

Recent results from Belle II

Qi-Dong Zhou (IAR/KMI, Nagoya Univ.) **On behalf of Belle II Collaboration**

May 23 - 29, 2022 21st International Symposium on Very High Energy Cosmic Ray Interactions **ISVHECRI 2022 (Virtual)**

New physics search at Belle II

- Indirect search for New Physics (NP) in quantum effect • Sensitivity of NP detection up to 200 TeV for loop diagram (depending on the NP coupling constant)
- Standard Model suppressed or forbidden decays
- Test lepton flavor universality and the lepton flavor violations
- Dark sector search, τ physics, etc..

arXiv:1309.2293

Luminosity frontier : indirect search

Luminosity frontier: SuperKEKB/Belle II

e⁻ 7 GeV **Belle II detector** e+ 4 GeV **Position dumping ling** low emittance position **Position source target** Low emittance electron gun

Asymmetric e⁺e⁻ collider operating at a center of mass energy of the γ (4S) resonance

The Belle II detector

Vertex detector (VXD)

Inner 2 layers: pixel detector (PXD) Outer 4 layers: strip sensor (SVD)

Central Drift Chamber (CDC)

He (50%), C_2H_6 (50%), small cells, long lever arm

ElectroMagnetic Calorimeter (ECL) Barrel: Csl(Tl) + waveform sampling Endcap: waveform sampling

Level-1 trigger :CDC+ECL+TOP+KLM DAQ: Maximum 30 kHz L1 trigger

Barrel: Time-Of-Propagation counters (TOP) Forward: Aerogel RICH (ARICH)

K_L/μ detector (KLM)

Outer barrel: Resistive Plate Counter (RPC)

Endcap/inner barrel: Scintillator

Operation status and integrated luminosity

•Belle II operation under COVID-19

Belle II data taking efficiency ~90%

- ~380 fb⁻¹ till now, expect ~500 fb⁻¹ till LS1
 Belle: 1 ab⁻¹
- Long shutdown (LS) 1 starts from summer 2022 to autumn 2023 to replace PXD
- •LS2 is under discussion for machine improvements on the time frame of 2026-27

Charm lifetimes

- - Small interaction region
 - New vertex detector

7

$$\begin{aligned} \mathbf{CKM \ matrix \ and} \\ V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{ud} & V_{cs} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 \\ -\lambda \\ A^2 \lambda^3 (1 - \rho) \end{pmatrix} \end{aligned}$$

 $V^{\dagger}V = 1 \rightarrow \mathbf{b} \text{ row } \mathbf{d} \text{ column} \rightarrow \begin{vmatrix} \mathbf{v} \\ \mathbf{v} \\ \mathbf{\lambda} \end{vmatrix}$

$$\phi_{1} = \arg\left(-\frac{V_{cd}V_{cb}^{*}}{V_{ud}V_{tb}^{*}}\right) V_{ub}V_{ud}^{*} \qquad (\overline{\rho},\overline{\eta}) \qquad V_{td}V_{tb}^{*} \qquad V_{td}V_{tb}^{*} \qquad (\overline{\rho},\overline{\eta}) \qquad (\overline{\rho},\overline{\eta})$$

Complex phase cause CP violation

$$V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0$$

$$\lambda^3 \cdot 1 \qquad \lambda^2 \cdot \lambda \qquad 1 \cdot \lambda^3$$

- A triangle on the complex plane Normalization by $\bar{\rho} = \rho(1 \frac{\lambda^2}{2})$ $\bar{\eta} = \eta(1 \frac{\lambda^2}{2})$
 - Comprehensive test by Belle II
 - Measure all sides and angles (0,1) • Search NP in mixing (tree, loop) by precise measurement of UT

|V_{cb}|, |V_{ub}| measurement through semileptonic *B* decays

 $|V_{ub}|$ and $|V_{cb}|$ results from Belle, BaBar, etc., has longstanding discrepancy btw inclusive and exclusive measurements

• Hadronic B tag : Full Event Interpretation trained 200 BDTs to reconstruct ~100 decays channels, ~10000 B decay chains

Measuring $|V_{ub}|$ from $B^0 \rightarrow \pi$ -ev

Combined fit of $B^0 \rightarrow \pi^-e^+v$ and $B^+ \rightarrow \pi^0e^+v$

$$|V_{ub}| = (3.88 \pm 0.45) \times 10^{-3}$$

 $|V_{ub}| = (3.67 \pm 0.15) \times 10^{-3}$ (PDG)

Measurement of $B \rightarrow D^* / v$ for $|V_{cb}|$

 $\mathcal{F}^2(w)$: Form factor determination rely heavily on w = 1 (zero recoil), using CLN parameterization, NP B530, 153 (1998) **Belle II Preliminary**

w = 1

First Belle II |V_{ub}| and |V_{cb}| results

- These are the first Belle II tagged measurements of $|V_{ub}|$ and $|V_{cb}|$ are still statistically limited
 - More precise measurements with larger dataset
 - Higher precision with untagged measurement as the efficiency is 20-30%

$\phi_1/\beta_{,}\phi_2/\alpha_{,}\phi_3/\gamma$ measurements

- **Time dependent CP-Violation measurement:** • Precise measurement of Δt
 - •B flavor tagger

$$A_{CP} = \frac{\Gamma(\bar{B^0}(t) \to f_{CP}) - \Gamma(B^0(t) \to f_{CP})}{\Gamma(\bar{B^0}(t) \to f_{CP}) + \Gamma(B^0(t) \to f_{CP})} =$$

S_f : indirect (Time dependent) CPV parameter A_f: direct CP violation parameter Δm : the oscillation frequency

 $S_f = -\xi \sin(2\phi_1)$ with $B^0 \rightarrow J/\psi K_s$

B⁰ Lifetime and mixing frequency

 $\tau_{B0} = 1.499 \pm 0.013 \text{ (stat.)} \pm 0.008 \text{ (syst.) ps}$ $\tau_{B0} = 1.519 \pm 0.004 \text{ ps} \text{ (PDG)}$ $\Delta m = 0.516 \pm 0.008 \text{ (stat.)} \pm 0.005 \text{ (syst.) ps}^{-1}$

- Result compatible with world average
- Similar uncertainty as Belle, BaBar results
 - $B \rightarrow D^*/v$ to be included
- Belle II ready for time dependent analysis
- Next step $sin(2\phi_1)$ measurement

sis

Constraint for ϕ_2 using combination of $B \rightarrow \rho \rho (\rho^+ \rho^-, \rho^\pm \rho^0, \rho^0 \rho^0)$ decays

- Longitudinal polarization fraction f_L
- Asymmetry in rate $B^+ \rightarrow \rho^+ \rho^0 vs B^- \rightarrow \rho^- \rho^0$
 - Direct CP-violation from interference between tree and penguin diagram

$$egin{aligned} & m{A_{ extsf{CP}}} = -0.069 \pm 0.068 extsf{(stat.)} \pm 0.060 extsf{(syst.)} \ & m{B}(B^+ o
ho^+
ho^0) = ig(23.2^{+2.2}_{-2.1} extsf{(stat.)} \pm 2.7 extsf{(syst.)}ig) imes 10^{-6} \ & f_L = 0.943^{+0.035}_{-0.033} extsf{(stat.)} \pm 0.027 extsf{(syst.)} \end{aligned}$$

World average: $A_{CP} = -0.05 \pm 0.05$

First combined Belle (711 fb⁻¹) and Belle II (128 fb⁻¹) analysis

δ _B [°]	124.8 ± 12.9 (stat.) ± 0.5 (syst.) ± 1.7 (ex
r B	0.123 ± 0.024 (stat.) ± 0.001 (syst.) ± 0.002
γ [°]	78.4 ± 11.4 (stat.) ± 0.5 (syst.) ± 1.0 (ex

• Interference between $b \rightarrow c$ and $b \rightarrow u$ (tree level)

$$\frac{A^{suppr.}(B^- \to \bar{D}_0 K^-)}{A^{favor.}(B^- \to D_0 K^-)} = r_B e^{i(\delta_B - \phi_3)}$$

- xt.) (ext.) **(t.)**
- Expect < 3° uncertainty with 10 ab⁻¹ Will still statistically limited

• LHCb finds 3.1σ evidence for LFU violation

- Similar precision for electron and muon channels
- Limited by sample size
- Expected to became competitive with 1 ab⁻¹

$$\begin{aligned} \mathcal{B}(B \to K^* \mu \mu) &= (1.19 \pm 0.31 \pm^{+0.08}_{-0.07}) \times 10^{-6}, \\ \mathcal{B}(B \to K^* ee) &= (1.42 \pm 0.48 \pm 0.09) \times 10^{-6}, \\ \mathcal{B}(B \to K^* \ell \ell) &= (1.25 \pm 0.30 \pm^{+0.08}_{-0.07}) \times 10^{-6}, \end{aligned}$$
(1.05)

LFU violation in $b \rightarrow sll$

Result of inclusive search of $B^{\pm} \rightarrow K^{\pm} vv$

Expect 2 times limit compare SM prediction with 500 fb⁻¹ (towards discovery)

Dark Sector Search at Belle II

- Light dark matter search, low background, 3D momentum conservation at Belle II
 - Sensitivity for MeV-GeV scenarios
 - Typical processes
 - $e^+ + e^- \rightarrow SM$ particle + mediator
 - $B \rightarrow SM$ particle + mediator
- etc.), Belle II have the capability, already published 2 results with initial data
 - $e^+e^- \rightarrow \mu^+\mu^-Z'$, $Z' \rightarrow invisible$ (0.28 fb⁻¹) <u>PRL 124 (2020), 141801</u>
 - $e^+e^- \rightarrow a(\rightarrow \gamma \gamma)\gamma$ (Axion-Like Particle) (0.44 fb⁻¹) PRL 125 (2020), 161806

• Belle or BaBar not able for DM search for low multiplicity processes (trigger setting,

- U(1)' extension of the standard model
 - Massive dark photon (A') as the mediator
 - Spontaneous symmetry breaking introduce a dark Higgs (h')
 - <u>Phys.Rev. D 79, 115008 (2009)</u>
 - A' couples to SM only via kinetic mixing (ε)
 - α_D dark coupling constant
- Mass hierarchy scenarios
 - $m_{h'} > m_{A'}$: $h' \rightarrow A'A'^{(*)}$, 4had., 2l + 2 had. (final

state: 6 tracks), probed by BaBar (2012), Belle (2015)

• $m_{h'} < m_{A'}$: h' "long lived thus invisible" (2) tracks), partly probed by KLOE (2015)

Dark Higgsstrahlung ρ^+ $M_{h'}$ **Belle II** KLOE

h'

Dark Higgstrahlung results ation from SM background

- No significant deviation from SM background expectation is observed (8.34 fb⁻¹)
- Upper limits are set on σ and $\varepsilon^2 \alpha_D$:
 - Covered region: 1.65 < $M_{A'}$ < 10.51 GeV and $M_{h'}$ < $M_{A'}$
 - 90% CL UL on σ from 1.7 to 5 fb @ 4< $M_{A'}$ < 9 GeV
 - For $M_{A'}$ < 4 GeV: low sensitivity due to trigger eff.
 - For $M_{A'}$ > 9 GeV: large dimuon background

and $M_{h'} < M_{A'}$ $I_{A'} < 9$ GeV figger eff.

Cross section [fb]

Summary and prospects Int. Lumi (Delivered) [fb-1] 5000 Int. Lumi (Delivered) 2021c 2022ab Target 800 4000 Target 600 510fb 480fb 400 3000 200 21/10/1 21/11/30 22/1/30 22/4/1 22/6/1 2000 LS 1000 Base

20/4/1

21/4/1

- Belle II already accumulated 380 fb⁻¹ data, aim to take ~500 fb⁻¹ till LS1 (Belle 1 ab⁻¹)
- Recent results presented in today's talk
 - Lifetime of D^0 , D^+ and Λ_c^+ : world most precise
 - Semileptonic B decays
 - First $|V_{ub}|$ and $|V_{cb}|$ measurement
 - B^0 lifetime and mixing frequency: next step sin $(2\phi_1)$
 - $B^+ \rightarrow \rho^+ \rho^0$ measurement for ϕ_2/α
 - Measurement of ϕ_3/γ : first Belle + Belle II analysis
 - Search for Dark sector
- Still other results can not covered in this talk Belle II took unique data with collision energy above γ (4S), around 10.751 GeV, for new structure studies
- More results are expected with competitive intergraded luminosity of BaBar experiment plan to be taken until summer 2022

Backup

Tag side reconstruction at Belle II

- decays channels, ~10000 B decay chains
 - • ε =0.47% for B^{\pm}

• Hadronic tag : Full Event Interpretation trained 200 BDTs to reconstruct ~100

arXiv:2008.06096

Measurement of $B \rightarrow X_c / v$ for $|V_{cb}|$

Hadronic mass moments of **inclusive** $B \rightarrow X_c / v$ with hadronic tag

• A new method proposed in <u>JHEP02 (2019)177</u> to extract $|V_{cb}|$ from q^2 moments

- $B \rightarrow X_c lv$ decay width is expressed with HQE (heavy-quark expansion) parameters
- This method reduce HQE parameters from 13 to 8
- Global fit for inclusive $|V_{cb}|$ in the future

https://inspirehep.net/literature/2081808

 q^2 moments as a function of q^2 momentum threshold

$B \rightarrow K\pi$ puzzle

QCD color suppression effect cannel out

$$I_{K\pi} \equiv A_{CP}^{K^{+}\pi^{+}} + A_{CP}^{K^{0}\pi^{+}} \frac{\mathcal{B}_{K^{0}\pi^{+}}}{\mathcal{B}_{K^{+}\pi^{-}}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2A_{CP}^{K^{+}\pi^{0}} \frac{\mathcal{B}_{K^{+}\pi^{0}}}{\mathcal{B}_{K^{+}\pi^{-}}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - A_{CP}^{K^{0}\pi^{0}} \frac{\mathcal{B}_{K^{0}\pi^{0}}}{\mathcal{B}_{K^{+}\pi^{-}}} = 0$$

World average: $I_{K\pi} = (-14 \pm 11)\%$

- Assume penguin + tree diagrams are dominant $A_{CP}(K^{+}\pi^{-}) + A_{CP}(K^{0}\pi^{+}) \approx A_{CP}(K^{+}\pi^{0}) + A_{CP}(K^{0}\pi^{0})$ small small
- Current results obtained from the experiment

$$\Delta A_{K\pi} = A_{CP}^{K^+\pi^0} - A_{CP}^{K^+\pi^-} = (12.4 \pm 2.1)\% \quad \mathsf{P}$$

• Another approach (isospin sum rule) to pin down the $B \rightarrow K\pi$ puzzle (less theoretical uncer.)

Neutral final states are crucial !

Measurement of $B \rightarrow K\pi$ decays

- Perform 4D fit (ΔE , Δt , M_{bc} , continuum suppression output)
- Constrain S_{CP} using previous measurements to maximize precision on A_{CP}

Br(10 ⁻⁶)	11.0 ± 1.2 (stat.) ± 1.0 (syst.)
PDG(10 ⁻⁶)	9.9 ± 0.5
Acp	$-0.41 + 0.30_{-0.32} \pm 0.09$
A _{CP} (PDG)	0.00 ± 0.13

The Belle II Physics Book, PTEP 2019, 123C01

Uncertainty ~4% at Belle II, able to answer $I_{k\pi}$ 34

Dark Sector Search at Belle II

• Belle or BaBar did not search for some of the processes (trigger setting, etc.), Belle II initial data enable two searches

• $e^+e^- \rightarrow \mu^+\mu^-Z'$, $Z' \rightarrow invisible$ (0.28 fb⁻¹) PRL 124 (2020), 141801 • $e^+e^- \rightarrow a(\rightarrow \gamma \gamma)\gamma$ (Axion-Like Particle) (0.44 fb⁻¹) PRL 125 (2020), 161806

Dark Higgstrahlung background and systemtatics

Backgrounds

- dominant backgrounds: Ο
 - $\mu^{+}\mu^{-}(\gamma)$ (79%)
 - $\tau \tau^{*}(\gamma)$ (18%)
 - e⁻e⁺μ⁻μ⁺ (3%)
- different contributions in different regions 0
- Systematics:
 - impacting both signal and background: 2.2%-12.7% 0
 - impacting signal only: 0
 - differences in M resolution in data/MC (1-5%), BR theory uncert. 4%

ϕ_2 measurement ($B \rightarrow \rho \rho$)

	$B^+ \rightarrow \rho^+ \rho^0$
Yeild	104 ± 16
<i>Br</i> (10 ⁻⁶)	$20.6 \pm 3.2 \pm 3.1$
PDG	24.0 ± 1.9
fL	$0.936^{+0.049}_{-0.041} \pm 0.021$
f _L (PDG)	0.950 ± 0.016

Belle II - LHCb comparison

Belle II

Higher sensitivity to decays with photons and neutrinos (e.g. $B \rightarrow Kvv, \mu v$), inclusive decays, time dependent CPV in B_{d} , τ physics.

LHCb

Higher production rates for ultra rare B, D, & K decays, access to all b-hadron flavours (e.g. Λ_b), high boost for fast B_s oscillations.

Overlap in various key areas to verify discoveries.

Upgrades

Most key channels will be stats. limited (not theory or syst.). LHCb scheduled major upgrades during LS3 and LS4. Belle II formulating a 250 ab⁻¹ upgrade program post 2028.

Observable

arXiv: 1808.08865 (Physics case for LHCb upgrade II), PTEP 2019 (2019) 12, 123C01 (Belle II Physics Book)

P. URQUIJO @ Beauty 2020

Current Belle/ Babar	2019 LHCb	Belle II (5 ab ⁻¹)	Belle II (50 ab ⁻¹)	LHCb (23 fb ⁻¹)	Belle II Upgrade (250 ab ⁻¹)	LHC upgrad (300 fl
CP Violation						
0.03	0.04	0.012	0.005	0.011	0.002	0.
13°	5.4°	4.7°	1.5°	1.5°	0.4°	
4°	_	2	0.6°	_	0.3°	
4.5%	6%	2%	1%	3%	<1%	
_	49 mrad	_	_	14 mrad	_	4 n
0.08	0	0.03	0.015	0	0.007	
0.15	_	0.07	0.04	_	0.02	
Penguins, LFUV						
0.32	0	0.11	0.035	0	0.015	
0.24	0.1	0.09	0.03	0.03	0.01	(
6%	10%	3%	1.5%	3%	<1%	
24%, –	_	9%, 25%	4%, 9%	_	1.7%, 4%	
_	90%	_	_	34%	_	1
_	8.5×10-4	_	5.4×10-4	1.7×10-4	2×10-4	0.3×
1.2%	_	0.5%	0.2%	_	0.1%	
<120×10-9	_	<40×10-9	<12×10-9	_	<5×10-9	
<21×10-9	<46×10-9	<3×10-9	<3×10-9	<16×10-9	<0.3×10-9	$<5\times$

 \circ Possible in similar channels, lower precision 39 - Not competitive.

Prospects of |V_{ub}| and |V_{cb}|

Side	Observable	Dominant unc
Vtd	Δ <i>m</i> _d : BB mixing frequency	Lattice QCD (V _{td} r limited by LQCD)
Vcb	$Br(b \rightarrow c/v)$	Exclusive: Lattice
Vub	Br(b→ulv)	phenomenology

Observables	Belle	Belle II	
	(2017)	5 ab^{-1}	50 ab^{-1}
$ V_{cb} $ incl.	$42.2 \cdot 10^{-3} \cdot (1 \pm 1.8\%)$	1.2%	_
$ V_{cb} $ excl.	$39.0\cdot 10^{-3}\cdot (1\pm 3.0\%_{ ext{ex.}}\pm 1.4\%_{ ext{th.}})$	1.8%	1.4%
$ V_{ub} $ incl.	$4.47 \cdot 10^{-3} \cdot (1 \pm 6.0\%_{ ext{ex.}} \pm 2.5\%_{ ext{th.}})$	3.4%	3.0%
$ V_{ub} $ excl. (WA)	$3.65 \cdot 10^{-3} \cdot (1 \pm 2.5\%_{ ext{ex.}} \pm 3.0\%_{ ext{th.}})$	2.4%	1.2%
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	$91\cdot(1\pm24\%)$	9%	4%
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	< 1.7	20%	7%
$R(B \to D \tau \nu)$ (Had. tag)	$0.374 \cdot (1 \pm 16.5\%)$	6%	3%
$R(B \to D^* \tau \nu)$ (Had. tag)	$0.296 \cdot (1 \pm 7.4\%)$	3%	2%

Belle II - LHCb comparison

Belle II detector performance

Good Lepton ID, Muon/ Electron-ID over/under performing wrt Belle, improvements in progress

High photon detection efficiency, Belle-like resolution π° mass

Good kaon identification, underperforming wrt Belle, improvements in progress

