

... a very personal selection

Anomalies and Precision in the Belle II Era Vienna, 6-8 September 2021

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Ami Rostomyan (on behalf of the Belle II collaboration)

τ physics program @ B factories

Historically B-factories provided a variety of very interesting results in the last two decades.

B-factories: Belle@KEKB and BaBar@PEP-II

- Collision energy at Y(nS)
 - → BR(Y(4S)→ $B\bar{B}$) > 96%

- Asymmetric beam energies
 - Boosted BB pairs
- High luminosities
 - ~Belle: 710 fb⁻¹ @ Y(4S)
 - ~ BaBar: 424 fb⁻¹ @ Y(4S)

- Precision SM measurement
- CP asymmetries
- Angular distributions
- Searches for lepton flavor/universality/number violations

Anomalies and Precision in the Belle II Era

• • •

B-Factories

Not just B-Factories but also τ factories!

 $\sigma(e^+e^- \to \Upsilon(4S)) = 1.05 \text{ [nb]}$ $\sigma(e^+e^- \to q\bar{q}) = 3.69 \text{ [nb]}$ $\sigma(e^+e^- \to \tau^+\tau^-) = 0.919 \text{ [nb]}$

DESY.

Ami Rostomyan

Clean environment

- the kinematics of the initial state is precisely known
- the neutrino energy can be determined precisely

Hermetic detectors with

- high track reconstruction efficiency
- good kinematic and vertex resolution
- \rightarrow excellent PID & $\gamma \& \pi^0$ reconstruction capabilities

Wide range of observables in τ sector to confront theory!

Does NP couple to 3rd generation strongly?

Precision measurements or indirect search of BSM

significant deviations from SM are unambiguous signatures of NP

Direct search of forbidden decays

→ *any signal* is unambiguous signature of NP

Belle II @ SuperKEKB

Belle II detector – upgraded Belle detector

Important for \tau analysis: discriminate between e, \mu, \pi, K; reconstruct neutrals!

Ami Rostomyan

- improved tracking efficiency
- improved particle identification
- smarter software
- more precise algorithms
- rolled in April 2017

First recorded events in April 2018

~ 200/fb of data already collected

The mass, lifetime and leptonic decays of τ

A. Lusiani et al: arXiv:1804.08436

Anomalies and Precision in the Belle II Era

The mass, lifetime and leptonic decays of τ

Lepton masses and lifetimes are fundamental parameters of SM!

- A precise tau mass and lifetime measurements are crucial for lepton universality tests of SM
- \rightarrow Possibility to test CPT conservation measuring τ^- and τ^+ lifetimes and masses separately.

Lepton Masses (MeV):

- $\delta m/m \sim 6*10^{-9}$ \rightarrow m_e= 0.5109989461 ± 0.000000031
- \rightarrow m_µ= 105.6583745 ± 0.0000024 $\delta m/m \sim 2*10^{-8}$
- $\delta m/m \sim 7*10^{-5}$ $\rightarrow m_{\tau} = 1776.86 \pm 0.12$

Similar situation for lifetime

SM prediction for the relationship between the τ lifetime, mass, $B(\tau \rightarrow e\nu\bar{\nu})$ and weak coupling constant

$$\frac{B(\tau \to e\nu\bar{\nu})}{\tau_{\tau}} = \frac{g_{\tau}^2 m_{\tau}^5}{192\pi^3}$$

violated before the first precise mass measurement by BES

BES - PRL V69 (1992) 3021 -

FIG. 3. The variation of τ_{τ} with B_{τ}^{e} , given by Eq. (1) under the assumption of lepton universality; the $\pm 1\sigma$ bands obtained using m_{τ} from this experiment (solid lines) and using the PDG value (dashed lines) are shown in comparison to the point corresponding to the PDG values (1 σ error bars).

t mass measurement

Anomalies and Precision in the Belle II Era

 π^{-}

Pseudomass technique

Use conservation of momentum and energy:

$$\mathcal{P}_{\tau}^{2} = (\mathcal{P}_{\nu} + \mathcal{P}_{3\pi})^{2}$$

$$\Rightarrow m_{\tau}^{2} = m_{\nu}^{2} + m_{3\pi}^{2} + 2(E_{\nu} \ E_{3\pi} - p_{\nu} \ p_{3\pi}) \qquad (1)$$

$$= m_{\nu}^{2} + m_{3\pi}^{2} + 2(E_{\nu} \ E_{3\pi} - p_{\nu} p_{3\pi} \cos \theta)$$
Use:
$$E_{\nu} = E_{\tau} - E_{3\pi}, and$$

$$p_{\nu} = \sqrt{E_{\nu}^{2} - m_{\nu}^{2}} = E_{\nu} = E_{\tau} - E_{3\pi}$$
To get:
$$m_{\tau}^{2} = m_{3\pi}^{2} + 2\left((E_{\tau} - E_{3\pi}) \ E_{3\pi} - (E_{\tau} - E_{3\pi}) p_{3\pi} \cos \theta_{\nu,3\pi}\right) \qquad (3)$$

$$= m_{3\pi}^{2} + 2(E_{\tau} - E_{3\pi})(E_{3\pi} - p_{3\pi} \cos \theta_{\nu,3\pi})$$

- in the centre of mass $E_{\tau} = E_{beam} = \sqrt{s/2}$
- → the equation has a minimum when $\cos \theta_{\nu,3\pi} = 1$

This is called pseudomass

$$m_{\rm min} = \sqrt{m_{3\pi}^2 + 2(E_{\rm beam} - E_{\rm beam})}$$

Ami Rostomyan

The distribution has a kinematic edge around the τ mass

- a sharp threshold behaviour in the region close to the nominal value of the τ mass
- first used by ARGUS in 1992, later by Opal, BELLE,
 BaBar and now by BELLE II

Anomalies and Precision in the Belle II Era

 P_{τ}

The t lepton mass

High signal purity

- the remaining continuum backgrounds are flat
 - don't impact the shape of the distribution

Mass extraction using ML fit

- P1 is an estimator for the τ mass
- with multi/additive components to describe the tails

Systematics

- Compatible precision with previous B factory results
- dominated by uncertainty on the track momentum scale
- expected to improve

$F(M_{min} | \vec{P}) = (P_3 + P_4 \cdot M_{min}) \cdot \tan^{-1}[(M_{min} - P_1)/P_2] + P_5 \cdot M_{min} + 1$

arXiv:2008.04665

Systematic uncertainty

Momentum shift due to the B-field map Estimator bias Choice of p.d.f. Fit window Beam energy shifts Mass dependence of bias Trigger efficiency Initial parameters Background processes Tracking efficiency

The τ leptons mass

Goal: achieve best precision among pseudomass measurements

- best result from BES III from pair production at threshold energy
- best measurement from pseudomass technique by Belle

- expect to match statistical precision of Belle/BABAR with ~300 fb⁻¹
- future improvements of **reconstruction efficiency** and systematic uncertainty
- eventually perform CPV test

Previous measurements of τ lifetime in $e^+e^- \rightarrow \tau^+\tau^-$

Ami Rostomyan

DESY.

Strategy at Belle II

The proper time is measured using the particle's

- flight distance in the lab frame l_{τ}
- momentum $\overrightarrow{\mathbf{p}}$ in the lab frame

$$t_{\rm true} = \frac{l_{\tau}}{\beta \gamma c} = m \frac{l_{\tau}}{p}$$

increase the statistical precision by using 3x1 topology

(3) production vertex that is intersection of momentum direction with plane $y = IP_v$

≥0.08

Events / (50 [90.04]

02

0

80

Events / (20 MeV/c²)

20

10

0.2

•*****•

_**

Ami Rostomyan

DESY.

Pull

-5

$$\Delta t = t^{rec} - t^{gen}$$

The τ lepton lifetime

$$p(t;\tau) = \frac{1}{\tau} e^{-t/\tau} \times \mathscr{R}(t)$$

Fit the proper time distribution with a convolution of an exponential distribution and resolution function

$= \frac{7}{7} = \frac{287}{2} \cdot \frac{20}{5} \cdot \frac{1}{5} \cdot \frac{1}{5}$

Generated lifetime $\tau = 290.57$ fs

- \rightarrow ~3 fs bias in the measurement
 - ISR/FSR losses
 - overestimation of p_{τ} results in underestimation of proper time $\stackrel{\text{time}}{\rightarrow} \text{ intrinsic bias of the } \frac{m_{\tau}}{m_{\tau}}$

 - estimate the bias from MC and correct the measurement

With respect to Belle: $\mu_1[\mathrm{fs}]$ -0.80 ± 0.20 $\tau [\mathrm{fs}]$

competitive statistical precision can already be reached with 200/fb

e-u-t universality

e, μ and τ differ only by

the mass

DESY.

different and separately conserved lepton numbers

LVF & LNV

Funing of PYTHIA8; charged track and neutral meson reconstruction What about the charged leptons?

Observation of LFV or LNV will be a clear signature of the NP!

conservation

d the total lepton numbers within the SM ($m_v = 0$)

 $L_{L_e} \times U(1)_{L_{\mu}} \times U(1)_{L_{\tau}}$

gn of LFV beyond the SM!

Are neutrinos Dirac ($|\Delta L| = 0$) or Majorana ($|\Delta L| = 2$) particles?

No success in searches so far!

Perspectives at Belle II

... mostly occurred at the B-factories

- One of the factors pushing up the sensitivity of probes is the increase of the luminosity
- Equally important is the increase of the signal detection efficiency
 - identification, refinements in the analysis techniques...

The searches at Belle II will push the current bounds further by more than one order of magnitude

Test the SM in a variety of ways

- radiative $(\tau \rightarrow \ell \gamma)$
- leptonic decays $(\tau \rightarrow \ell \ell \ell)$
- a large variety of LFV and LNV semi-leptonic decays
- $\rightarrow \tau \rightarrow \mu$ and $\tau \rightarrow e$: test of the lepton flavour structure

high trigger efficiencies; improvements in the vertex reconstruction, charged track and neutral-meson reconstructions, particle

Perspectives at Belle II

... mostly occurred at the B-factories

Test the SM in a variety of ways

- radiative $(\tau \rightarrow \ell \gamma)$
- leptonic decays $(\tau \rightarrow \ell \ell \ell)$
- a large variety of LFV and LNV semi-leptonic decays
- $\rightarrow \tau \rightarrow \mu$ and $\tau \rightarrow e$: test of the lepton flavour structure

See <u>Alberto Martini's</u> slides for Belle II prospects on LFV

Belle II

Search for LFV $\tau \rightarrow \ell \alpha \ (\alpha \rightarrow \text{invisible})$

$$E_{\tau} = \sqrt{s/2}$$

DESY.

Search for LFV $\tau \rightarrow \ell \alpha (\alpha \rightarrow \text{invisible})$

UL is provided for the ratio $Br(\tau \rightarrow e\alpha)/Br(\tau \rightarrow e\nu\nu)$

Status of the analysis:

- background suppression already quite effective
- UL estimation using the frequentist profile-likehood method using asymptotic approach

Ami Rostomyan

DESY.

Various NP scenarios:

- \rightarrow LFV Z'
 - strong bound from ARGUS measurement

\rightarrow light ALP a

exploring regions in parameter space not reachable by other experiments

Summary

e^+e^- annihilation data is ideal for precision measurements and NP searches!

Ami Rostomyan

DESY.

Belle II experiment started

- Achieved world record luminosity $L = 3.1 \times 10^{35} \text{cm}^{-2} \text{s}^{-1}$
- Accelerator tuning is ongoing; more data will be recorded soon
- \rightarrow τ mass and lifetime measurements with the early data are very promising and show the potential of Belle II precision measurements
- \rightarrow LFU and V_{us} analysis ongoing
- τ EDM & MDM analysis progressing
- $\rightarrow \tau \rightarrow \mu \mu \mu$ indicates the potential of LFV searches

Belle II will provide the world largest number (5x10¹⁰) of $e^+e^- \rightarrow \tau^+\tau^-$ events

 τ precision measurements and NP searches will reach higher sensitivity w.r.t. the previous experiments

. . .

Backup slides

Ami Rostomyan

NP contribution expected $\propto \frac{m_{\ell}}{\Lambda^2}$

Ami Rostomyan

etic Dipole Moments

EDM & MDM

Interactions between τ and photon

$$\Gamma^{\mu}(q^2) = -ieQ_{\tau} \left\{ \gamma^{\mu}F_1(q^2) + \frac{\sigma^{\mu\nu}q_{\nu}}{2m_{\tau}} \left(iF_2(q^2) + F_3(q^2)\gamma_5 \right) \right\}$$

- $F_1(q^2)$: Dirac form factor $F_1(0) = 1$
- $F_2(q^2)$: Pauli form factor (MDM) $F_2(0) = a_{\tau}$
- $ightarrow F_3(q^2)$: electric dipole moment (EDM) $F_3(0) = d_{\tau} \cdot 2m_{\tau} / eQ_{\tau}$

EDM is a fundamental parameter that parameterises **T- or CP- violation at the \gamma \tau \tau vertex.**

- SM prediction for EDM: $d_{\tau} = 10^{-37} ecm$
- NP models predict $d_{\tau} = 10^{-19} e \text{cm}$

- arXiv:2108.11543 -

- World best measurement from Belle
 - $-1.85 \times 10^{-17} < \Re(\tilde{d}_{\tau}) < 0.61 \times 10^{-17} ecm (95 \% CL)$
 - $-1.03 \times 10^{-17} < \Im(\widetilde{d}_{\tau}) < 0.23 \times 10^{-17} ecm (95 \% CL)$

When NP exists in the loop diagrams of the γ - τ interaction vertex, τ can possess extra EDM and/or MDM.

The experimental measurement of MDM of the fastdecaying τ is very different from that of the stable or relatively long-lived e and μ .

→ SM prediction: $a_{\tau}^{\text{SM}} = a_{\tau}^{\text{QED}} + a_{\tau}^{\text{EW}} + a_{\tau}^{\text{HLO}} + a_{\tau}^{\text{HHO}} = 117721(5) \times 10^{-8}$

- World best measurement from DELPHI - EPJ.C 35:159, 2004 - $-0.0052 < \tilde{a}_{\tau} < 0.013(95 \% \text{ CL})$
- \rightarrow Every deviation assumed to stem from a_{τ}

Test of unitarity

Unique opportunity for probing the coupling strength of the weak current to the first and second generation of quarks to a very high precision

eleweak-Figenstates CKN Matrix Mass Eigenstates

ween Weak and Mass Eigenstates From kaon, pion, baryon and nuclear decays

	<i>ν</i> .		1 2	-λ ³		
$\frac{us}{cs}$	V_{ud}	$\begin{array}{c} 0^+ \rightarrow 0^+ \\ \pi \rightarrow \pi e \nu_e \end{array}$	$n \rightarrow pe\nu_e$	$\pi ightarrow \ell u_\ell$		
ts	V_{us}	$K \to \pi \ell \nu$	$\Lambda \rightarrow pe\nu_e$	$K \to \ell \nu_\ell$		
$ \mathbf{U} ^2$ $ \mathbf{U} ^2$ 1						

Test of unitarity

$$V_{ud}^{2} + V_{us}^{2} + V_{ub}^{2} \stackrel{?}{=}$$

$$0^{+} \rightarrow 0^{+} \sqrt{K} \rightarrow \pi \ell \nu \qquad \sim 1.6 \cdot 10^{-1}$$

$$K \rightarrow \mu \nu_{\mu} / \pi \rightarrow \mu \nu_{\mu} \qquad \qquad \mathbf{B} \text{ decays}$$

\rightarrow From τ decays

$$\begin{array}{ccc} V_{ud} & \tau \to \pi \pi^0 \nu_{\tau} & \tau \to \pi \nu_{\tau} & \tau \to h_{Ns} \\ V_{us} & \tau \to K \pi \nu_{\tau} & \tau \to K \nu_{\tau} & \tau \to h_{S} \nu_{\tau} \end{array}$$

² ★ T / T / * T / Anomalies and Precision in the Belle II Era

Two methods of $V_{\mu s}$ from τ decays

Exclusive: compare the BR of $\tau \rightarrow \pi \nu$ **and** $\tau \rightarrow K \nu$

Inclusive: compare the BR of $\tau \rightarrow (\bar{u}d) \nu$ **and** $\tau \rightarrow (\bar{u}s) \nu$

- BaBar, Phys. Rev. Lett. 105 051602 -

fundamental parameters of SM

$$(\alpha_s, |V_{us}|, m_s)$$

 $V_{\rm us} = 0.2186 \pm 0.0021$

 \rightarrow within 3.1 σ of the value predicted by the CKM unitarity

Vus from t decays @Belle II

New results with improved theoretical input

- \rightarrow precise determination of $V_{\mu s}$ from kaon and nuclear decays
- discrepancy with CKM unitarity at 4.8σ

Ami Rostomyan

Can τ physics help?

- \rightarrow currently less precise determination of $V_{\mu\nu}$
- large PID systematic uncertainties @BaBar
- inclusive measurement not truly inclusive

SciPost Phys. Proc. 1,001 (2019)

3 σ tension between $|V_{\mu s}|$ from the CKM matrix unitarity and $\tau \rightarrow s$.

0.230 $|V_{ud}|$ CKM unitarity 0.225 $IV_{us}I(\tau \rightarrow K/\tau \rightarrow \pi)$ $|V_{us}|$ fit $0.220 - IV_{us}I(\tau \rightarrow s)$ 0.215 -0.973 0.974 0.975 0.976 IV_{ud}I

SUSY loops, Leptoquarks, Z', Charged Higgs **Right-Handed** Currents,....

Ami Rostomyan

What can we do @BelleII?

- → larger data sample will be available
- → similar to LFU analysis use 3x1 and 1x1 topologies
- → improve the understanding of the detector (PID, trigger, ...)

Lepton <u>flavour</u> conservation

Conservation of the individual lepton-flavour and the total lepton numbers within the SM ($m_v = 0$)

 $G_{SM}^{global} = U(1)_B \times U(1)_{L_e} \times U(1)_{L_\mu} \times U(1)_{L_\tau}$

The observation of neutrino oscillations as a first sign of LFV beyond the SM!

What about the charged leptons?

The charged LFV processes can occur through oscillations in loops

Unmeasurable small rates (10-54-10-49) for all the LFV μ and τ decays

$$\mathcal{B}(\ell_1 \to \ell_2 \gamma) = \frac{3\epsilon}{32}$$

Observation of LFV will be a clear signature of the NP!

Charged LFV enhanced in many NP models (10⁻¹⁰ - 10⁻⁷)

LFV from v mixing

Higgs mediated LFV

DESY.

Lepton <u>flavour</u> conservation

Conservation of the individual lepton-flavour and the total lepton numbers within the SM ($m_v = 0$)

 $G_{SM}^{global} = U(1)_B \times U(1)_{L_e} \times U(1)_{L_\mu} \times U(1)_{L_\tau}$

The observation of neutrino oscillations as a first sign of LFV beyond the SM!

What about the charged leptons?

The charged LFV processes can occur through oscillations in loops

Unmeasurable small rates (10-54-10-49) for all the LFV μ and τ decays

$$\mathcal{B}(\ell_1 \to \ell_2 \gamma) = \frac{3\epsilon}{32}$$

Observation of LFV will be a clear signature of the NP!

Charged LFV enhanced in many NP models (10⁻¹⁰ - 10⁻⁷)

LFV from v mixing

Higgs mediated LFV

DESY.

The progress of τ LFV and LNV searches

... mostly occurred at the B-factories

The upper limits reached for τ decays approached the regions sensitive to NP.

Test the SM in a variety of ways

- radiative $(\tau \rightarrow \ell \gamma)$
- $\rightarrow \text{ leptonic decays } (\tau \rightarrow \ell \ell \ell)$
- → a large variety of LFV and LNV semi-leptonic decays
- → τ → μ and τ → e: test of the lepton flavour structure

ell as to improve the I for searches of vare rield theory approach unique combination of

ent as compared with a ion and a compared with a ion and a compared with a ion and a compared by a c nation, the sensitivity is

• Strong experimental constraints on the scale Λ for new

 \mathbf{I} data arameterise the IFV τ decays via the effective field the **Il be made.** Their effect will show up at low energies as a series of non-renormalisable operators:

le topology – one (τ_{tag}) as minimal as podsible nerates a specific pattern of operators ns are boosted and their Due to the variety of the hadronic final states, the semi-lepton $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{SM} +$

annel-by-channel. This

degrees of freedom

$$L = L_{SM} - O_i^{(5)} + \sum_i \frac{c_i^{(6)}}{\Lambda^2} O_i^{(6)} + O_i^{(6)} + \sum_i \frac{c_i^{(6)}}{\Lambda^2} O_i^{(6)} + O_i^{(6)} +$$

$\rightarrow \mu \pi^+ \pi^-$	$\tau \to \mu K \bar{K}$	$\tau \to \mu \pi$	$\tau \to \mu \eta^{(\prime)}$
_	—	—	—
1	✓	_	—
(I=1)	$\checkmark(\mathrm{I=}0{,}1)$	_	—
(I=0)	$\checkmark(\mathrm{I=}0{,}1)$	—	—
✓	✓	—	—
_	—	✓ (I=1)	✓ (I=0)
—	—	✓ (I=1)	✓ (I=0)
_	_	_	\checkmark

- Celis, Cirigliano, Passemar (2014) -

Anomalies and Precision in the Belle II Era

- •••