

Missing Energy and Displaced Vertices at Belle II

Michel Bertemes on behalf of the Belle II Collaboration, HEPHY Vienna <u>Michel.Bertemes@oeaw.ac.at</u> Anomalies and Precision in the Belle II Era 08/09/2021

The main ingredients

- extend SM by adding a U(1)' group
- new massive gauge boson Z' couples only to leptons of 2nd and 3rd generation
- Z' coupled to L_{μ} -L_t via g'
- focus on invisible Z' decay produced with a pair of muons
- invisible decay channel explored for the first time

<u>JHEP 1612 (2016) 106</u> PRD 89, 113004 (2014)

$$\mathcal{L} = \sum_{\ell} \theta g' \bar{\ell} \gamma^{\mu} Z'_{\mu} \mathcal{L}$$

$$M_{Z'} < 2M_{\mu} \implies BF[Z' \rightarrow \text{invisible}] \simeq 1/2,$$

$$M_{Z'} > 2M_{\tau} \implies BF[Z' \rightarrow \text{invisible}] \simeq 1/3.$$

$$\text{if } M_{Z'} > 2M_{\chi}$$

$$BF(Z' \rightarrow \chi \bar{\chi}) = 1$$

- may serve as mediator between SM and DS
- \star may explain (g-2)_μ
- ★ may address anomalies in $b \rightarrow s\mu^+\mu^-$

- reconstruct recoiling mass against µµ-pair, require nothing else to be in rest of event
- look for a peak in recoil mass distribution
- main bkgs arise from QED processes:
 - μ+μ-(γ)
 - ° τ+τ-(γ), τ→μνν
 - ∘ μ+μ-e+e-

$$M_r = s + M_{\mu\mu}^2 - 2\sqrt{s} E_{\mu\mu}^{CMS}$$

8

- reconstruct recoiling mass against µµ-pair, require nothing else to be in rest of event
- look for a peak in recoil mass distribution
- main bkgs arise from QED processes:
 - ° μ+μ-(γ)
 - ° τ+τ-(γ), τ→μνν
 - ° µ+µ-e+e-
- **main challenge:** tau-pair events give the biggest contribution
 - apply dedicated tau-suppression procedure
 - based on the different origin of missing momentum in sig and bkg

 $p_{rec}^{T,lmax}$ ($p_{rec}^{T,lmin}$) : the transverse recoil momentum with respect to the lepton with the higher (lower) momentum

 $p_{\mu\mu}^{T}$: the transverse momentum of the dimuon pair

Michel Bertemes - HEPHY Vienna

To the future and beyond

- the Z' searches allowed to demonstrate the capabilities of Belle II
- much more data has been recorded in the mean time (x1000)
- further progress:
 - deeper knowledge of the detector
 - improved particle identification
 - advanced MVA tools (Punzi-net)

What about a Dark Higgs?

- extend SM by adding a U(1)' group
- new minimal model includes dark photon (A' boson), coupled to SM γ via kinetic mixing parameter ϵ
- introduce in analogy to SM a spontaneous symmetry breaking mechanism of U(1)' with new particle, dark Higgs h'
- $e^+e^- \rightarrow A'h'$ (Higgsstrahlung), distinguish different signatures according to mass hypothesis
 - $^\circ\ m_{h'}>2m_{A'}, h'$ decays to A' pair, six charged particle final state, investigated by BaBar and Belle
 - $^\circ~m_{h'} < m_{A'}, \, h'$ has large lifetime to escape detection, 2 charged particle final state plus missing energy, only investigated by KLOE

- look for two oppositely charged muons plus missing energy
- find a peak in two dimensional distribution of recoiling mass vs dimuon mass
- main SM background contributions arise from
 - μ+μ-(γ)
 - τ+τ-(γ)
 - ∘ e+e-µ+µ-
- main challenge: measurement strategy
 - scan+count in elliptical mass windows
 - continuous grid of 9k (overlapping) ellipses

- look for two oppositely charged muons plus missing energy
- find a peak in two dimensional distribution of recoiling mass vs dimuon mass
- main SM background contributions arise from
 - μ+μ-(γ)
 - τ+τ-(γ)
 - e+e-µ+µ-
- main challenge: measurement strategy
 - scan+count in elliptical mass windows
 - continuous grid of 9k (overlapping) ellipses
- background suppression based on helicity angle, energy asymmetry between muons

- look for two oppositely charged muons plus missing energy
- find a peak in two dimensional distribution of recoiling mass vs dimuon mass
- main SM background contributions arise from
 - μ+μ-(γ)
 - τ+τ-(γ)
 - e+e-µ+µ-
- main challenge: measurement strategy
 - scan+count in elliptical mass windows
 - continuous grid of 9k (overlapping) ellipses
- background suppression based on helicity angle, energy asymmetry between muons
- set UL on the kinematic mixing parameter times dark coupling constant $\epsilon^2 \alpha_D$
- very promising result with "small" dataset
 - probing unconstrained regions in 2D mass plane
 - probing non trivial regions of $\varepsilon^2 \alpha_D$
- expect huge LEE
- ongoing analysis, recently unblinded

KLOE result

- look for two oppositely charged muons plus missing energy
- find a peak in two dimensional distribution of recoiling mass vs dimuon mass
- main SM background contributions arise from
 - $\circ \mu^+\mu^-(\gamma)$
 - τ+τ-(γ)

10

10-3

10-4-

ω

- e+e-µ+µ-
- main challenge: measurement strategy
 - scan+count in elliptical mass windows
 - continuous arid of 9k (overlapping) ellipses.

500 fb

m_{A'} (GeV)

1

UL on ϵ (visible searches)

KLOE 2013

10-1

E141

10-2

.rk

 $\approx 7 \ 10^{-4}$

Inelastic Dark Matter

Inelastic Dark Matter (iDM)

- model introduces a dark photon A' and two dark matter states χ_1 and χ_2 with a small mass splitting
 - χ_1 is stable (relic)
 - χ_2 is long-lived at small values of kinetic-mixing coupling
- unconstrained by direct detection experiments, as both inelastic and elastic scattering suppressed
- focus on $m_{A'} > m_{\chi 1} + m_{\chi 2}$, such that $A' \rightarrow \chi_1 \chi_2$ is dominant decay channel
- production at Belle II via ISR

5 parameter model: $m_{A'}$ (fixed relative to $m_{\chi 1}$) $m_{\chi 1}$ (scan) mass difference $\Delta = m_{\chi 2} - m_{\chi 1}$ (categorical) dark coupling a_D (fixed to benchmarks) kinetic mixing parameter ϵ (limit)

JHEP 02 (2020) 039

iDM signature

- main challenge: detector signature includes
 - an ISR photon
 - a displaced vertex which is non-pointing
 - missing energy
- search for a peak in the photon CMS energy distribution
- bkg contribution arise from
 - ∘ photon conversion: $e^+e^-\rightarrow\gamma\gamma(\gamma)$, $\gamma\rightarrow e^+e^-$
 - ∘ meson decays: e⁺e⁻→ $K_{S}^{0}K_{I}^{0}(γ)$, K_{S}^{0} decays

iDM background suppression

- most of prompt I+I-(γ) background is rejected by requirement of displaced vertex
- cut on V⁰ momentum can be very effective
 - $\circ\,$ undetected χ_1 lowers signal V^0 momentum w.r.t background
- the pointing angle α_{PA} offers further discriminating power
 - $\circ~$ the 3-body iDM decay leads to a non-pointing V^{0}
 - most of the considered backgrounds are 2-body processes

Inelastic Dark Matter (iDM)

• estimate signal yield by counting events in ISR photon window (final analysis will use template fit)

JHEP 02 (2020) 039

- maximum reach of χ_1 is determined by 2GeV trigger threshold
- new displaced vertex trigger under consideration
- Belle II can explore a large region of new iDM parameter space

Conclusion

- broad and active program of DS physics at Belle II
- available phase-space is probed with many different models
- further analysis with displaced vertices include $B \rightarrow Ka, B \rightarrow Kh'...$
- advanced MVA tools developed
- first results published and more to come

Conclusion

- broad and active program of DS physics at Belle II
- available phase-space is probed with many different models
- further analysis with displaced vertices include $B \rightarrow Ka, B \rightarrow Kh'...$
- advanced MVA tools developed
- first results published and more to come

Backup

Additional searches : $B \rightarrow Kh'$

- Search for long-lived scalar in rare B meson decays
 - ∘ B→Kh', h'→μμ,ππ,KK
 - generic scalar that mixes with the Higgs sector
 - LHCb and Belle II complementary due to different B momenta
 - reach towards even smaller mixing angle by searching for B→K+invisible

PRD 101, 095006 (2020)

Michel Bertemes - HEPHY Vienna

Michel Bertemes - HEPHY Vienna