Precision measurements of the D⁰ and D⁺ meson lifetimes with the Belle II detector

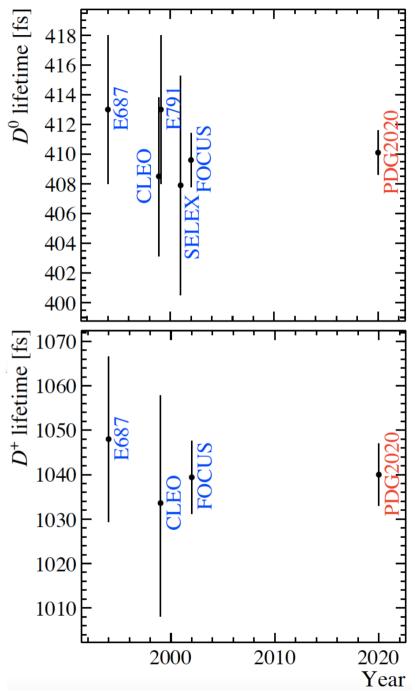
Soeren Prell (Iowa State University)

CKM 2021

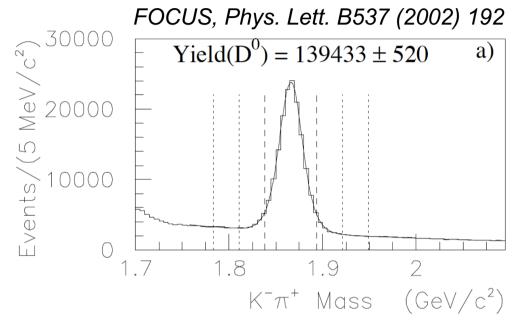
Melbourne (virtual) November 22-26, 2021

On behalf of the Belle II Collaboration

11th International Workshop on the CKM Unitarity Triangle


November 22 - November 26, The University of Melbourne
Website/Registration https://indico.cern.ch/event/891123/

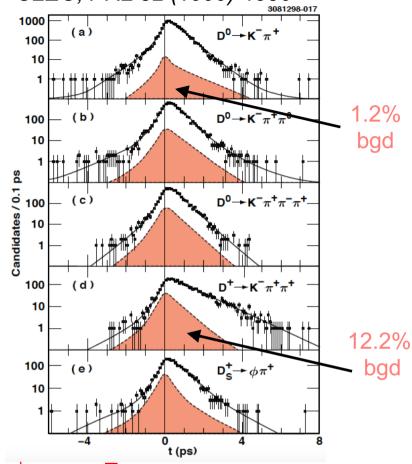
Outline


- Introduction
- The Belle II experiment and SuperKEKB
- Measurement of the D^0 and D^+ meson lifetimes
- Summary and conclusions

Brief overview of charm lifetimes ...

- World averages of D⁰ and D⁺ lifetimes are dominated by sub-1% precision measurements from photoproduction experiment FOCUS in 2001
 - Very different syst. uncertainties at e⁺e⁻
 collider (backgrounds, topology, etc.)
 - Only precision e⁺e⁻ measurement from CLEO in 1999; no measurements at LEP, BABAR, or Belle
- Other charm hadron lifetimes $(D_s^+, \Lambda_c^+, \Xi_c^0, \Xi_c^+, \Omega_c^0)$ are dominated by LHCb measurements ... but
 - Measurements relative to D⁺ lifetime
- D lifetimes could in principle be used to determine charm quark lifetime, but strong-interaction effects dominate $(\tau(D^+) \sim 2.5 \times \tau(D^0))$
 - Testing ground for non-perturbative QCD calculations

Best D lifetime measurements for last 20 years



• Photoproduction

-
$$D^0 \to K^-\pi^+ (139k)$$
, $K^-\pi^+\pi^-\pi^+ (68k)$, $D^+ \to K^-\pi^+\pi^+ (110k)$

- Dominant syst. uncertainties
 - Target absorption correction
 - Acceptance correction

CLEO, PRL 82 (1999) 4586

$$e^+e^- \rightarrow c\overline{c}$$

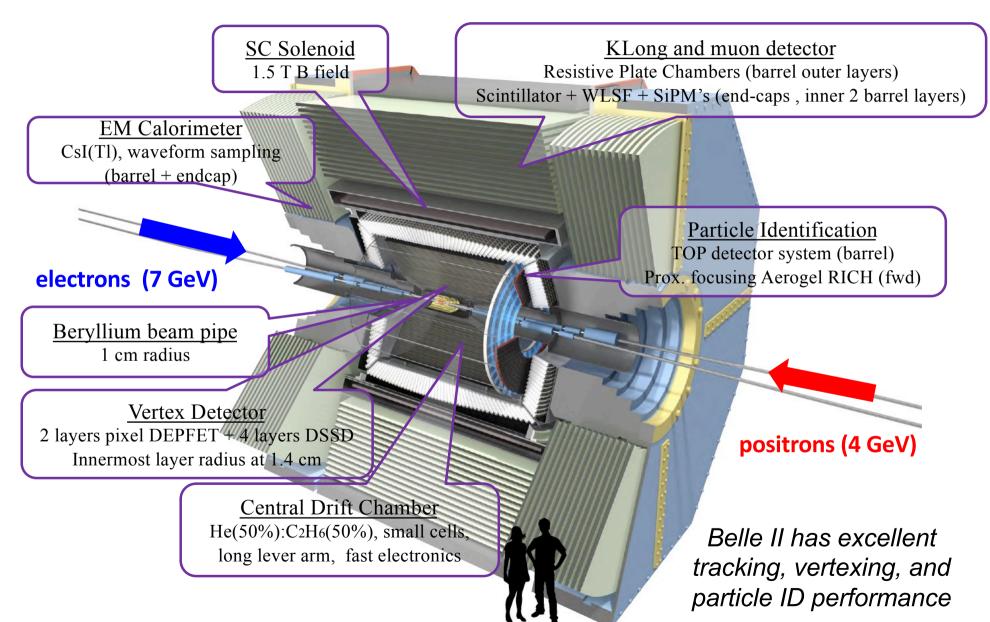
-
$$D^0 \to K^-\pi^+$$
 (11k), $K^-\pi^+\pi^-\pi^+$ (6k), $K^-\pi^+\pi^0$ (9k), $D^+ \to K^-\pi^+\pi^+$ (4k)

- Dominant syst. uncertainties
 - Alignment and vertexing
 - Backgrounds
 - MC statistics

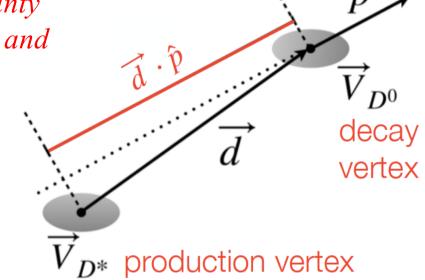
Belle II and SuperKEKB

- Belle II is a multipurpose detector at the SuperKEKB e⁺e⁻ collider, located at KEK in Tsukuba, Japan
- Latest in a series of experiments operating near the Y(4S) resonance

- ARGUS	$0.2fb^{-1}$
- CLEO	$9 fb^{-1}$
- BABAR	$500fb^{-1}$
- BELLE	$1,000{ m fb^{-1}}$
- BELLE II	$50,000 fb^{-1} (expected)$
	$230fb^{-1}$ (recorded)

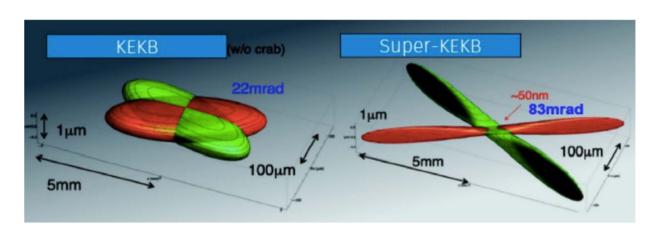

- Large $e^+e^- \rightarrow c\bar{c}$ cross-section (~40% of $e^+e^- \rightarrow q\bar{q}$ continuum cross-section) provide low-background event samples
 - -1,300,000 c \bar{c} events per 1 fb⁻¹
 - All cc̄ bar events are recorded (~100% trigger efficiency)

- Need excellent detector performance and control of syst. uncertainties to exploit potential of full Belle II data sample
 - Precision D lifetime measurements
 will demonstrate vertexing
 performance and provide detailed
 understanding of syst. effects
 necessary for other time-dependent
 measurements (lifetimes/CP
 violation/mixing)


Belle II Detector

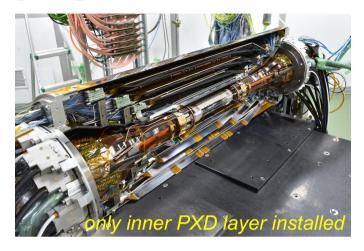
The D lifetime measurement in a nut shell

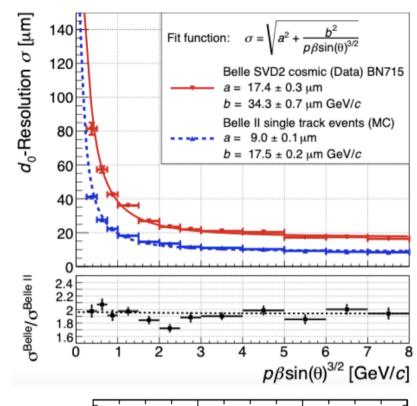
- Select high-purity, prompt D samples
 - reconstruct D^{*+} -tagged $D^0 \rightarrow K^-\pi^+$ and $D^+ \rightarrow K^-\pi^+\pi^+$
 - $-D^{*+}$ momentum requirement rejects candidates from B decays
 - PID suppresses fake kaon background
- Calculate D proper time t and uncertainty from D production and decay vertices, and D momentum p

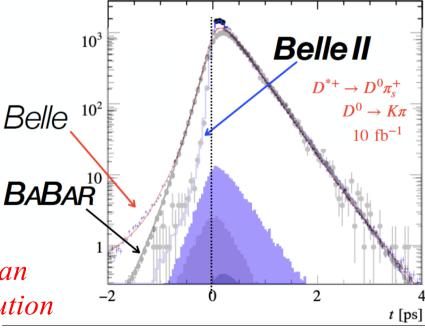

$$t = \frac{m_D}{p} \left(\overrightarrow{d} \cdot \hat{p} \right)$$

- Production vertex constrained to e⁺e⁻ "nano" beam spot
- Average decay distance is $200(500) \mu m$ for $D^0(D^+)$
- Extract D lifetime from fit to t and σ_t distributions
 - Signal and bgd pdf parameters are determined from data (no input from MC used)

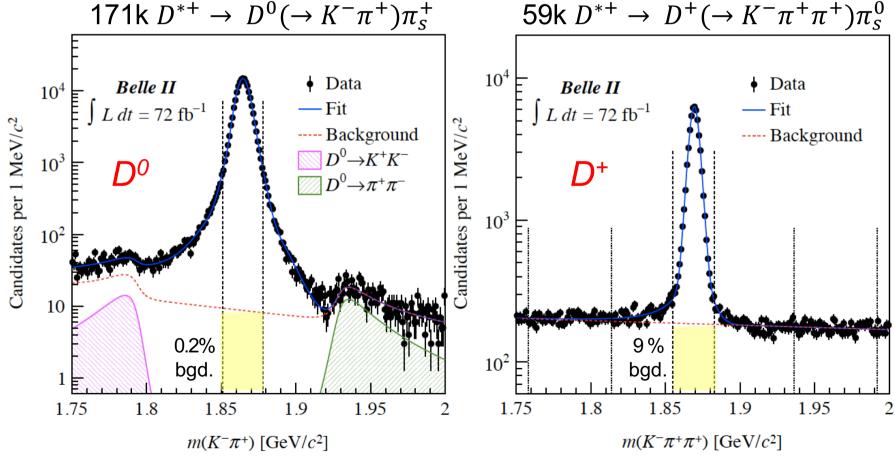
SuperKEKB's "nano beams"

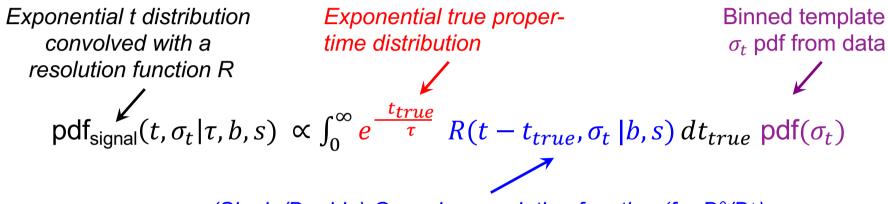

- SuperKEKB requires much smaller interaction region than KEKB in order to reach design luminosity of $6 \times 10^{35} \text{cm}^{-2} \text{s}^{-1}$
 - Nano-beam concept (P. Raimondi) realized with super-conducting final focus quadrupoles already achieved world luminosity record at $3.12 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$


Luminous region dimensions at Belle II are 10/0.2/250 µm (x/y/z) compared to 100/1/6,000 µm at Belle


- Belle II's small luminous region dimensions (in transverse plane)
 - Provide effective constraint on the D production vertex
 - Dominant uncertainty in the decay length from D decay vertex
- Beam spot position and size calibrated every $\sim 1-2$ h from di- μ events
- Ultimately, beam spot y size is expected to be decreased to \sim 60 nm

A high-precision SVD


- 2-component SVD
 - 2-layer pixel detector (PXD)
 - 4-layer double-sided strip detector
- PXD
 - Innermost layer is only 1.4 cm from the IP (×2 closer than in Belle)
 - very low material thickness $(0.1\% X_0/layer for \perp tracks)$
 - excellent hit position resolution
- ×2 better impact parameter resolution than Belle/BABAR shows in decay-time distribution


D signal samples

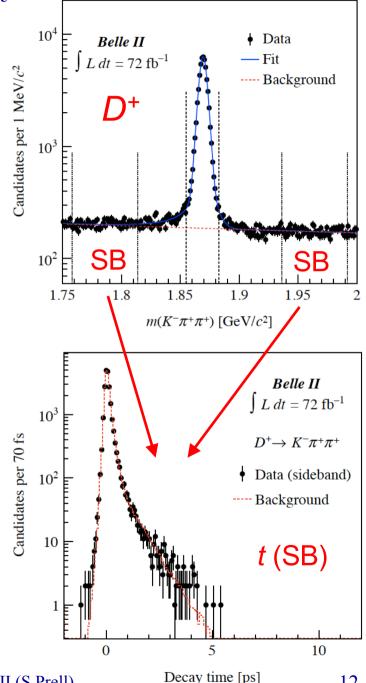
- Large, clean samples limit background-related systematic uncertainties
 - Use only low track multiplicity, large BF decay modes
 - Removing D from B decays (originating from a secondary vertex) with $p(D^{*+}) > 2.5(2.6)$ GeV requirement avoids bias in $D^0(D^+)$ production vertex position

Lifetime fit signal PDF

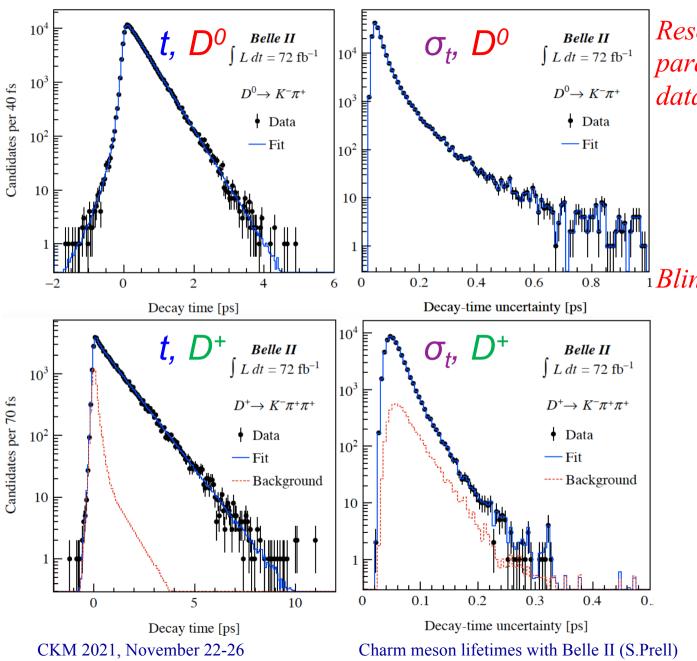
• Lifetime determined with unbinned ML fit to distributions of proper time t and its uncertainty σ_t

(Single/Double) Gaussian resolution function (for D^0/D^+) with mean b (bias) and width $s \sigma_t$ (scaled uncertainty)

- Functional form validated with MC-simulated events
 - Bias b largely decorrelates pdf from potential detector misalignment
- This is the complete pdf for D^0 fit, the effect of 0.2% background fraction is accounted for as a systematic uncertainty
- In the D^+ fit, background is described by an additional term in the pdf


Background PDF (only for D+ fit)

Total pdf is sum of signal and bgd terms


$$\begin{aligned} \mathsf{pdf} &= (1 - f_{\mathsf{bgd}}) \; \mathsf{pdf}_{\mathsf{signal}}(t, \sigma_t | \tau, b, s) \\ &+ f_{\mathsf{bgd}} \; \mathsf{pdf}_{\mathsf{bgd}}(t, \sigma_t | \tau_{b1}, \tau_{b2}, b_{\mathsf{bgd}}, s) \end{aligned}$$

$$\mathsf{pdf}_{\mathsf{bgd}}(t, \sigma_t | \tau_{b1}, \tau_{b2}, b_{\mathsf{bgd}}, s) = \\ \mathsf{pdf}_{\mathsf{bgd}, \mathsf{t}}(t, \sigma_t | \tau_{b1}, \tau_{b2}, b_{\mathsf{bgd}}, s) \; \mathsf{pdf}_{\mathsf{bgd}, \sigma}(\sigma_t)$$

- Background pdf (t and σ_t) determined $from D^+ mass sidebands$
 - Assume SB events are a good representation of bgd in signal region
 - Empirical bgd model with lifetime and prompt components
- Signal region and SBs fit simultaneously
 - All shape parameters are free
 - − Bgd fraction fixed to D⁺ mass fit value

D lifetime fits – unbinned ML fits to t and σ_t distributions

Resolution function and bgd parameters determined from data

- t resolution $\sim 60-70$ fs
- MC used for validation and syst.error estimation

Blind analysis

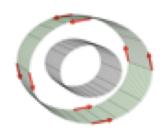
- selection, validation, crosschecks and assessment of systematic errors performed before unblinding
- except 2019 data
 (~13% of the sample)
 which was unblinded
 for ICHEP 2020

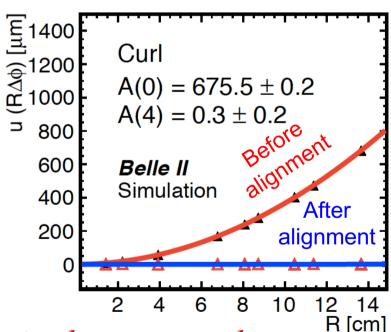
Systematic uncertainties

- Lifetime measurements are still statistically limited
- Dominant systematic error sources are vertex detector alignment and background
 - Background uncertainty dominated my data-MC agreement of t distribution in SBs
 - Alignment uncertainty
 estimated from measuring
 lifetimes in various mis aligned MC samples

Source	$\tau(D^0)$ [fs]	$\tau(D^+)$ [fs]
Resolution model	0.16	0.39
Backgrounds	0.24	2.52
Detector alignment	0.72	1.70
Momentum scale	0.19	0.48
Total	0.80	3.10
Statistical error	1.1	4.7

Dominant systematic uncertainties can be reduced in future measurements


- Decrease background in signal regions and add a D⁰ bgd pdf
- Improved alignment algorithm (already employed for most recent data)

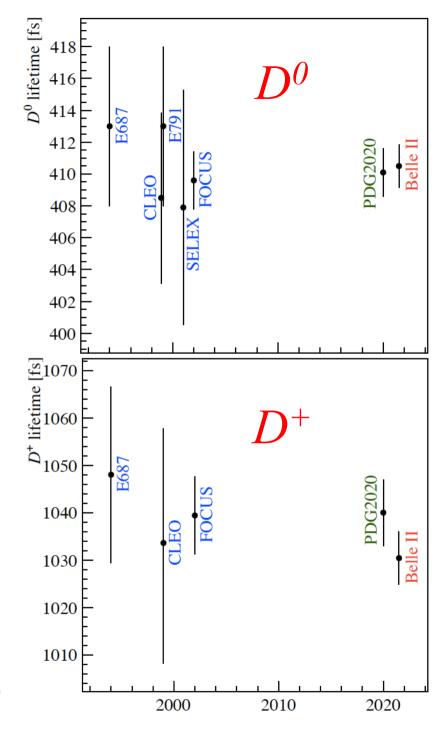

(Mis) alignment uncertainties

- 2 sources of systematic uncertainties due to misalignment
 - Stat. uncertainty in alignment constants
 from limited alignment sample size is
 estimated from day-to-day variations
 between alignments in data
 - Syst. uncertainty in alignment constants from residual misalignments not corrected for by the alignment algorithm (9 different weak-mode deformations: radial/longitudinal expansion, telescope, curl, ...) is estimated from MC simulation of a misaligned detector

Curl

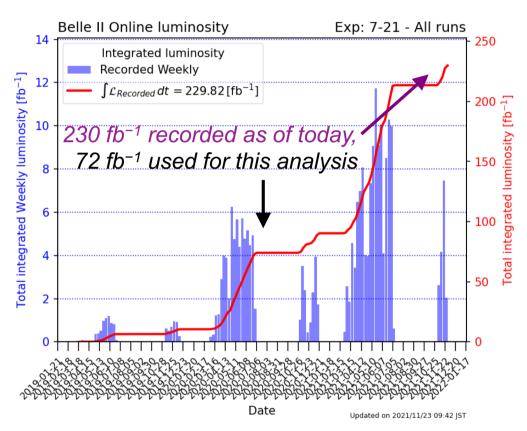
$$r\Delta\phi = c_{scale} \cdot r + c_0$$

• For each source the largest variation in the measured lifetimes is taken as the corresponding syst. uncertainty


Cross-checks

- Fully-simulated events & Toy MC
- Comparison of fitted lifetimes in data subsamples
 - 6 different data taking periods
 - 10 bins of polar angle $\cos\theta$
 - 10 bins of azimuthal angle φ
 - 10 bins of D momentum
 - On vs. off Y(4S) data
 - All lifetime variations are compatible with statistical fluctuations
- Also measured D^0 lifetime with D^* -tagged $D^0 \to K^-\pi^+\pi^-\pi^+$ decays (using the same technique as for $D^0 \to K^-\pi^+$)
 - 146k signal events, 0.8% bkg in the signal region
 - different kinematics, different resolution model
 - similar precision as in $D^0 \rightarrow K^-\pi^+$, channel
 - $-D^0 \rightarrow K^-\pi^+\pi^-\pi^+$ and $D^0 \rightarrow K^-\pi^+$ blind results agree within 0.8 σ (stat. only)

Results


$$au(D^0) = 410.5 \pm 1.1 \pm 0.8 ext{ fs}$$
 $au(D^+) = 1030.4 \pm 4.7 \pm 3.1 ext{ fs}$
 $au(D^+)/ au(D^0) = 2.510 \pm 0.015$
(accounted for correlated systematic uncertainties)

- Measurements consistent with world averages, and more precise
- Few ‰ systematic uncertainties (2‰ and 3‰ for D⁰ and D⁺, resp.) demonstrate excellent performance and understanding of the Belle II detector
- Paper just published in PRL!
 Phys. Rev. Lett. 127, 211801 (2021)

Conclusions & Outlook

- Belle II has measured the world's most precise D⁰ and D⁺ lifetimes at an e⁺e⁻ collider with 2-3% accuracy
 - Different systematic uncertainties than in previous best measurement
- Excellent understanding of Belle II's vertexing capabilities will allow many more precision time-dependent measurements
 - E.g. neutral D and B CP violation and mixing

Belle II has just started its physics program:

Expect a factor 750 more data over the next decade!

Bonus Slides

Weak modes of vertex detector misalignment

	Δr	$r\Delta\phi$	Δz
	Radial expansion	Curl	Telescope
	$\Delta r = c_{scale} \cdot r$	$r\Delta\phi=c_{scale}\cdot r+c_0$	$\Delta z = c_{scale} \cdot r$
r			
	Elliptical expansion	Clamshell	Skew
	$\Delta r = c_{scale} \cdot \cos(2\phi) \cdot r$	$\Delta \phi = c_{scale} \cdot \cos\left(\phi\right)$	$\Delta z = c_{scale} \cdot \cos\left(\phi\right)$
φ			
	Bowing	Twist	Z expansion
	$\Delta r = c_{scale} \cdot z $	$r\Delta\phi = c_{scale} \cdot z$	$\Delta z = c_{scale} \cdot z$
z			