Belle II Opportunities in Rare B-decays with Invisible Particles

Bundesministerium für Bildung und Forschung

- Slavomira Stefkova
- on behalf of the Belle II collaboration
 - Flavor at the Crossroads MITP, Germany 25.04.2022

SuperKEKB

aims to reach $30 \times$ higher \mathscr{L}_{inst} than KEKB at cost of $\mathcal{O}(10) \times$ higher backgrounds

Belle II Detector

Magnet 1.5 Ts

7 GeV electron

EM Calorimeter (ECL) CsI(TI) crystals Updated electronics with waveform sampling

Central Drift Chamber (CDC)

14336 sense wires in He-C₂H₆ Smaller cells + longer lever arm + faster electronics

Vertex detectors (PXD+SVD)

2 pixel layers (DEPFET)

4 layers of silicon microstrip layers

Charged PID detectors

Time of propagation counter (TOP) (barrel) Aerogel Cerenkov detector (ARICH) (forward)

Slavomira Stefkova, 25.04.2022, Flavor at the Crossroads Workshop

- Designed to give similar or better performance at cost of $\mathcal{O}(10) \times$ higher backgrounds
- Upgraded **DAQ and trigger** (higher readout frequency + low multiplicity channels)

Simulated $e^+e^- \rightarrow \mu^+\mu^$ event with high luminosity backgrounds (CDC view)

4 GeV positron

K_L and muon ID detectors

Resistive plate chambers

Scintillators

Luminosity

Status

- Collected ~ 330 fb⁻¹ since April 2019 (~1/2 Belle)
- Slower luminosity accumulation, but with ~ 90 % data-taking efficiency
- Record-breaking \mathscr{L}_{inst} 3.8 × 10 ³⁴ cm⁻² s⁻¹
- Highest daily integrated luminosity: 2.2 fb⁻¹

Slavomira Stejkova, 25.04.2022, Flavor at the Crossroads Workshop

Prospects

- **Short-term plan**: long shutdown (LS1) in 2022
 - o full PXD installation → important to maintain good vertex resolution at high luminosity
 - Replacement of 50% of barrel TOP PMTs to maintain good particle identification
- **Long-term plan**: LS2, final goal: $\mathscr{L}_{int} = 50 \text{ ab}^{-1}$

r Institut für Technologie

Rare B-decay with invisible particle(s) has usually significant missing energy

Slavomira Stefkova, 25.04.2022, Flavor at the Crossroads Workshop

Key Ingredients

Reconstruction

 e^+

 B_{sig}^{-}

e

(4S)

Slavomira Stefkova, 25.04.2022, Flavor at the Crossroads Workshop

Inclusive Tagging Approach: Migher signal efficiency

D Lower intrinsic background rejection

 \square Worse resolution \rightarrow binned fits

Other Approaches:

☐ 'Semi-inclusive' tagging

Charm tagging

er Institut für Technologie

Reconstruction

Slavomira Stefkova, 25.04.2022, Flavor at the Crossroads Workshop

Inclusive Tagging Approach: 1. step: B_{sig}^- reconstruction **2. step:** Constrain the rest of the event

Inclusive lagging Approach:

missing energy

Higher signal efficiency

D Lower intrinsic background rejection

 \square Worse resolution \rightarrow binned fits

Other Approaches:

Charm tagging

Full Event Interpretation (FEI)

FEI is an MVA tagging algorithm which reconstructs with with 200 BDTs ~ 10000 decay chains

MC tag-side efficiency @10% purity	Had. B ⁺ /B ⁰ [%]	SL. B ⁺
Full Reconstruction Belle	0.28/0.18	0.67
FEI Belle	0.76/0.46	1.80
N of correct B_{tag} per 1 fb ^{-1} in Belle (FEI)	8350/5060	19800

Full Event Interpretation (FEI)

FEI is an MVA tagging algorithm which reconstructs with with 200 BDTs ~ 10000 decay chains

In Belle, FEI achieves up x 2 higher reconstruction efficiency compared to predecessor tagging algorithm → Belle II expects improvements

[Comput. Softw. Big. Sci. (2019) 3: 6]

MC tag-side efficiency @10% purity	Had. B ⁺ /B ⁰ [%]	SL. B ⁺
Full Reconstruction Belle	0.28/0.18	0.67
FEI Belle	0.76/0.46	1.80
N of correct B_{tag} per 1 fb ^{-1} in Belle (FEI)	8350/5060	19800

Slavomira Stefkova, 25.04.2022, Flavor at the Crossroads Workshop

er Institut für Technologie

Neutral Particles

$\pi^0, K_I, K_s, n, \gamma$

- γ = cluster in ECL that are not associated to a track
- K_L , n = cluster in KLM and ECL that is not associated to a track • $\pi^0 = \gamma \gamma$

•
$$K_s = \pi^+ \pi^-$$
 or $\pi^0 \pi^0$

Background Rejection

- Large fraction of *B*-decay products have π^0 in its decay chain
- If K_L , n's interact with atomic nuclei in ECL and KLM, then need to devise vetos

Slavomira Stefkova, 25.04.2022, Flavor at the Crossroads

To take advantage of the 'clean event' need to reconstruct every particle possible!

Signal Identification

• If signal has π^0, K_s : need to have high reconstruction efficiency and good resolution

ROE / Tagged Reconstruction

- Missing energy related variables (all particles that not associated to signal/and B_{tag}) often used as discriminating variables / fitting variables
- If K_L , n's do not interact with atomic nuclei in ECL at KLM, potential fakes for invisible particles

n		
	_	
: are) /	
ind		

Channels with missing energy

Slavomira Stefkova, 25.04.2022, Flavor at the Crossroads

er Institut für Technologie

SM theory

- FCNC transition heavily suppressed in SM
- Does not suffer from charm-loop contributions \rightarrow clean SM computation
- $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = (4.6 \pm 0.5) \times 10^{-6} [arxiv:606.00916]$
- SM $q^2(\nu\bar{\nu})$ taken from [arXiv:1409.4557]
- Complimentary to other $b \rightarrow sll$ transitions

Possible BSM enhancements

- Axions [PRD 102, 015023 (2020)] Ο
- Dark Matter candidates [PRD 101, 095006 (2020) Ο
- Z' [PL B 821 (2021) 136607] 0
- Leptoquarks [PRD 98, 055003 (2018)]

Slavomira Stefkova, 25.04.2022, Flavor at the Crossroads Workshop

15

LQ

- 1. Reconstruct signal: highest- p_T track in the event with at least 1 PXD hit
- Reconstruct remaining tracks and clusters in the event
- 3. vertex separation, signal kinematics)

Slavomira Stefkova, 25.04.2022, Flavor at the Crossroads Workshop

Strategy

Minimise the background contamination with two nested BDTs using 51 variables: event topology, missing energy,

With only 1/10 \mathscr{L}_{int} inclusive tagging approach achieved $20 \times$ higher signal efficiency (~ 4%) compared to tagged reconstruction approach of previous experiments

- Reconstruct signal: highest- p_T track in the event with at least 1 PXD hit 1.
- Reconstruct remaining tracks and clusters in the event
- 3. vertex separation, signal kinematics)
- Validation with control channel $B^+ \rightarrow J/\psi (\rightarrow \mu^+ \mu^-) K^+$ 4.

Slavomira Stefkova, 25.04.2022, Flavor at the Crossroads Workshop

Strategy

Minimise the background contamination with two nested BDTs using 51 variables: event topology, missing energy,

Search for $B^+ \to K^+ \nu \bar{\nu}$ [PRL 127, 181802 (2021)]

Results

- strength μ ($1\mu = SM \mathscr{B} = 4.6 \times 10^{-6}$)
- \rightarrow competitive with *only* 63 fb⁻¹
- Inclusive tag approach shows the best performance

Slavomira Stefkova, 25.04.2022, Flavor at the Crossroads Workshop

On-resonance data

Search for $B^+ \to K^+ \nu \bar{\nu}$ [PRL 127, 181802 (2021)]

Prospects in Belle II

- **Physics:** similar channels, inclusive measurement $X_{s'}$ 0 measurement of F_L
- **Faster observation:** reducing biggest systematics, combined measurement using all the tagging approaches

Belle II snowmass paper : 2 scenarios baseline (improved)

Uncertainties on the signal strength μ

Decay	$1{ m ab}^{-1}$	$5{ m ab}^{-1}$	$10{ m ab}^{-1}$	50
$B^+ \to K^+ \nu \bar{\nu}$	0.55~(0.37)	0.28(0.19)	0.21 (0.14)	0.11
$B^0 ightarrow K^0_{ m S} u ar{ u}$	2.06(1.37)	$1.31 \ (0.87)$	1.05(0.70)	0.59
$B^+ \to K^{*+} \nu \bar{\nu}$	2.04(1.45)	1.06(0.75)	0.83(0.59)	0.53
$B^0 \to K^{*0} \nu \bar{\nu}$	1.08(0.72)	0.60(0.40)	0.49(0.33)	0.34

 3σ (5 σ) sigma for SM B⁺ \rightarrow K⁺ $\nu \bar{\nu}$ with 5 fb⁻¹

Slavomira Stefkova, 25.04.2022, Flavor at the Crossroads Workshop

On-resonance data

Search for $B^+ \to K^+ \tau l$

Motivation:

• LFV decays are strongly suppressed in SM (can only occur via neutrino mixing)

BSM:

- Hints for LFU violation in $b \rightarrow sll$ and $b \rightarrow cl\nu$
- If LFU is violated, then BSM extensions predict that rates for LFV decays are enhanced (even more for 3^{rd} generation leptons) \rightarrow up to ~10⁻⁵
- BSM models: Leptoquarks [arxiv:1709.00692], Z', W', ...

Current Bounds:

0	> Best limits set by BaBar (hadronic tag) and LHCb			90% C.L. U.L.	
			Mode	BABAR	<i>K</i>HCP
B	elle II can:	OS	B+→K+τ+μ	2.8 x 10 [.] 5	3.9 x 10⁻₅
0	study different sign combinations	SS	B+→K+τ-µ+	4.5 x 10 ^{.5}	
0	with different tagging approaches including		B+→K+τ+ <mark>e</mark>	1.5 x 10 ^{.5}	
	semi-inclusive tagging, charm tagging		B+→K+τ [.] e+	4.3 x 10 ^{.5}	

Search for $B \to K^{(*)} \tau \tau$

Motivation:

- FCNC transition involving 3rd generation leptons
- SM $\mathscr{B}(B \to K(*)\tau\tau) \sim 10^{-7}$

BSM:

• Rate enhanced by NP models (especially those coupling only to 3rd generation / with coupling \propto particle mass)

Current Bounds:

- Belle $\mathscr{B}(B^0 \to K^{*0}\tau^+\tau^-) < 2.0 \times 10^{-3} @ 90 \% C.L. [arxiv:2110.03871]$
- Babar $\mathscr{B}(B^+ \to K^+ \tau^+ \tau^-) < 2.3 \times 10^{-3} @ 90 \% C.L. [PRL 118, 031802 (2017)]$

Belle II can:

- exploit different tagging approaches
- include more τ decay modes (improved scenario)
- measure other channels K^{*+}

Slavomira Stefkova, 25.04.2022, Flavor at the Crossroads Workshop

Belle II snowmass paper

	$\mathcal{B}(B^0 \to K^{*0} \tau \tau) \text{ (had tag)}$		
ab^{-1}	"Baseline" scenario	"Improved" scenar	
1	$< 3.2 imes 10^{-3}$	$< 1.2 \times 10^{-3}$	
5	$< 2.0 \times 10^{-3}$	$< 6.8 imes 10^{-4}$	
10	$< 1.8 imes 10^{-3}$	$< 6.5 imes 10^{-4}$	
50	$< 1.6 \times 10^{-3}$	$< 5.3 \times 10^{-4}$	

BSM scenarios of $B^+ \to K^+ \nu \bar{\nu}$: new mediators (a) **a** (= dark scalar or ALP) decaying invisibly \rightarrow 0 very similar to the search for $B^+ \to K^+ \nu \bar{\nu}$ main experimental difference: two-body vs 0 three-body kinematics 10^{2} Signal Simulation Event 10^{1} $m_a = 50 \text{ MeV}$ 10^{0} -1 ⁻∧¹ 10⁻¹ ^w/(<)[±] 10⁻² 10^{-4} $10^{-5}_{10^{-2}}$ Kaon Track

BSM scenarios of $B^+ \to K^+ \nu \bar{\nu}$: new mediators (a) **a** (= dark scalar or ALP) decaying invisibly \rightarrow 0 very similar to the search for $B^+ \to K^+ \nu \bar{\nu}$ main experimental difference: two-body vs 0 three-body kinematics 10^{2} Signal Simulation Event 10^{1} $m_a = 50 \text{ MeV}$ 10^{0} ---->= 10⁻¹ f^w / (2) f^w 10^{-4} 10^{-5} 10^{-2} 10^{-2} Kaon Track

Search for $B^+ \rightarrow K^+a$ (ALP): Sensitivity

Simplified sensitivity study probing different m_A scenarios for m_A in [5 MeV, 4 GeV]

- With 0.5 ab⁻¹ limit on $\mathscr{B}(B^+ \to K^+ a) < 10^{-5} @ 90 \text{ CL} \to \text{expected an order of magnitude improvement}$ 0
- With 50 ab⁻¹ limit on $\mathscr{B}(B^+ \to K^+ a) < 10^{-7} @ 90 \text{ CL} \to \text{expected two orders of magnitude improvement}$

Belle II near-term plans

- Compare sensitivity of inclusive tagged vs hadronic tagged reconstruction approach for $B^+ \to K^+ a$
- Adapt inclusive tag to favour two-body kinematics 0
- Perform search for $B^+ \rightarrow K^+a / B \rightarrow K^*a$ with pre-shutdown dataset (0.5 ab⁻¹) 0

Slavomira Stefkova, 25.04.2022, Flavor at the Crossroads Workshop

[arxiv: 2201.06580]

Fully reconstructed channels

Slavomira Stefkova, 25.04.2022, Flavor at the Crossroads Workshop

er Institut für Technologie

3.1 σ evidence of LFUV in R(K) reported by LHCb

Slavomira Stefkova, 25.04.2022, Flavor at the Crossroads Workshop

Towards $b \rightarrow sll LFU : R(K^{(*)})$

3.1 σ evidence of LFUV in R(K) reported by LHCb

Slavomira Stefkova, 25.04.2022, Flavor at the Crossroads Workshop

Towards $b \rightarrow sll LFU : R(K^{(*)})$

Signal extraction with simultaneous ML fit to M_{bc} and ΔE

R(K): Belle II vs LHCb (Aside)

[Nature Physics volume 18, pages 277–282 (2022)]

Search for $\mathbf{B} \to \mathbf{K}^{(*)} \mathbf{S}$

- **S** (= long-lived scalar particle = LLP) that decays visibly into pair of charged particles $x^+, x^-, x \in (e, \mu, \pi, K)$
- Bump hunt in the LLP invariant mass
- Separately for $x \in (e, \mu, \pi, K)$
- Separately for different lifetimes

Slavomira Stefkova, 25.04.2022, Flavor at the Crossroads Workshop

Current bounds and predictions

Prediction does not contain e^+e^- **channel**

Conclusion

Belle II

- is accumulating high quality data
- is well suited to study rare B-decays with (multiple) invisible particles
- has unique reach for light DM
- will provide competitive and independent checks of $b \rightarrow sll$ channels where anomalies were reported (electron modes)

Rare B-decays with invisible particles are challenging but fun!

- heavily suppressed in SM, but BSM models can enhance observables such as \mathscr{B} significantly
- \circ once the \mathscr{B} of these channels are measured, start the theoretically cleaner precision measurements (angular variables, LFU tests)

Belle II made its first footprint

• search for $B^+ \to K^+ \nu \bar{\nu}$ = first Belle II B-physics paper employing novel inclusive tagging approach sets highly competitive limit with "only" 1/10 of previous B-factory dataset

But what about?

- Other missing energy modes (eg. $B \rightarrow l\nu, B \rightarrow l\nu\gamma$), $b \rightarrow d$ transitions (e.g $B \rightarrow \pi\nu\nu$)
- Other LFV channels: e.g $B \rightarrow K\mu e, B \rightarrow K^*\mu e$ Ο
- DM: other DM candidates, other signatures (e.g $B \rightarrow Ka(\rightarrow \gamma \gamma)$)

Slavomira Stefkova, 25.04.2022, Flavor at the Crossroads

er Institut für Technologie

Other Belle II highlights (Moriond 2022)

Towards $sin(2\beta)$

- Mixing and lifetime measurement \rightarrow not yet competitive but will provide $sin(2\beta)$
- $B^0 \to K^0_s \pi^0 \to$ unique to Belle II

Result compatible with world average:

 $au_{B^0} = 1.499 \pm 0.013 \, (\text{stat.}) \pm 0.008 \, (\text{syst.}) \, \text{ps},$

 $\Delta m_d = 0.516 \pm 0.008 \, (\text{stat.}) \pm 0.005 \, (\text{syst.}) \, \text{ps}^{-1}.$

Compared to Belle and BaBar's best measurement:

- Slightly worse stat. uncertainty because not using $B^0 \rightarrow D^{*-} \ell^+ \nu$ modes yet.
- better alignment and background systematics.
- comparable resolution modelling systematics.

Belle II (preliminar

Towards CKM angle *α*

220

Result compatible with previous measurements:

$$egin{aligned} & m{A_{ extsf{CP}}} = -0.069 \pm 0.068 extsf{(stat.)} \pm 0.060 \ & m{B}(B^+ o
ho^+
ho^0) = ig(23.2^{+2.2}_{-2.1} extsf{(stat.)} \pm 2.7 extsf{(syst.)}ig) \ & m{f_L} = 0.943^{+0.035}_{-0.033} extsf{(stat.)} \pm 0.027 extsf{(syst.)} \end{aligned}$$

World average: $A_{CP} = -0.05 \pm 0.05$

Belle II Detector

<u>Magnet</u> 1.5 Ts

7 GeV electron

EM Calorimeter (ECL) Energy resolution ~ 4 - 1.6%

Central Drift Chamber (CDC)

Spatial resolution ~ 100 μ m

 p_T resolution = 0.4 %

Vertex detectors (PXD+SVD) Vertex resolution ~ 15 μm

Charged PID detectors Pion mis-id efficiency ~ 5 % Kaon id-efficiency ~ 90 %

Slavomira Stefkova, 25.04.2022, Flavor at the Crossroads

er Institut für Technologie

Hadronic FEI tagging

- $\tau \rightarrow \pi/\rho/e/\mu$ decays
- $\circ l = \{e, \mu\}$
- Fit to m_{τ} distributions

$$\mathbf{m}_{\tau}^{2} = \mathbf{m}_{B}^{2} + \mathbf{m}_{Kl}^{2} - 2(\mathbf{E}_{B}^{*}\mathbf{E}_{Kl}^{*} - |\vec{\mathbf{p}}_{B_{sig}}^{*}||\vec{\mathbf{p}}_{Kl}^{*}|\cos\theta)$$

$$\stackrel{\mathbf{p}_{B}^{*}}{\underset{\mathbf{p}_{beam}}{\overset{\mathbf{p}_{k}}{\overset{\mathbf{p}$$

- Control samples:
 - $B^+ \rightarrow D^- (\rightarrow K^+ \pi^- \pi^-) \pi^+ \pi^+$,
 - $B^+ \to J/\psi (\to \ell \ell) K^+$

Slavomira Stefkova, 25.04.2022, Flavor at the Crossroads Workshop

Semileptonic FEI tagging

- Recoil mass still peaks at m_{τ} but the resolution is a factor ~2-3 worse
- High efficiency but worse resolution

Other tagging approaches

- Measure $\mathscr{B}(B^+ \to K^+ \tau \ l)$ exploiting high \mathscr{B} of $B^- \rightarrow \overline{D}{}^0 X = 79 \pm 4\%$
 - Reconstruct $B_{tag} D^0$
 - Reconstruct signal's K and l, and τ
 - D⁰X provides the tag-side
- Fit also to m_{τ}

Belle II snowmass paper

 $\mathcal{B}(B \to \tau \nu_{\tau}) = (1.06 \pm 0.19) \times 10^{-4} \text{ and } \mathcal{B}(B \to \mu \nu_{\mu}) < 8.6 \times 10^{-7} \text{ and } \mathcal{B}(B \to e\nu_e) < 9.8 \times 10^{-7} \text{ at } 90\% \text{ confidence level}$

 $B \rightarrow l \nu$

