

Dark sector and tau results from Belle II

Lake Louise Winter Institute 2022 Miho Wakai, University of British Columbia on behalf of the Belle II Collaboration

February 25th, 2022

Dark Sector / Tau Physics at Belle II

- The Belle II experiment aims to make precise measurements of CP violation in the weak sector, as well as find **New Physics Beyond the Standard Model** of Particle Physics.
- Current aim is to collect $50 ab^{-1}$.
- Suitable for low multiplicity events: See Bertrand's talk
 - Clean environment
 - High sensitivity to mass range up to $10 \ GeV/c^2$
 - Effective triggers for low multiplicity events
- Many physics analyses: Z', Axion-Like particles, dark photon

Tau Mass Measurement What?

- Determine the tau mass with high precision
- Looking at consistency between the lifetime, mass, and leptonic branching fractions: $B_{\tau l}^{SM} \propto B_{\mu e} \frac{\tau_{\tau}}{\tau} \frac{m_{\tau}^{3}}{m^{5}}$

How?

- High cross section of $\sigma(e^+e^- \rightarrow \tau^+\tau^-) = 0.92 \ nb$
- Belle II looks into $e^+e^- \rightarrow \tau^+\tau^-$:
 - 3 prong decay $\tau^+ \to \pi^+ \pi^- \pi^+ \bar{\nu}_{\tau}$
 - 1 prong decay $\tau^- \to l^- \nu_\tau \nu_l$, $h^- \nu_\tau$, also $\pi^- \pi^0 \nu_\tau$

Tau Mass Measurement Method

Apply mass extraction

•
$$M_{min} = \sqrt{m_{3\pi}^2 + 2(E_{beam}^{COM} - E_{3\pi})(E_{3\pi} - |p|)}$$

(H. Albrecht et al. (ARGUS Collaboration, Phys. Lett. B 292, 221 (1992).)

Results

- Using dataset of $8.8 fb^{-1}$
- $m_{\tau} = 1777.28 \pm 0.75$ (stat.) ± 0.33 (syst.) MeV/c^2
- Systematic uncertainty dominated by track momentum scale from magnetic field
- Better systematic precision is expected in the future
- Other tau studies ongoing: τ lifetime, LFV τ : $\tau \rightarrow l + \alpha$ etc

F. Abudinen et al. (Belle II), (2020), arXiv:2008.04665 [hep-ex].

Invisibly decaying Z' What?

- Hypothetical gauge boson Z' coupling to 2nd, 3rd generation leptons $(L_{\mu} - L_{\tau})$
- May explain dark matter, $(g 2)_{\mu}$ anomaly, $b \rightarrow s\mu^{+}\mu^{-}$ anomaly

How?

- Belle II looks into $e^+e^- \rightarrow \mu^+\mu^- Z'$; $Z' \rightarrow$ invisible
- Final state: Two muons + missing energy
- Bump hunt in recoil mass of $\mu^+\mu^-$
- Backgrounds: $e^+e^- \rightarrow \tau^+\tau^-(\gamma)$; $\tau^\pm \rightarrow \mu^\pm \nu \nu$, $e^+e^- \rightarrow \mu^+\mu^-(\gamma), e^+e^- \rightarrow e^+e^-\mu^+\mu^-$

Invisibly decaying Z'

8

- No significant excess was found
- Update this year where we will reach the $(g-2)_{\mu}$ band

I. Adachi, and et al., Physical Review Letters 124 (2020), 10.1103/physrevlett.124.141801.

Axion-Like Particle (ALP)

What?

- Pseudoscalars coupling mainly to bosons
- No mass coupling constraint unlike QCD Axion
- May be a mediator connecting SM to dark matter candidates

How?

- Belle II looks into $e^+e^- \rightarrow \gamma a$; $a \rightarrow \gamma \gamma$
- Final state: Three isolated photons with the total mass consistent with the center of mass energy
- Background: $e^+e^- \rightarrow \gamma\gamma\gamma$ (high σ)

Journal of High Energy Physics 2017 (2017), 10.1007/jhep12(2017)094.

Axion-Like Particle (ALP) Results

- Mass range of $0.2 < m_a < 9.7 \ GeV/c^2$
- Using $455 \ pb^{-1}$ of data, no significant excess was found
- This is only a small amount of the final target data set

(2020), 10.1103/physrevlett.125.161806.

Invisibly Decaying Dark Photon What?

Dark sector mediator which couples to SM photon

How?

- Belle II looks for $e^+e^- \rightarrow \gamma_{ISR} A'; A' \rightarrow \chi\chi$
- Final state: single γ + missing energy
- $m_{A'}^2 = 4E_{heam}^* (E_{heam}^* E_{\gamma_{ISR}}^*)$; Easy to find A' mass
- Newly designed trigger allows sensitivity down to 0.5 GeV single photon

Nucl. Part. Sci. 2021. 71:37

Invisibly Decaying Dark Photon Predicted Background γ 's Energy against Location Method (Background Studies)

• When the dark photon is light, single photon has $E^* \sim 5$ GeV, dominant background: $e^+e^- \rightarrow \gamma\gamma$, missing 1 γ

 $e^+e^- \rightarrow \gamma\gamma\gamma$ background where $2 \gamma s$ are not reconstructed

> $e^+e^- \rightarrow e^+e^-\gamma$ background where e^+e^- are outside the tracking chamber acceptance

 $ee \rightarrow ee(\gamma)$ [TEEGG soft + TEEGG hard + BHWIDE] + $ee \rightarrow \gamma\gamma(\gamma)$ mc13a

Invisibly Decaying Dark Photon Method (Background Studies) 10-

E* of Probe Photon of $e^+e^- \rightarrow \gamma\gamma$ **Sample**

Conclusion

- Many ongoing physics analyses for tau and dark sectors at Belle II
- We are competitive in light dark sector searches
- Increased luminosity and upgraded detector will allow further improvements in searches and new results

Lake Louise Winter Institute 2022, Miho Wakai

Backup Slides

SuperKEKB

- SuperKEKB is an asymmetric particle accelerator with a circumference of 3 km located in Japan.
- Operates at resonance energy of $\Upsilon(4S)$ at 10.58 GeV.
- New world record for instantaneous luminosity of $2.4 \times 10^{34} cm^{-2} s^{-1}$ was achieved in June 2020.

Belle II

• The Bellell experiment aims to make precise measurements of CP violation in the weak sector, as well as find New Physics Beyond the Standard Model of Particle Physics.

Trigger: Hardware: < 30 kHz Software: < 10 kHz

• Current aim is to collect $50ab^{-1}$.

 International collaboration with nearly 1000 physicist and engineers from 115 institutions in 26 countries.

Dark Sector Theory

Feng J.L. et al., Planning the future of U.S. Particle Physics (Snowmass 2013): Chapter 4: Cosmic Frontier, 2014, Community Summer Study 2013: Snowmass on the Mississippi (CSS2013) Minneapolis, MN, USA, July 29-August 6, 2013, [arXiv:hepex/1401.6085]

Invisibly decaying Z'

Method

- Selection criteria:
 - Only two tracks per event from IP
 - p_T of muons > 1 GeV
 - Recoil momentum points to calorimeter with no photons within a 15° cone around it
 - Extra energy in calorimeter < 0.4 GeV

Axion-Like Particle (ALP)

F. Abudinen and et al., Physical Review Letters 125 (2020), 10.1103/physrevlett.125.161806.

Invisibly Decaying Dark Photon

Based on M. Graham, C. Hearty, M. Williams, Annu. Rev. Nucl. Part. Sci. 2021. 71:37

Dark Photon Theory

- Dark photon has a small coupling to the EM current from kinetic mixing between the SM hyper charge and A' field strength tensors
- Mixing induced coupling is suppressed by ϵ , providing a portal which dark photons interact with SM particles
- 3 unknown parameters: strength of kinetic mixing, dark photon mass, and decay branching fraction of the dark photon into invisible dark sector final states

ISR

Invisibly Decaying Dark Photon Searches in Other Experiments • Direct competitor: BaBar Phys. Rev. Lett.119 (2017) 13, 131804 Complementary search: NA64 https://arxiv.org/abs/1906.00176

Invisibly Decaying Dark Photon

Invisibly Decaying Dark Photon

Studying Efficiency of Sub-detectors with $e^+e^- \rightarrow \gamma\gamma$ background

- Most of background come from gaps in the detectors, with a "high leakage γ " (roughly 4% of all γs)
- Study efficiency of detectors as a function of leakage energy; $E_{leak} = E_{beam} - E_{calorimeter}$ using $e^+e^- \rightarrow \gamma\gamma$ control sample

Photons in ECL with Leakage Energy > 2.8 GeV per crystal 140 -6000 140 120 -120 · - 5000 100 100 -Phi ID 4000 Phi ID 80 -80 3000 60 60 2000 40 -40 -1000 20 -20 20 50 20 30 40 Theta ID (barrel) **Belle II Simulation Preliminary**

Invisibly Decaying Dark Photon Monte Carlo (MC) and Data discrepancy with $e^+e^- \rightarrow \gamma\gamma$ background

- Next stage is to understand the background uncertainty on data (pre-blind process)
- Currently we see many more high leakage photons in data than in MC
- Gaps between crystals may be larger in data than MC
- Currently trying to quantify background in data by scaling MC

Lake Louise Winter Institute 2022, Miho Wakai

60