - SCET, pQCD

T. Bloomfield

 $B^0 \rightarrow D^0 \pi^0$ and $B^+ \rightarrow D^0 \pi^+$

- $b \rightarrow c \overline{u} d$ decay.
- No penguin as final state quark different flavour \Rightarrow expect no A_{CP} .

$$B^0 \to \overline{D^0} \pi^0$$

Colour suppressed Previous results: Belle: $\mathfrak{B} = (2.25 \pm 0.14 \pm 0.35) \times 10^{-4}$ PRD 74, 092002 (2006) Babar: $\mathfrak{B} = (2.69 \pm 0.09 \pm 0.13) \times 10^{-4}$ PRD 84(3), 112007 (2011)

 A_{CP} is unmeasured.

$$B^+ \to \overline{D^0} \pi^+$$

Colour allowed, \mathfrak{B} is $\mathcal{O}(10)$ higher. Previous results: Belle: $\mathfrak{B} = (4.34 \pm 0.10 \pm 0.23) \times 10^{-3}$ Babar: $\mathfrak{B} = (4.90 \pm 0.07 \pm 0.22) \times 10^{-3}$ Belle: $A_{CP} = (-0.8 \pm 0.8)\%$ LHCb: $A_{CP} = (-0.6 \pm 0.5 \pm 1.0)\%$

PRD 97(1), 012005 (2018) PRD 75, 031101 (2007) PRD 73, 051106 (2006) PLB 723, 4453 (2013)

 $B^+ \rightarrow D^0 \pi^+$ Result

 $B^0 \rightarrow D^0 \pi^0$ Result

 $\mathfrak{B} = (2.70 \pm 0.06 \pm 0.10) \times 10^{-4} \quad \begin{array}{l} \text{Most precise measurement} \\ \text{in this channel} \\ A_{CP} = (0.42 \pm 2.05 \pm 1.22)\% \quad \begin{array}{l} \text{First measurement in this} \\ \text{channel} \end{array}$

T. Bloomfield

M.E. Sevior "Status and prospects of Non-leptonic B meson decays" Seigen, 2022

Belle II

CKM angle ϕ_3 (Belle + Belle II)

ϕ_3 is the phase between $b \rightarrow u$ and $b \rightarrow c$ quark transitions: $B \rightarrow DK$

- Common final states allow the interference between the two paths
- Interference gives access to the phase
- The level of interference, and its exact interpretation, depend on the physics of *B* and *D* decays

$$\frac{\mathcal{A}^{\text{suppr.}}(B^- \to \overline{D^0}K^-)}{\mathcal{A}^{\text{favor.}}(B^- \to D^0K^-)} = r_B e^{i(\delta_B + \phi_3)}$$

Results are limited by the sample size because of the small branching fraction of the decays involved

 $B^{-} \rightarrow D^{\theta} K^{-}$

 B^{-}

BPGGSZ method [Phys. Rev. D 68, 054018]

- Uses self-conjugate multi-body $D(K_S^0 hh)$ final states
- Sensitivity to ϕ_3 by comparing DDalitz plot distributions of B^+ and B^-
- In presence of *CP* violation, differences between *B*⁺ and *B*⁻ distributions are expected
- The magnitude and position of the difference is driven by r_B , δ_B , ϕ_3 and the physics of the *D* decays
- But, model-dependent analyses have model uncertainty up-to 3° – 9°

Fit *D* Dalitz plot with full Amplitude model $A_{B^+} = \overline{A}(m_-^2, m_+^2) + r_B e^{i(\delta_B - \phi_3)} A(m_-^2, m_+^2)$ $m_{\pm}^2 =$ squared invariant mass of $K_S^0 h^{\pm} : D$ Dalitz plot variable

BPGGSZ: binned model-independent approach

- Optimal (non-uniform) binning of the D Dalitz plot which gives maximum sensitivity to φ₃
- Observed yields in each bin can be related to physics parameters of interest and *D* decay information

$$\mathsf{N}_{i}^{\pm} = \mathsf{h}_{\mathsf{B}^{\pm}} \left[\mathsf{F}_{i} + \mathsf{r}_{\mathsf{B}}^{2} \overline{\mathsf{F}}_{i} + 2\sqrt{\mathsf{F}_{i} \overline{\mathsf{F}}_{i}} (\mathsf{c}_{i} x_{\pm} + \mathsf{s}_{i} y_{\pm}) \right].$$

 $h_{B^{\pm}}$: Normalization constant.

Physics parameters of interest: $(x_{\pm}, y_{\pm}) = r_B(\cos(\phi_3 \pm \delta_B), \sin(\phi_3 \pm \delta_B))$

Amplitude-averaged strong phase difference between $\overline{D^0}$ and D^0 over i^{th} bin and are obtained from external charm factories like *CLEO* and *BESIII*.

Fraction of pure D^0 decay to bin *i* taking into account the reconstruction and selection efficiency.

Signal extraction: Belle data

2D (ΔE , C') simultaneous fit of $B \rightarrow D\pi$ and $B \rightarrow DK$

 $K - \pi$ misidentification rate is directly extracted from data

Nsignal: **Belle**

$$K_S^0 \pi \pi = 1467 \pm 53$$

 $K_S^0 KK = 194 \pm 17$

40% increase in signal yield as compared to previous best result of Belle

Signal extraction: Belle II data

- 2D ($\Delta E, C'$) simultaneous fit of $B \rightarrow D\pi$ and $B \rightarrow DK$
 - $K \pi$ misidentification rate is directly extracted from data

Nsignal: Belle II

$$K_{S}^{0}\pi\pi = 280 \pm 21$$

 $K_{S}^{0}KK = 34 \pm 7$
Additional 17% N. Rout

0.6

 $B^{\scriptscriptstyle +}
ightarrow D(K^0_{_S}\pi^{\scriptscriptstyle -}\pi^{\scriptscriptstyle +})\pi^{\scriptscriptstyle +}$

0.6

0.7

 $\mathsf{B}^{\scriptscriptstyle +}\to\mathsf{D}(\mathsf{K}^{\scriptscriptstyle 0}_{\scriptscriptstyle c}\pi^{\scriptscriptstyle -}\pi^{\scriptscriptstyle +})\mathsf{K}^{\scriptscriptstyle +}$

0.8

0.7

0.9

0.8 0.9

Results

 $\begin{aligned} &\delta_{\rm B}(^{\circ}) & 124.8 \pm 12.9 \; ({\rm stat.}) \pm 0.5 \; ({\rm syst.}) \pm 1.7 \; ({\rm ext. \; input}) \\ &r_{\rm B}^{\rm DK} & 0.129 \pm 0.024 \; ({\rm stat.}) \pm 0.001 \; ({\rm syst.}) \pm 0.002 \; ({\rm ext. \; input}) \\ &\phi_{3}(^{\circ}) & 78.4 \pm 11.4 \; ({\rm stat.}) \pm 0.5 \; ({\rm syst.}) \pm 1.0 \; ({\rm ext. \; input}) \end{aligned}$

Belle previous results: *PRD* **85**, 112014 (2012) $\phi_3(^\circ) = 77.3^{+15.1}_{-14.9} \pm 4.1 \pm 4.3$

- This result is most precise to date from the *B*-factory experiments
- New inputs from BESIII on strong-phase has significant impact on systematic uncertainty
- Use of $B \rightarrow Dh$ decay mode to incorporate efficiency effects reduces the experimental systematic uncertainty

Results

 $r_B^{D\pi} = 0.017 \pm 0.006(\text{stat.}) \pm 0.001(\text{syst.}) \pm 0.001(\text{extinput})$ $\delta_B^{D\pi}(^\circ) = 341.0 \pm 17.0(\text{stat.}) \pm 1.2(\text{syst.}) \pm 2.6(\text{extinput.})$

- Results of $B \rightarrow D\pi$ provided for the first time from the B-factory experiments
- Consistent with the world average value

 $\bar{B}^0 \to D^{*+}h^-$ (Belle)

• Decay widths of $B \rightarrow D^{(*)}h$ can be estimated from their semileptonic counterpart

$$\Gamma(\bar{B}^0 \to D^{*+}h^-) = 6\pi^2 \tau_B |V_{uq}|^2 f_h^2 X_h |a_1(q^2)|^2 \times d\Gamma(\bar{B}^0 \to D^{*+}\ell^-\bar{\nu})/dq^2|_{q^2 = m_h^2}$$

- Beneke et al: $|a_1| = 1.05 (10.1016/S0550-3213(00)00559-9)$
- Huber et al: $|a_1(\pi)| = 1.071 \pm 0.014$, $|a_1(K)| = 1.069 \pm 0.013$ (10.48550/JHEP09(2016)112)
- Previous studies (Fleischer et al. 10.1103/PhysRevD.83.014017) of $|a_1|$ have not been performed within a single experiment which would cancel many systematic uncertainties
- SU(3) symmetry implies that $|a_1|$ should be consistent for $h = \{\pi, K\}$

D. Ferlewicz

$\bar{B}^0 \rightarrow D^{*+}h^-$ measurement

J.F. Krohn, D. Felewicz et al. (Belle, 2022)

/ 5.50

New Belle (711 fb⁻¹) $\mathcal{B}(\bar{B}^0 \to D^{*+}\pi^-)$ and $\mathcal{B}(\bar{B}^0 \to D^{*+}K^-)$ measurement, with $D^{*+} \rightarrow D^0 \pi^+$ and $D^0 \rightarrow K^- \pi^+$ or $D^0 \rightarrow K^- 2 \pi^+ \pi^-$ (previous 10.4 fb⁻¹)

Selection criteria:

- Pion $\mathcal{L}_{K/\pi} < 0.6$ (except slow pions)
- Kaon $\mathcal{L}_{K/\pi} > 0.6$
- D^* candidates have ΔM_{D^*-D} within $\approx 2.1 \text{MeV/c}^2$ of mean
- $M_{bc} > 5.27 \text{ GeV/c}^2$
- $-150 < \Delta E (MeV) < 125$
- Signal yields from simultaneous unbinned maximum-likelihood fit of $\Delta E = E_B - E_{beam}$
 - π signal PDF = double Gaussian + Crystal Ball
 - K signal PDF = Gaussian + Crystal Ball
 - Common resolution factor for widths is used for fits to data: $\sigma_i^{data} = \beta \sigma_i^{width}$

$\overline{B}{}^0 \rightarrow D^{*+}h^-$ measurement

Table of uncertainties for B.F.

M.E. Sevior "Status and prospects of Non-leptonic B meson decays"

Belle (preliminary)

$\overline{B}{}^0 \to D^{*+}h^-$ measurement

M.E. Sevior "Status and prospects of Non-leptonic <u>B</u> meson decays"

 $^{\rm U} \rightarrow D^+ h^-$

$$R_D = \frac{\mathfrak{B}(\bar{B}^0 \to D^+ K^-)}{\mathfrak{B}(\bar{B}^0 \to D^+ \pi^-)} \approx \tan^2(\theta_C) \left(\frac{f_K}{f_\pi}\right)^2$$

- Important input for determining ϕ_3
- Important control mode for determining ϕ_1
- Test of factorization and SU(3)
- Complete measurement using all Belle Data

$\bar{B}^0 \to D^+ h^-$ measurement

E. Waheed et al. (Belle, 2022) 10.1103/PhysRevD.105.012003

- New Belle (711 fb⁻¹) $\mathcal{B}(\overline{B}^0 \to D^+\pi^-)$ and $\mathcal{B}(\overline{B}^0 \to D^+K^-)$ measurement, with $D^+ \to K^-\pi^+\pi^-$, updating the 2001 (10.4 fb⁻¹) result
- Similar selection criteria to $\overline{B}^0 \rightarrow D^{*+}h^-$, but with *D* meson mass selected with $\approx 13 \text{ MeV/c}^2$ of known M_{D^+}
- Simultaneous fit to pion- and kaon-enriched samples

Source	R^D	$\mathcal{B}(\bar{B}^0 \to D^+\pi^-)$	$\mathcal{B}(\bar{B}^0 \to D^+ K^-)$
$\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)$		1.71%	1.71%
Tracking		1.40%	1.40%
N _{BĒ}		1.37%	1.37%
f^{00}/f^{+-}		1.92%	1.92%
$D^+ \rightarrow K^- \pi^+ \pi^+$ model		0.69%	0.69%
PDF parametrization	2.71%	1.63%	1.79%
PID efficiency of K/π	0.88%	0.68%	0.73%
D^+ mass selection window	0.05%	0.56%	0.64%
J/ψ veto selection	0.12%	0.004%	0.15%
Peaking background yield	0.07%	0.04%	0.00%
MC statistics	< 0.01	0.04%	0.04%
Fit bias		0.58%	0.61%
Total	2.85%	3.43%	3.54%

 $\overline{B}{}^0 \rightarrow D^+h^-$ results

Measurement	Result (\pm <i>stat</i> . \pm <i>sys</i> . [\pm D branching fraction sys.]*)	Theory prediction (Huber 2016)
$\mathcal{B}(\bar{B}^0\to D^+\pi^-)$	$(2.48 \pm 0.01 \pm 0.09 \pm 0.04^*) \times 10^{-3}$	$(3.93 \pm 0.43) \times 10^{-3}$
$\mathcal{B}(\bar{B}^0\to D^+K^-)$	$(2.03 \pm 0.05 \pm 0.07 \pm 0.03^*) \times 10^{-4}$	$(3.01 \pm 0.32) \times 10^{-4}$
$R^D \approx \tan^2 \theta_C \left(\frac{f_K}{f_\pi}\right)^2$	$0.0819 \pm 0.0020 \pm 0.0023$	0.077 ± 0.002

- World's most precise measurements
- Branching fractions and ratio consistent with previous measurements
- This channel is often used in control samples for *CP*-violation and ϕ_3 measurements
- Can be used with Belle $B^0 \rightarrow D^- \ell^+ \nu$ study to check consistency in $|a_1|$ measurements with reduced systematic uncertainties

E. Waheed

D. Ferlewicz

B-mixing and Lifetime (Belle II)

New beam scheme means reduced boost wrt Belle:

 $\beta \gamma = 0.43 \longrightarrow \beta \gamma = 0.29$ $\Delta z \approx 200 \ \mu \text{m} \longrightarrow \Delta z \approx 130 \ \mu \text{m}$

 \Rightarrow added a pixel detector directly around the beam pipe (radius \approx 1.4 cm) to recover precision on Δt .

Use beam spot profile to increase precision on vertex fit ⇒ new beam scheme means smaller beam spot and stronger constraint

T. Humair

B reconstruction

Use ~ 40k decays reconstructed from hadronic $B^0 \rightarrow D^{(*)-}\pi^+/K^+$ modes.

2 backgrounds: $e^+e^- \rightarrow q\overline{q}$ and misreconstructed $e^+e^- \rightarrow B\overline{B}$

Discriminate signal and backgrounds using ΔE and event-shape multivariate classifier.

- 1. Subtract backgrounds from sidebands (sWeights) to obtain background-free signal sample.
- 2. Fit background-subtracted Δt distribution, with a model taking into account wrong-tag fraction and finite vertex resolution

T. Humair

 Δm is the Oscillation frequency

Preliminary Results:

$$\tau_{B^0} = 1.499 \pm 0.013 \text{ (stat.)} \pm 0.008 \text{ (syst.)} ps$$

 $\Delta m_d = 0.516 \pm 0.008 \text{ (stat.)} \pm 0.005 \text{ (sys.)} ps^{-1}$

- Compatible with World-Average
- Compared to Belle and BaBar's best measurement:
 - better alignment and background systematics.
 - comparable resolution modelling systematics. \geq
 - ▶ Need to add $B^0 \rightarrow D^{(*)} l \nu$ modes
 - Ready for Time-Dependent CP-violation measurements

Belle II

First measurement of A_{CP} Highest precision **B**.

Most precise measurement by almost 2x.

Most precise measurement ϕ_3 by B-factories

Most precise measurements Important test of Factorization Needed for ϕ_3

Most precise measurements $R_{K/\pi}$ is 2.7 σ from Theory

Validation of Belle II for Time-**Dependent Analyses**

 τ_{B^0} : Δm_d :

Preliminary $1.499 \pm 0.013 \pm 0.008 \ ps$ $0.516 \pm 0.008 \pm 0.005 \ ps^{-1}$

(Belle II) Moriond EW (2022)

2022) to be submitted to PRD

	$B^0 ightarrow \overline{D^0} \pi^0$:	$\mathfrak{B} = (2.69 \pm 0.06 \pm 0.09) \times 10^{-4}$ T. Bloomfield et al. $\mathfrak{B}_{CP} = (0.10 + 2.05 + 1.22)\%$ (Belle)
	$B^+ ightarrow \overline{D^0} \pi^+$:	$\mathfrak{B} = (4.53 \pm 0.02 \pm 0.14) \times 10^{-3} $ $\mathfrak{PRD} \ \mathbf{105, 072007} \ (2022)$ $\mathfrak{A}_{CP} = (0.19 \pm 0.36 \pm 0.57)\%$
	$B^+ \rightarrow D(K_c^0 h^- h^+)$): $\delta_B(^\circ) = 124.8 \pm 12.9 \pm 0.5 \pm 1.7$
of	(3-0-00	$r_B^{DK} = 0.129 \pm 0.024 \pm 0.001 \pm 0.002$
01		$\tilde{\phi}_{3}(^{\circ}) = 78.4 + 11.4 + 0.5 + 1.0$ N Pout et al (Belle Belle II)
		$S^{D\pi}(\circ) = 241.0 \pm 1.2 \pm 2.6$ IHEP 02 2022 063 (2022)
		O_B () = 541.0 ± 1.2 ± 2.0 <u>STIET 02 2022</u> , 000 (2022)
		$r_B^{DR} = 0.017 \pm 0.006 \pm 0.001 \pm 0.001$
s on	$\overline{B^0} \rightarrow D^+ + h^-$:	$\mathfrak{B}(\overline{B^0} \to D^+\pi^-) = (2.48 \pm 0.01 \pm 0.09 \pm 0.04) \times 10^{-3}$ $\mathfrak{B}(\overline{B^0} \to D^+K^-) = (2.03 \pm 0.05 \pm 0.07 \pm 0.03) \times 10^{-4}$
		$R^{D} = 0.0819 \pm 0.020 \pm 0.0023 \pm 0.03$ E Webcod et al. (Palla)
		$R = 0.0019 \pm 0.0020 \pm 0.0023 \pm 0.03$ E. Walleed et al. (Belle)
	$\overline{B}^0 \rightarrow D^{*+} h^-$	$\Re(\overline{P0} \to D^{*+}\pi^{-}) = (2.622 \pm 0.016 \pm 0.096) \times 10^{-3}$
	$D \rightarrow D R$	$\mathcal{D}(\underline{D}^{-} \to D^{-} R^{-}) = (2.023 \pm 0.010 \pm 0.080) \times 10^{-4}$
	Preliminary	$\mathcal{D}(B^{\circ} \to D^{-1}K^{-}) = (2.221 \pm 0.003 \pm 0.077) \times 10^{-1}$
		$K_{K/\pi} = 0.0841 \pm 0.0024 \pm 0.013$ J.F. Krohn, D. Ferlewicz et al. (Belle

Conclusion

M.E. Sevior "Status and prospects of Non-leptonic B meson decays" Seigen, 2022

Backup

5/30/2022

M.E. Sevior "Status and prospects of Non-leptonic B meson decays" Seigen, 2022

 $\bar{B}^0 \to D^{*+}h^-$ systematics

Table of uncertainties for B.F. Values with \dagger are propagated to R^{D} , otherwise are cancelled

type	$\bar{B} \to D^{*+} \pi^-$	$\bar{B} \to D^{*+} K^-$
π -ID stat.	$rac{0.75\%}{0.58\%^{\dagger}}$	0.32%
π -ID sys.	$0.49\% \\ 0.41\%^{\dagger}$	0.19%
K-ID stat.	0.74%	$1.04\% \\ 0.64\%^{\dagger}$
K-ID sys.	0.55%	$rac{0.89\%}{0.55\%^\dagger}$
K-ID run dep. sys.	0.30%	0.30%
$\pi_{\rm slow}$ stat.	0.79%	0.79%
$\pi_{\rm slow}$ sys.	0.01%	0.01%
$\pi_{\rm slow}$ corr.	1.33%	1.33%
Tracking sys.	1.26%	1.26%
Fixed yields bkg. PDF	$0.07\%^{\dagger}_{}$	$0.07\%^{\dagger}_{}$
Fixed shapes bkg. PDF	$0.07\%^{\dagger}$	$0.07\%^{\dagger}$
Fit bias	$0.09\%^{\dagger}$	$0.37\%^\dagger$
$N_{\bar{B}^0B^0}$	1.84%	1.84%
$\mathcal{B}(D^{*+} \to D^0 \pi^+)$	0.74%	0.74%
$\mathcal{B}(D^0)$	0.94%	0.94%
MC stat.	$0.26\%^\dagger$	$0.99\%^\dagger$
Total sys. (\mathcal{B})	3.26%	3.47%
Total sys. (ratio)	1.50%	1.50%
Total stat. err.	0.57%	2.74%

 $\overline{B}^0 \to D^+h^-$ Systematics

Source	R^D	${\cal B}(ar B^0 o D^+ \pi^-)$	$\mathcal{B}(\bar{B}^0 \to D^+ K^-)$
$\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)$		1.71%	1.71%
Tracking		1.40%	1.40%
$N_{B\bar{B}}$		1.37%	1.37%
f^{00}/f^{+-}		1.92%	1.92%
$D^+ \rightarrow K^- \pi^+ \pi^+$ model		0.69%	0.69%
PDF parametrization	2.71%	1.63%	1.79%
PID efficiency of K/π	0.88%	0.68%	0.73%
D^+ mass selection window	0.05%	0.56%	0.64%
J/ψ veto selection	0.12%	0.004%	0.15%
Peaking background yield	0.07%	0.04%	0.00%
MC statistics	< 0.01	0.04%	0.04%
Fit bias		0.58%	0.61%
Total	2.85%	3.43%	3.54%