Aspen Winter Conference New Methods and Ideas at the Frontiers of Particle Physics March 2022

Belle II: Recent Results, Status, and Prospects

Belle II/SuperKEKB

Motivation

Big Questions

- Origin of generations & role of flavor
- CP violation & baryon asymmetry

Not addressed by Standard Model; need "New Physics" (NP)

Both Questions necessarily involve 3 generations \rightarrow heavy quarks

Where to look for NP?

- Direct searches at Energy Frontier → stringent limits
- Indirect: SM anomalies, *hints* in B decay
 - e.g. lepton universality: tension

$$\mathcal{R}(D^{(*)}) \equiv \frac{(B \to \bar{D}^{(*)} \tau^+ \nu)}{(B \to \bar{D}^{(*)} \ell^+ \nu)} \text{ (~~3.9 σ); } R(K^{(*)}) \equiv \frac{\mathcal{B}(B \to K^{(*)} \mu^+ \mu^-)}{\mathcal{B}(B \to K^{(*)} e^+ e^-)} \text{(~~1.5-3.1 σ)}$$

Belle II will probe New Physics (NP) at the multi-TeV scale: B, c, τ

- Precision Standard Model measurements & challenges (multiprong)
 - Unitarity of CKM matrix \rightarrow CP asymmetries, rare decays
 - lepton universality
- dark particles via missing energy

Belle II: rich Physics program (not only NP)

Belle II @ SuperKEKB: $e^+e^- \rightarrow \Upsilon(4S)$ (primarily)

- Complete annihilation \Rightarrow event CMS = e⁺e⁻ CMS
- Near-threshold @ Y(4S): exclusive B-pair events
- "Hermetic" detector captures (almost) every detectable particle => "neutrals reconstruction" {K_L, n, ν, dark matter}
- Average multiplicity (chg+neutral) ~15-20

 $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B}$ $\sqrt{s} = 10.579 \text{ GeV}$

In lab frame each B travels $<\beta\gamma c\tau >\approx 130 \mu m$ in direction of CMS

K. Kinoshita

B reconstruction

Full reconstruction (>1000 modes)

 $E_{\text{tag}} = \sum_{i, \text{tag}} E_i = E_{\text{beam}}$ (CMS frame) $\vec{p}_{\text{tag}} = \sum_{i, \text{tag}} \vec{p}_i$

 \rightarrow Beam-constrained mass

$$M_{\rm bc} = \sqrt{E_{\rm beam}^2 - \vec{p}_{\rm tag}^2}$$

- absolute branching fractions
- inclusive rates
- detailed angular, kinematic distributions
- invisible particles (neutrinos, dark matter)
- Iow systematics

Remainder

(detected & undetected)

= other B

9

Belle II: Full Event Interpretation

vs Belle full reconstruction

10000

5000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Aspen Winter Conference 2022

Belle II: improve through resolution, (much) better statistics

Brief history & status

e⁺e⁻ B-factories (≈equal #'s $B\bar{B}$, $c\bar{c}$, $\tau^+\tau^-$)

- Belle (1999-2010) 772M events, each; ≈600 papers published
- Babar (1999-2008) 465M; ≈600 published
- Belle II (2019-)
 - 189.3 fb⁻¹ ≈190M: results reported here
 - to date: ≈290 M collected; ultimate goal = 50G (>100X)
 - published /submitted physics results so far
 - Integrated luminosity [Chinese Physics C 44, 021001 (2020)]
 - search for invisible Z' [PRL 124, 141801 (2020)]
 - search for Axion-like [PRL 125, 161806 (2020)]
 - search for $K \nu \bar{\nu}$ [PRL 127, 181802 (2021)]
 - D⁰ and D⁺ lifetimes [PRL 127, 211801 (2021)]
 - Belle+Belle II, CKM angle φ_3 [JHEP 02 2022, 063 (2022)]

Belle II NEW results

Kinoshita

2

charm lifetimes

Search for Darkhiggstrahlung

• \mathcal{B} to $|V_{cb}|$: Heavy Quark Effective Theory (HQET) \rightarrow q² distribution/form factor

$B \to \pi e^+ \nu$

SM: spectator $\rightarrow |V_{ub}|$

 experimental & theoretical (similar to |V_{cb}|) similar experimental/theoretical approach
 3 bins of q²; fit for form factor; evaluate at w=1

 $B^0 \to \pi^- e^+ \nu$

$B \to \pi e^+ \nu$

Decay mode

|V_{ub}|: q² distribution

 $B^0 \to \pi^- e^+ \nu$ B=(1.43±0.27_{stat}±0.07_{sys})x10⁻⁴

$$B^+ \to \pi^0 e^+ \nu$$

B=(8.33±1.67_{stat}±0.55_{sys})x10⁻⁵

 $B^0 \to \pi^- e^+ \nu_e$ (3.71 ± 0.55) ×10⁻³

 $B^+ \to \pi^0 e^+ \nu_e$ (4.21 ± 0.63) ×10⁻³

Combined fit (3.88 \pm 0.45) $\times 10^{-3}$

Fitted $|V_{\rm ub}|$

$$rac{d\mathcal{B}}{dq^2}(B
ightarrow \pi \ell
u) \propto |\mathcal{M}|^2 \propto |V_{ub}|^2 f_+^2(q^2)$$

SM: benchmark for CP asymmetry measurements

CMS in lab frame: βγ≈0.27
→ mean vertex separation
Δz ≈130 μm

Vertex reconstruction

• fully reconstructed hadronic $B^{0} \rightarrow D^{-}\pi^{+} \{D^{-} \rightarrow K^{+}\pi^{-}\pi^{-}\}$ $B^{0} \rightarrow D^{(*)-}\pi^{+} \{D^{*-} \rightarrow \bar{D}^{0}\pi^{-}, \bar{D}^{0} \rightarrow K^{+}\pi^{-}, K^{+}\pi^{-}\pi^{0}, K^{+}\pi^{-}\pi^{+}\pi^{-}\}$

 e^{-}

В

+ Belle flavor tag – 7 quality bins, dilution factors w_i
 Time distributions: same/opposite flavor

$$f(\Delta t') = \frac{e^{-|\Delta t'|/\tau_{B^0}}}{4\tau_{B^0}} (1 + q\mathcal{D}\cos\Delta m_d\Delta t') \qquad \begin{array}{l} \mathsf{q} = 1 \text{ opp flavor} \\ \mathsf{q} = -1 \text{ same flavor} \\ \mathcal{D} = 1 - 2\mathsf{w} \end{array}$$

B^0 lifetime and mixing Δm_d

 $\tau_{B^0} = 1.499 \pm 0.013 \,(\text{stat.}) \pm 0.008 \,(\text{syst.}) \,\text{ps}$

 $\Delta m_d = 0.516 \pm 0.008 \,(\text{stat.}) \pm 0.005 \,(\text{syst.}) \,\text{ps}^{-1}$

 $K^0\pi^0$: only at e⁺e⁻ B-factory, most challenging

NP: may appear as $\mathcal{A}_{CP} \neq 0$

 $B^0 \to K^0_S \pi^0 \gamma$

SM b→s γ: γ polarization is flavor-specific due to V-A
 → CP asymmetry suppressed
 NP may appear as time-dependent CP asymmetry
 Branching fraction

Florian Bernlo

₃₀ Eelle II

25

 $\mathcal{L} dt = 189 \text{ fb}^{-1}$

 $B \rightarrow K^* \ell \ell$ fit projections

24

22

20

18 16

expected to became competitive with 1 ab⁻¹

K*ee is dominated by B-factories • In agreement with W.A. 0.1

Belle II preliminary

SuperKEKB/Belle II Luminosity Profile

Summary

 $e^+e^-@Y$ region: powerful event environment, rich physics

- Belle II/SuperKEKB: hermetic detector, nano-beams
 - 189.3 fb⁻¹ analyzed, new results
 - time-dependent measurements
 - world-leading charm lifetimes: D⁰, D⁺, $\Lambda_{\rm c}$
 - B mixing, lifetime ready for time-dependent CP
 - A_{CP} for $B^0 \to K^0 \pi^0$ (single K_s vertex!)
 - time-independent
 - $-|V_{xb}|$ via exclusive semileptonic/form factors
 - B decays: $\rho^{\pm}\rho^{0}, \ K^{0}_{S}\pi^{0}\gamma, \ K^{*}\ell^{+}\ell^{-}$
 - darkhiggsstrahlung search
- (Much) more to come probe multi-TeV mass scale at the Intensity Frontier ...

with better statistics & resolution...

... be prepared for surprises

Backup Slides

K. Kinoshita

Belle II Detector

CKM Matrix

Standard Model: 12 fermion flavors (+antifermion) Flavors interact only via the Weak force, mediated by W^{\pm} , Z^{0} quark couplings:

- neutral current ≈universal, no generation x-ing
- charged current all different, ≈ generation-conserving

All observations explained if matrix of couplings is <u>unitary</u>

$$g_{\mathsf{F}} \times \begin{array}{c} \mathsf{d} & \mathsf{s} & \mathsf{b} \\ \mathsf{u} & \mathsf{V}_{\mathsf{ud}} & \mathsf{V}_{\mathsf{us}} & \mathsf{V}_{\mathsf{ub}} \\ \mathsf{V}_{\mathsf{cd}} & \mathsf{V}_{\mathsf{cs}} & \mathsf{V}_{\mathsf{cb}} \\ \mathsf{V}_{\mathsf{td}} & \mathsf{V}_{\mathsf{ts}} & \mathsf{V}_{\mathsf{tb}} \end{array}$$

9 complex couplings \rightarrow 18 free parameters

(Glashow-Iliopoulos-Maiani)

$$\begin{bmatrix} d' \\ s' \\ b' \end{bmatrix} = \mathcal{M} \begin{bmatrix} d \\ s \\ b \end{bmatrix}$$

unitary transforation mass ↔ weak eigenstates

explicit parametrization(Wolfenstein):

$$egin{array}{cccc} 1-\lambda^2/2 & \lambda & \lambda^3 A(
ho-i\eta) \ -\lambda & 1-\lambda^2/2 & \lambda^2 A \ \lambda^3 A(1-
ho-i\eta) & -\lambda^2 A & 1 \end{array}$$

For 3 generations, 4 free parameters, including 1 irreducible **imaginary** part

Unitarity of CKM matrix

Decay rates \propto |Amplitude|²

3 terms form "Unitarity triangle" in ρ - η complex plane