Dark sector searches at Belle II: recent results and future prospects

Light Dark World International Forum 2021 - December $13^{th} - 15^{th}$ Online Conference

© Light Pollution Atlas 2020

Luigi Corona - INFN and University of Pisa Luigi.corona@pi.infn.it on behalf of the *Belle II* collaboration

Outline

 Introduction to SuperKEKB and the Belle II experiment

• Overview on dark sector analysis @ Belle II

B-factories

- Asymmetric e⁺e⁻ colliders optimized for the production of B meson pairs, but also D mesons, τ leptons, ...
- Collisions occur at Y(nS) resonances
 - → Mainly at Y(4S): $\sqrt{s} = 10.58 \text{ GeV}$ just above the production threshold of $B\overline{B}$ $BR(Y(4S) \rightarrow B\overline{B}) > 96\%$
- Beam asymmetric energies: boosted BB pairs, for CP-violation time-dependent measurements
- High peak luminosity $L > 10^{34}$ cm⁻²s⁻¹

The SuperKEKB collider

- SuperKEKB: new generation of *B*-factory that provides luminosity to the *Belle II* experiment
 - → Asymmetric beam energies: $e(7 \text{ GeV})/e^{+}(4 \text{ GeV})$ Operating mainly at Y(4S), but foreseen runs from Y(2S) to Y(6S)
 - Highest world peak luminosity with the nano-beam scheme

KEKB

- I(A) ~ 1.6/1.2

- β^{*}_{*}(mm) ~ 5.9/5,9

SuperKEKB: a new intensity frontier machine

- Set a new luminosity world record on June 22nd, 2021:
 3.12 x 10³⁴ cm⁻²s⁻¹
- SuperKEKB peak performance:
 - I(e⁻/e⁺) = 830/690 mA (target: ~ 2.9/2.0 A)
 - $\Rightarrow \beta_v^* = 1 \text{ mm} (\text{target: } \sim 0.3 \text{ mm})$
- Target peak luminosity: 6.5 · 10³⁵ cm⁻²s⁻¹

Belle II detector @ SuperKEKB

- Major upgrade of Belle@KEKB
- Covers more than 90% of the total solid angle

Belle II operations

- First collisions during commissioning run on April 26th 2018
 - → 0.5 fb⁻¹ collected in 2018
- First collisions with full detector on March 2019
 - > > 240/fb collected in almost 3 years of data taking
- Target integrated luminosity of the Belle II experiment:
 50/ab (x30 Belle + BaBar)

Belle II physics program

- Thanks to the high luminosity and the detector performance, Belle II will be competitive in many physics researches
 - ➔ Flavor physics
 - Standard Model tests
 - Search for rare or suppressed processes in Standard Model
 - Dark Sector physics

Belle II physics program

General introduction to dark sector @ Belle II

LDW2021. Dark sector searches at Belle II: recent results and future prospects. Luigi Corona

Dark sector

need light mediators too

- vector portal (dark photon, Z',...)

- neutrino portal (heavy neutrinos)

- scalar portal (dark Higgs,...)

Main motivation: the absence of dark matter discoveries at the electroweak scale by the LHC or direct detection experiments motivates the interest for models with low-mass dark matter candidates

- some astrophysics anomalies: positron excess, ..., (PAMELA, Fermi, ...)
- some anomalies in *B* meson decays: R_{μ} , $R_{\mu*}$,... (Belle, LHCb, ...)
- the $(g 2)_{\mu}$ anomaly, recently confirmed at Fermilab [3]

[1] Batell et al., Phys. ReV. D 80, 095024 (2009) [2] Essig et al., arXiv:1311.0029 (2013) [3] Abi et al., Phys. Rev. Lett. 126, 141801 (2021)

Dark sector searches @ B-factories

- Negligible interaction probability of dark matter with the detector
 - Search for mediators (visibles or invisibles)
 - Search for final states with missing mass
 - Search for both
- Advantages of B-factories
 - High luminosity
 - Well known initial state
 - Clean environment with low background
 - Hermetic detector with good PID performance

The relationship between mass of the mediators and DM candidates leads to different topologies.

• Excellent capabilities for low multiplicities and missing energy signatures at *B*-factories

Dark sector searches @ Belle II

Belle II dark sector trigger

- 2-level trigger:
 - ➔ Hardware-based Level1 Trigger (L1): < 30 kHz</p>
 - ➔ Software-based High Level Trigger (HLT): < 10 kHz</p>
- New "dark sector" triggers make the dataset collected up to now world-unique
 - Single photon trigger operational for entire dataset
 - not present in Belle
 - 53/fb in BaBar recorded with single photon trigger
 - Single muon trigger using KLM recently introduced, efficiency ~ 90%
 - 3D track reconstruction at L1 level using neural networks

*Actually, newly designed trigger allows sensitivity down to 0.5 GeV of single photon

Overview on dark sector searches @ Belle II

Search for a Z' boson

• Vector boson Z' with a coupling g' only to the 2nd and 3rd generations of leptons, introduced by the L_{μ} - L_{τ} model [1,2,3]:

$$\Rightarrow \mathcal{L} = \sum_{\ell} \theta g' \bar{\ell} \gamma^{\mu} Z'_{\mu} \ell \qquad \begin{array}{c} \theta = +1 \text{ se } I = \mu \\ \theta = -1 \text{ se } I = \tau \end{array}$$

- Possible final states:
 - Invisible decays:
 - $Z' \rightarrow v\overline{v}$ (μ or τ neutrinos) - primarily $Z' \rightarrow \chi \overline{\chi}$ (light dark matter) if kinematically accessible
 - ➔ Visible decays:
 - $-Z' \rightarrow \mu \mu$
 - $-Z' \to \tau \tau$

[1] Shuve et al., <u>Phys. Rev. D 89 , 113004 (2014)</u>
[2] Altmannshofer et al., <u>JHEP 106 (2016)</u>
[3] D. Curtin et al., <u>JHEP 02 (2015) 157</u>

$Z' \rightarrow$ Invisible

- Searching for an invisible Z' for the first time, with 0.276/fb collected by *Belle II* in 2018
 - → If dark matter particles kinematically accessible exist, than $BR(Z' \rightarrow invisible) = 1$
 - → $BR(Z' \rightarrow \text{invisible}) = 1$ for $M_{Z'} < 2m_{\mu}$ whatever the dark matter is
- Hermetic Belle II detector and clean e⁺e⁻ collisions allow precision determination of missing energy
- Two cases:
 - → $e^+e^- \rightarrow \mu^+\mu^-$ + Missing Energy

$$M_{recoil}^2 = s + M_{\mu\mu}^2 - 2\sqrt{s}(E_{\mu^+}^{CMS} + E_{\mu^-}^{CMS})$$

- → $e^+e^- \rightarrow \mu^\pm e^\mp$ + Missing Energy (Lepton-Flavor Violation)
- Search for a narrow peak in the recoil mass distribution against $\mu^{+}\mu^{-}$ (LFV: $\mu^{\pm}e^{\mp}$)

Z' → Invisible ($\mu^+\mu^-$)

- $e^+e^- \rightarrow \mu^+\mu^- + Missing Energy$
- Main background components:
 - $e^+e^- \rightarrow \tau^+\tau(\gamma)$: missing energy due to neutrinos
 - $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$: missing energy due to undetected photons
 - $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$: missing energy due to undetected electrons

Z' → Invisible ($\mu^+\mu^-$)

- $e^+e^- \rightarrow \mu^+\mu^- + Missing Energy$
- Main background components:
 - $e^+e^- \rightarrow \tau^+\tau(\gamma)$: missing energy due to neutrinos
 - $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$: missing energy due to undetected photons
 - $-e^+e^- \rightarrow e^+e^-\mu^+\mu^-$: missing energy due to undetected electrons
- Dedicated background suppression based on the different origin of missing momentum in background (neutrinos for $\tau\tau$ and ISR for $\mu\mu(\gamma)$) and signal (FSR)
 - ➔ Exploits lepton kinematics

Z' → Invisible ($\mu^+\mu^-$)

- $e^+e^- \rightarrow \mu^+\mu^- + Missing Energy$
- Main background components:
 - $e^+e^- \rightarrow \tau^+\tau(\gamma)$: missing energy due to neutrinos
 - $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$: missing energy due to undetected photons
 - $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$: missing energy due to undetected electrons
- Dedicated background suppression based on the different origin of missing momentum in background (neutrinos for $\tau\tau$ and ISR for $\mu\mu(\gamma)$) and signal (FSR)
 - ➔ Exploits lepton kinematics
- No significant excess observed in data

$Z' \rightarrow$ Invisible. 90% CL UL on g'

$Z' \rightarrow$ Invisible (*LFV*)

- No excess observed in data
- First model independent limits on $\epsilon \cdot \sigma(e^+e^- \rightarrow e^\pm\mu^\mp + \text{invisible})$ down to 10 fb
- First Belle II physics publication: <u>Phys. Rev. Lett. 124 (2020) 141801</u>

$Z' \rightarrow$ Invisibile, future prospects

- Short-term program
 - Much more integrated luminosity (already available)
 - Analysis improvements (MVA based background suppression)
 - New trigger lines
- Preliminary sensitivity
 - → Starting to investigate the model parameters that can explain the (g 2)_µ
- Analysis will be finalized by Moriond 2022 (Spring 2022)

 10^{-3}

 10^{-4}

$$\int L dt = 9 \text{ fb}^{-1}$$
 --- $\int L dt = 50 \text{ fb}^{-1}$
..... $\int L dt = 50 \text{ fb}^{-1}$ (more inclusive trigger)
Belle II PRL124, 141801, $\int L dt = 0.276 \text{ fb}^{-1}$

 $M_{7'}$ [GeV/c²]

Highlights on $Z' \rightarrow \mu \mu$ @ Belle II

- $e^+e^- \rightarrow \mu^+\mu^- Z', Z' \rightarrow \mu^+\mu^-$
- Existing results by **<u>BaBar</u>** with 514/fb and <u>**Belle**</u> with 643/fb
- Competitive with early dataset (100/fb) due to aggressive background suppression
 - MLP (Multi-Layer Perceptron (NN)) based background suppression
- Main background: QED μμμμ processes
 ISR
 - Double-photon conversion
- Analysis will be finalized by Summer 2022

Highlights on $Z' \rightarrow \mu \mu$ @ Belle II

- $e^+e^- \rightarrow \mu^+\mu^- Z', Z' \rightarrow \mu^+\mu^-$
- Existing results by **<u>BaBar</u>** with 514/fb and <u>**Belle**</u> with 643/fb
- Competitive with early dataset (100/fb) due to aggressive background suppression
 - MLP (Multi-Layer Perceptron (NN)) based background suppression
- Main background: QED μμμμ processes
 ISR
 - Double-photon conversion
- Analysis will be finalized by Summer 2022
- Preliminary sensitivity at 90% CL w/o systematics included, using fit scan strategy on dimuon invariant mass

Highlights on $Z' \rightarrow \tau \tau$ @ Belle II

• $e^+e^- \rightarrow \mu^+\mu^- Z', Z' \rightarrow \tau^+\tau^-$: First time search!

- Benchmark model: possibility to reinterpret the results found for the Z' boson of the L_{μ} L_{τ} in other models, and in particular those with $\tau\tau$ resonance in a $\mu\mu\tau\tau$ final state
- The analysis is challenging:
 - The presence of neutrinos in the final state makes it impossible to exploit the Y(4S) kinematic costraint
- Main background components expected: $q\overline{q}$, $\tau\tau$, $\mu\mu$, $ee\mu\mu$
- Background suppression:
 - MLP (Multi-Layer Perceptron (NN)) based
- Profit of *B*-factory clean environment
- Analysis will be finalized by Summer 2022

Highlights on $Z' \rightarrow \tau \tau$ @ Belle II

- $e^+e^- \rightarrow \mu^+\mu^- Z', Z' \rightarrow \tau^+\tau^-$: First time search!
- Benchmark model: possibility to reinterpret the results found for the Z' boson of the L_{μ} L_{τ} in other models, and in particular those with $\tau\tau$ resonance in a $\mu\mu\tau\tau$ final state Belle II simulation: Preliminary
- The analysis is challenging:
 - The presence of neutrinos in the final state makes it impossible to exploit the Y(4S) kinematic costraint
- Main background components expected: $q\overline{q}$, $\tau\tau$, $\mu\mu$, $ee\mu\mu$
- Background suppression:
 - MLP (Multi-Layer Perceptron (NN)) based
- Profit of B-factory clean environment
- Analysis will be finalized by Summer 2022
- Preliminary 90% CL sensitivity w/o systematics on MC, using cut and count strategy (final strategy: fit scan on recoil mass against $\mu\mu$)

Axion-like particle (ALP)

- GeV-scale ALPs: pseudo-scalar portal mediator between dark sector and Standard Model
- If ALP-photon coupling $(g_{a\gamma\gamma})$ dominates, than $BR(a \rightarrow \gamma\gamma) \sim 100\%$
- Different topologies depending on model parameters (m_a , $g_{a\gamma\gamma}$): focus on mass region where ALP decay is prompt and photons can be well resolved by *Belle II*

Search for an ALP

- Select events with three photon invariant mass compatible with collision \sqrt{s}
- Search for a narrow peak in $M^2_{\gamma\gamma}$ or M^2_{recoil} , depending on best resolution of signal peak
- Largest background from $e^+e^- \rightarrow \gamma \gamma(\gamma)$

2.5

2.0

σ_{CB} [GeV²/c⁴]

0.5

0.04

[GeV²/c⁴

80.0 D

0.00

 $m_a [\text{GeV}/c^2]$

Diphoton

Recoil

Search for an ALP: results

- Search ranges from $0.2 < m_a < 9.7 \text{ GeV}/c^2$, with the 0.445/fb collected in 2018 with Belle II
 - ➔ 500 fits with steps of half mass resolution
- No excess in data observed
 - Highest local significance 2.8σ, observed at m_a = 0.477 GeV/c²

Exclusion on g_{ayy}

- 95% CL upper limits on the coupling constant $g_{a\gamma\gamma}$ - $g_{a\gamma\gamma}$ below 10⁻³
- Limits improve over recast from $e^+e^- \rightarrow \gamma \gamma$ analysis by LEP-II
- First result for ALP at *B*-factories and second physics publication of *Belle II* <u>Phys. Rev. Lett. 125, 161806 (2020)</u>

LDW2021. Dark sector searches at Belle II: recent results and future prospects. Luigi Corona

Search for a dark photon A'

New massive vector gauge boson, A', with a coupling to the Standard Model photon through the kinetic mixing mechanism, with strenght ε [1,2]

Dark photon field

$$\Rightarrow \ \mathcal{L}_{int} = e\varepsilon A'_{\mu}J^{\mu}_{em}$$

Interation stenght

Electromagnetic current

[1] P. Fayet, <u>Phys. Lett. B 95, 285 (1980)</u>
[2] P. Fayet, <u>Nucl. Phys. B 187, 184 (1981)</u>

• This gauge boson can be produced at e^+e^- colliders through different processes:

- direct production: $e^+e^- \rightarrow \gamma_{ISR}A'$

- meson decays: $\pi^{o} \rightarrow A' \gamma$
- dark higgsstrahlung: $e+e- \rightarrow A'^* \rightarrow A'h'$
- Direct production with ISR particularly interesting: $e^+e^- \rightarrow \gamma_{ISR}A'$
- Two basic scenarios depending on dark photon mass:
 - → $M_{A'}$ > $2m_{\chi}$: invisible decay $A' \rightarrow \chi \overline{\chi}$
 - $\rightarrow M_{A'} < 2m_{y}$: visible decay in Standard Model particles

 $e^+e^- \rightarrow \gamma_{LSR} A' (A' \rightarrow \chi \overline{\chi})$

$A' \rightarrow invisible$

- Single photon in the final state needs a single photon trigger, present in the full Belle II dataset
- For signal events: peak in the energy of the photon depending on the $M_{A'}$

$$\rightarrow E_{\gamma} = \frac{s - M_{A'}^2}{2\sqrt{s}}$$

- Main background components:
 - $-e^+e^- \rightarrow e^+e^-(\gamma)$: electrons out of acceptance
 - e⁺e⁻ → γγ(γ): photons lost in e.m. calorimeter (ECL) inefficient regions (gaps)
 - cosmic rays

$A' \rightarrow invisible, background$

Expected to perform better than BaBar [2]: 10⁻² smaller boost and bigger calorimeter: larger acceptance ω

90% CL Exclusion on ε

 $e^*e^- \rightarrow \gamma_{\mu\nu}A'$ ($A' \rightarrow inv$.): very promising @ Belle II, even with low statistics [1]

- KLM veto:
- reject events with a photon undetected in the calorimeter
- no ECL cracks in pointing to the interaction region: **better calorimeter hermeticity**

• Analysis timescale ~ end of 2022

Search for a dark Higgs

- Dark photon mass produced by the Higgs mechanism involving a dark Higgs boson [1]
- Both A' and h' can be produced at e⁺e⁻ colliders through the dark higgsstrahlung process
- Different signatures depending on *h*' mass
 - → $M_{h'} > M_{A'}$: prompt decay $h' \to A'A'$, up to 6 tracks in the final state. Investigated by <u>BaBar(2012)</u> and <u>Belle(2015)</u>
 - → M_{h'} < M_A: h' is long-lived, thus invisible. Investigated by <u>KLOE(2015)</u>
- Belle II focuses on the invisible h'

LDW2021. Dark sector searches at Belle II: recent results and future prospects. Luigi Corona

[1] Batell et al., Phys. Rev. D 79, 115008 (2009)

Dark higgstrahlung @ Belle II

- $e^+e^- \rightarrow A'h', A' \rightarrow \mu\mu, h' \rightarrow invisible$
 - Signature: 2D peak in recoil vs dimuon mass
- Analysis strategy:
 - scan+count in elliptical mass windows (9k overlapping ellipses)
- Background from QED:
 - $-e^+e^- \rightarrow \mu^+\mu^-(\gamma)$
 - $-e^+e^- \rightarrow \tau^+\tau^-(\gamma)$
 - $-e^+e^- \rightarrow e^+e^-\mu^+\mu^-$

e

Dark higgstrahlung @ Belle II

- $e^+e^- \rightarrow A'h', A' \rightarrow \mu\mu, h' \rightarrow invisible$
 - Signature: 2D peak in recoil vs dimuon mass
- Analysis strategy:
 - scan+count in elliptical mass windows (9k overlapping ellipses)
- Background from QED:
 - $e^+ e^- \rightarrow \mu^+ \mu^-(\gamma)$
 - $-e^+e^- \rightarrow \tau^+\tau^-(\gamma)$
 - $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$
- Background suppression based on helicity angle (muon energy asymmetry)

Dark higgstrahlung @ Belle II

- Very promising expectations even with the 2019-only dataset (less than 9/fb)
 - Complementary to BaBar and Belle
 - Probing the region left unexplored by KLOE
 - → Probing non-trivial ε²α_D couplings (below 5 · 10⁻⁷)
- Analysis is going to be published soon!

Highlights on $B \rightarrow Kh'$

- Long-lived h' produced in $b \rightarrow s$ transition
- h' mixes with the Standard Model Higgs boson with angle θ
- Search for a bump in the invariant mass of tracks coming from a displaced vertex
- LHCb and Belle II complementary

 Exclusion regions expected with 50/ab at Belle II in green

Analysis timescale ~ end of 2022

Inelastic Dark Matter (iDM) @ Belle II

- Expanded dark sector with two dark matter states with a small mass splitting and a dark photon
 - → χ_1 is stable (relic candidate)
 - → χ_2 is long-lived
- Focus on $M_{A'} > m_{\chi^{1}} + m_{\chi^{2}}$: the decay $A' \rightarrow \chi_{1}\chi_{2}$ is favored

iDM @ Belle II

- Expanded dark sector with two dark matter states with a small mass splitting and a dark photon
 - → χ_1 is stable (relic candidate)
 - → χ_2 is long-lived

Non-pointing

Search for iDM

- Search for a peak in the center-of-mass frame energy of the ISR photon plus a displaced vertex V^0
- Background:
 - photon conversion, $e^+e^- \rightarrow \gamma\gamma(\gamma)$, $\gamma \rightarrow e^+e^-$ - meson decays, $e^+e^- \rightarrow K_s^{\ 0}K_i^{\ 0}(\gamma)$, $K_s^{\ 0}$ decays
- Background suppression:

iDM prospects

- Estimate signal yield by counting events in ISR photon energy window (final analysis will use a template fit)
- With early Belle II dataset expect to probe dark sector-Standard Model couplings down to 10⁻³ – 10⁻⁴
- New displaced vertex trigger under consideration
- Analysis timescale ~ end of 2022

Conclusions

- The Belle II experiment is exploring Dark Sectors at the luminosity frontier
 - Will lead in the MeV-GeV mass range in the coming years
- > 240/fb collected up to now
- World-leading results with early data:
 - → Z' → invisible: Phys. Rev. Lett. 124 (2020) 141801
 - → *a* → *γγ*: <u>Phys. Rev. Lett. 125, 161806 (2020)</u>
- Many new searches ongoing: dark Higgs, dark photon, visible Z', Long-lived dark particles ...

Control room during first phase3 collisions on March 2019

Thank you for the attention!

Luigi Corona - INFN and University of Pisa Display luigi.corona@pi.infn.it on behalf of the *Belle II* collaboration

Backup Slides

Taking data during the pandemic

- Non-stop operations with COVID-19 pandemic
 - Social distancing requirements
 - Strong developments for close to or fully remote sub-system operations
 - → Huge commitments from japanese colleagues and residents in Japan

Data-taking efficiency: 89.5%

Luminosity

Geometrical reduction parameter (~0.8 - 1)

Ratio between the y and x dimension of the beam (0.01 - 0.02)

Vertical beta function at IP

UL on visible A' searches

Weak direct detection bounds

 Large detectors search for DM scattering against nuclei/electrons

