

Anomalies and Precision in the Belle II Era - Workshop

6-8 September 2021

Europe/Vienna timezone

Dark Sector searches at Belle II

Laura Zani*

On behalf of the Belle II collaboration

*zani@cppm.in2p3.fr - Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

Light dark sectors

- Possible sub-GeV scale Dark Matter (DM) scenario: *light dark sector* weakly coupled to SM through a light *mediator X*
 - [–] Vector portal \rightarrow Dark Photons (A'), Z' bosons
 - [–] Pseudo-scalar portal \rightarrow Axion Like Particles (ALPs)
 - [–] Scalar portal \rightarrow Dark Higgsstrahlung/Scalars
 - Neutrino portal \rightarrow Sterile Neutrinos

Light dark sectors

- Possible sub-GeV scale Dark Matter (DM) scenario: *light dark sector* weakly coupled to SM through a light *mediator X*
 - [–] Vector portal \rightarrow **Dark Photons (A'), Z' bosons**

 - Scalar portal
 → Dark Higgsstrahlung/Scalars
 - Neutrino portal \rightarrow Sterile Neutrinos

→ The masses of the mediator/DM candidates produce different topologies leading to different kinds of **DM searches**

Experiments at B-factories

• Clean environment and hermetic detectors \rightarrow efficient reconstruction of neutrals (π^0 , η), recoiling system and *missing energy* final states

$$e^+e^- \rightarrow \Upsilon(4S)$$
 [10.58 GeV] $\rightarrow B\overline{B}$
B & τ factory ($\sigma_{_{bb}} \sim \sigma_{_{\tau\tau}} \sim 1 \text{ nb}$) +
light dark sectors

First generation of B-factories

at the KEKB collider (KEK, Japan)

at the PEP II collider (SLAC, California)

BaBar: PEP-II e⁺e[−] collider, SLAC, USA, 1999–2008 **Year** Belle: KEKB e⁺e[−] collider, KEK, Tsukuba, Japan, 1999–2010

Experiments at B-factories: second generation

• Clean environment and hermetic detectors \rightarrow efficient reconstruction of neutrals (π^0 , η), recoiling system and *missing energy* final states

 $e^+e^- \rightarrow \Upsilon(4S)$ [10.58 GeV] $\rightarrow B\overline{B}$ B & τ factory ($\sigma_{_{bb}} \sim \sigma_{_{\tau\tau}} \sim 1 \text{ nb}$) + light dark sectors

First generation of B-factories

at the KEKB collider (KEK, Japan)

at the PEP II collider (SLAC, California)

- 1.5 × beam currents): $\mathbf{L} = \mathbf{6} \cdot \mathbf{10}^{35} \text{ cm}^{-2} \text{ s}^{-1}$
- Final target: 50 ab⁻¹

L.Zani, Dark sector searches at Belle II - 2021/09/08

Belle II

Dark sectors at Belle II

First collisions on 2018 April 26th

- B-factories can access the GeV range naturally favored by light dark sectors
 - Special low multiplicity triggers: single photon trigger, single muon trigger, 3D track reconstruction at hardware trigger using Neural Network

More in previous talks (Tau Physics at Belle II)

- collected 0.5 fb⁻¹ during the pilot run April-July 2018 → published two searches on this data set
 - $Z' \rightarrow invisible$ (Michel's talk)
 - $ALPs \rightarrow \gamma\gamma$
- Since March 2019 collected > 213 fb⁻¹ and hit the 3.1x10³⁴ cm⁻²s⁻¹ instantaneous luminosity → many analyses in the pipeline

 $- B \rightarrow Ka$

- Visible Z': Muonic dark force $Z' \rightarrow \mu\mu$, $Z' \rightarrow \tau\tau$ from this talk
- Single photon

Highlights

Axion Like Particles (ALPs)

- Axion Like Particles are pseudoscalars coupling mainly to bosons, with non-renormalizable coupling constants $[g_{av}] \sim 1/M$
- Explored photon coupling g_{aγγ} in
 ALP-strahlung processes → second
 Belle II physics paper

(*photon fusion:* sensitivity under study)

 Exploit Flavor Changing Neutral Current (FCNC) and rare meson decays to investigate g_{aW} coupling ongoing studies for B→Ka

ALPs: a $\rightarrow \gamma\gamma$ at Belle II

PRL 125 (2020) 161806

- Select fully neutral events consisting of 3 isolated photons with a total invariant mass consistent with center of mass energy → optimize to maximize ALP sensitivity
- Signal yield extracted with binned extended max likelihood fits in sliding ranges (half mass resolutions step) to:

Data set: **445 pb**⁻¹ from 2018 pilot run

L.Zani, Dark sector searches at Belle II - 2021/09/08

ALPs: a $\rightarrow \gamma\gamma$ results

PRL 125 (2020) 161806

• Set 95% CL upper limits on the signal cross section and translated in $g_{a\gamma\gamma}$ limits

ALPs in meson decays

*E. Izaguirre, T. Lin, B. Shuve, PRL 118 (2017)

Muonic dark forces: $L_{\mu}-L_{\tau}$ model

 \rightarrow New gauge boson Z' coupling only to the 2^{nd} and 3^{rd} generation of leptons (L_u-L_{_{T}}) may explain:

- DM puzzle
- (g-2)_µ anomaly
- Anomalies observed in rare B decays, B \rightarrow K*µµ, R_{K(*)}

B.Shuve and I.Yavin (2014) Phys. Rev. D 89, 113004. Altmannshofer et al JHEP 1612 (2016) 106.

 $e^+e^- \rightarrow \mu^+\mu^- + missing \, energy$

• Search for the process:

$$e^+e^- \rightarrow \mu^+\mu^- Z'$$
, $Z' \rightarrow I$, ν , X

- Existing limits on the Z' coupling (g'):
 - searches for visible decays Z'→μ+μ- (BaBar PRD 94, 011102 (2016), CMS arXiv:1808.03684) and neutrino-nucleus scattering processes (*neutrino trident production*, CCFR experiment at Fermilab)
 - ⁻ search for $Z' \rightarrow$ invisible: Belle II first physics result, PRL 124 (2020) 141801 \rightarrow see Michel's talk

$Z' \rightarrow \mu^+ \mu^-$

Main backgrounds from SM QED processes: $\mu^{+}\mu^{-}\mu^{+}\mu^{-}$, *ISR*, *double photon conversion*, *combinatorial*

Search for a di-muon invariant mass peak in $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$ events in the final data set 514 fb⁻¹

$Z' \rightarrow \mu^+ \mu^-$: background rejection

Neural Network (*MLP*, *MultiLayer Perceptron*) exploiting dimuon momentum (P_{uu}) and other 14 discriminating variables in 4 different mass ranges to reject background Belle II Simulation: Preliminary

BaBar

Invariant Mass (µµ) [GeV/c2]

Before MLP

 Sensitivity computation ongoing: preliminary results from fitting technique (90% CL upper limits), no systematic effects included

L.Zani, Dark sector searches at Belle II - 2021/09/08

 \rightarrow Background

suppressed by 2

over the whole

sensitive range

orders of magnitude

$Z'{\rightarrow}\tau\tau$

• Also ongoing studies on:

- Almost model independent analysis
- [–] Selection optimized for the final state $\mu\mu au au$ (au o l/h , 1-prong decays)
- Compute upper limits on the product $\sigma \cdot B(X \rightarrow \tau \tau) \rightarrow$ could be reinterpreted by any models

Challenging due to high background and neutrinos

→ profit of B-factory clean environment and MVA techniques

Dark photons

- A possible U(1) extension of the SM includes a new massive vector gauge boson A' coupling to the SM photon through the kinetic mixing with strength $\varepsilon \rightarrow$ the *dark photon*
- At e⁺e⁻ colliders investigate the ISR production $e^+e^- \rightarrow \gamma A'$.

100

- $m_{A'} > 2m_v \rightarrow A'$ decays 100% invisibly into DM particle (*single photon search*)
- $m_{A'} < 2m_{\chi} \rightarrow A'$ decays visibly to SM particle (leptons)

Dark photon to invisible

- Select events with **nothing** but a single high energetic *ISR photon*. Look for a bump in the reconstructed photon energy $E_{\gamma} = (s - m_{A'}^2)/2\sqrt{s}$
- Background: QED processes e⁺e⁻ → γγ(γ) (low mass region) and radiative Bhabha e⁺e⁻ → e⁺e⁻ γ(γ) (high mass region) + cosmics

 \rightarrow only one photon in the detector requires a dedicated **single photon trigger** \rightarrow at Belle was not available, at BaBar was available only on ~10% data (53 fb⁻¹)

L.Zani, Dark sector searches in flavor experiments - FPCP2021

Invisible dark photon sensitivity at Belle II

In barrel ECL, Belle II has **no projective cracks in** ∳ w.r.t. BaBar: → more hermetic → more efficient

- No calorimeter cracks pointing to the interaction region and possibility to compensate for photon detection gap with KLM veto
- $^{\scriptscriptstyle >}$ Better hermeticity (smaller boost $\beta\gamma{=}0.28,$ larger acceptance)
- > Improved hardware trigger lines

 10^{-2} VA62 4 12x1 ω 10^{-3} Belle II simulation 20 fb Pseudo Dirac fermion rairc arget 10^{-4} Majorana relic target Scalar relic rarget $\alpha_{\rm p} = 0.5, \, {\rm m}_{\rm s} = {\rm m}_{\rm s}/3$ 10 10⁻² 10⁻¹ 10 m_A. (GeV/c²)

https://arxiv.org/pdf/2104.10280.pdf

Visible Dark Photon

- Existing results by BaBar, currently the best limits in all the GeV range:
 - $^-$ bump search in the reconstructed di-lepton spectrum from the full data set (514 fb^-1)
- Belle II will lead the sensitivity with the final data set of 50 ab $^{\scriptscriptstyle -1}$

L.Zani, Dark sector searches at Belle II - 2021/09/08

Very active and wide-ranging program of searches for dark sectors at Belle II: interesting to probe not only the DM puzzle, but also many anomalies in flavor.

Belle II proved already its capability to produce *world leading results* even on a minimal data set (1/100 000th of the final target one) $Z' \rightarrow inv PRL 124 (2020) 141801$ $a \rightarrow \gamma\gamma PRL 125 (2020) 161806$

- Ongoing studies show we'll be competitive in almost all of the light dark sector searches areas:
 - Displaced vertex signatures, missing energy final state searches (in Michel's talk), visible SM decays of light mediator
- Increased luminosity, upgraded detector and better analysis strategies will improve existing limits and provide soon new results.
 - ...more to come: magnetic monopoles, dark shower, visible A', ALPs to hadron, etc.

Thanks for your attention.

Dark matter puzzle

• Dark Matter (DM) is one of the most compelling reason for New Physics (NP) searches

...how to search for it?

1) Detect the energy of *nuclear(electron) recoil*

3) DM weakly couples to SM particles and it can be produced in *SM-particles annihilation* at *accelerators*

2) Detect the *flux of visible particles* produced by *DM annihilation* and decay

Dark matter candidates

• DM is an unsolved puzzle \rightarrow Unknown origin and nature!

→ Modified Newtonian Gravity...

Light dark matter scenarios

- No evidences for WIMP favor light DM hypotheses
- Possibility of *light dark sectors* motivates the search for a *DM mediator (φ)*:

Measured from cosmological observations

Dark matter production at accelerators

- Fixed-target experiment
 - → Electron beam dump

→ Proton beam dump (DM at neutrino facilities)

• Colliders

Dark matter searches at fixed-target

• Electron beam dump

- $^-$ Suitable to investigate vector portals for mediator masses $2m_{e}{<}~m_{A'}{<}{\rm GeV}$
- Larger luminosity
- Scattering cross section enhanced by nuclear charge coherence
- Compact special-purpose detectors (dual-arms spectrometer @JLAB, MAMI, forward vertexing spectrometer @HPS)

• Proton beam dump: exploiting neutrino facilities

- Exploit existing neutrino facilities
- Look for neutral pion conversions to photons that may kinetically mix with the dark photon
- Signal signature: dilepton resonances, long-lived particle, missing energy

Neutrino trident production

• Neutrino trident production with a Z' boson

L.Zani, Dark sector searches at Belle II - 2021/09/08

Cross section in e^+e^- collision at 10.58 GeV

Physics process	Cross section [nb]	Selection Criteria	Reference
$\Upsilon(4S)$	1.110 ± 0.008	12°	[2]
$uar{u}(\gamma)$	1.61	-	KKMC
$dar{d}(\gamma)$	0.40	-	KKMC
$sar{s}(\gamma)$	0.38	×	KKMC
$car{c}(\gamma)$	1.30	-	KKMC
$e^+e^-(\gamma)$	$300\pm3~({\rm MC~stat.})$	$10^\circ < \theta_e^* < 170^\circ,$	BABAYAGA.NLO
		$E_e^* > 0.15{\rm GeV}$	
$e^+e^-(\gamma)$	74.4	$p_e > 0.5 \mathrm{GeV}/c$ and e in	-
		ECL	
$\gamma\gamma(\gamma)$	$4.99\pm0.05~({\rm MC \ stat.})$	$10^{\circ} < \theta_{\gamma}^{*} < 170^{\circ},$	BABAYAGA.NLO
		$E_{\gamma}^* > 0.15 \mathrm{GeV}$	
$\gamma\gamma(\gamma)$	3.30	$E_{\gamma} > 0.5 \text{GeV}$ in ECL	-
$\mu^+\mu^-(\gamma)$	1.148	-	KKMC
$\mu^+\mu^-(\gamma)$	0.831	$p_{\mu} > 0.5 \text{GeV}/c$ in CDC	-
$\mu^+\mu^-\gamma(\gamma)$	0.242	$p_{\mu} > 0.5 \text{GeV}$ in CDC,	1070
		$\geq 1 \ \gamma \ (E_{\gamma} > 0.5 {\rm GeV})$ in l	ECL
$\tau^+\tau^-(\gamma)$	0.919		KKMC
$ uar{ u}(\gamma)$	0.25×10^{-3}	-	KKMC
$e^+e^-e^+e^-$	$39.7\pm0.1~({\rm MC~stat.})$	$W_{\ell\ell} > 0.5{\rm GeV}/c^2$	AAFH
$e^+e^-\mu^+\mu^-$	$18.9\pm0.1~({\rm MC~stat.})$	$W_{\ell\ell} > 0.5 \mathrm{GeV}/c^2$	AAFH

The Belle II Physics Book [arXiv:1808.10567]

- Low multiplicity event cross sections rapidly diverge compared to hadronic ones
- Selections applied at MC generator level to reduce the effective cross section (acceptance, particle momentum selections)
- W_{\parallel} is the minimum invariant secondary fermion pair mass

SuperKEKB accelerator

Belle II at SuperKEKB

- Updated detector:
 - provide comparable/better
 efficiencies and resolutions in a
 higher background
 - Improved dedicated triggers for low multiplicity and missing energy final states → see more in previous session talks

Overview of dark sector searches

Dark Sector Candidates, Anomalies, and Search Techniques

Belle II Challenges

- **Reduced boost** $\beta\gamma$ =0.42@KEKB $\rightarrow \beta\gamma$ =0.28@SuperKEKB requires better vertex resolution for the same B mixing performance
- Much higher backgrounds require faster electronics and radiation hardness
- Much higher event rates require new DAQ and multi-level trigger system
- Much higher data rates require new software and computing design

Belle II Performances in Phase 2: photon reconstruction

L.Zani, Dark sector searches at Belle II - 2021/09/08

ALPs at Belle II: resolutions

• Signal resolutions for di-photon and recoil masses

L.Zani, Dark sector searches at Belle II - 2021/09/08

Bark photon to invisible: single photon trigger

L.Zani, Dark sector searches at Belle II - 2021/09/08

Dark photon to invisible: backgrounds

P

Belle I

Dark photon to invisible: discriminant variables

Optimize the analysis separately in the Low Mass region, $M_x^2 < 36 \text{ GeV}^2$, and High Mass region, $24 < M_x^2 < 69 \text{ GeV}^2$.

- *BDT discriminant* trained on 12 variables (signal cluster shape, cluster properties, additional energy deposited in the calorimeter, etc)
- Optimize analysis in model independent approach
- Interpret results for dark photon decay (E, M _____)

