

Belle II is excellently operating under the COVID-19 crisis.

Belle II: Status and Prospects

Takeo Higuchi

Kavli IPMU (WPI), the University of Tokyo

September 7th, 2021

PANIC 2021

Belle II Experiment

Mysteries in the Universe

- What made the matter-antimatter asymmetry in the Universe?
- What gave masses to the neutrinos?
- What is dark matter, and what is dark energy?
- What makes the Higgs boson so light? ...

New physics beyond the SM?

In the quest for physics beyond the Standard Model, we started **the Belle II experiment** in KEK, Japan, in 2019.

Belle II collaboration

- **1,000+** collaborators at
- **110+** institutes in
- 26 countries/regions.

Start of the full data-taking (2019)

SuperKEKB Accelerator

• 7 GeV e^- + 4 GeV $e^+ \rightarrow b\overline{b}, \tau^+\tau^-, c\overline{c}, ...$

- Ultimate luminosity: $6.5 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$
- Target integrated luminosity: 50 ab⁻¹

New final focusing magnets

- Peak luminosity $\mathcal{L}_{peak}^{SKEKB} = 3.1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ (June 22nd, 2021) $\mathcal{L}_{peak}^{KEKB} = 2.1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
 - $\mathcal{L}_{\text{peak}}^{\text{PEP-II}} = 1.21 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
- Integrated luminosity
 213 fb⁻¹

Nano-beam scheme

More RF cavities to increase the beam currents

Damping ring for a low emittance *e*⁺ beam

Belle II Detector

Strip and pixel vertex detector

- Inner 2 layers: Pixel detector
- Outer 4 layers: Strip detectors

 $\sigma_{\min}^{\text{SVD}} \approx 10-25 \mu \text{m}$

K. R. Nakamura, talk at TIPP2021 (2021); BELLE2-NOTE-PL-2020-014; BELLE2-NOTE-PL-2020-027.

Drift chamber (*p*, PID)

- Longer lever arm than Belle
- Smaller cell size than Belle

eff. × accept. \geq 0.8 (for $p_T > 1 \text{ GeV}/c$)

PID detectors (K/π separation)

- Barrel: Time-Of-Propagation counters
- Endcap: Aerogel RICH

• Wrong PID: x0.5 smaller than Belle $\epsilon_{\kappa}^{\text{average}} \gtrsim 0.8$ (for all *p* region)

EM calorimeter (E_e, E_{γ})

• CsI(Tl) + wave-form sampler

 $\epsilon_{e^\pm}\approx 94\%$, wrong $h^\pm \to e^\pm~{\rm ID}\approx 2\%$

K_L^0/μ detector

- Outer barrel: RPC (streamer mode)
- Endcap, inner barrel: Sci. + WL shifter

 $\epsilon_{\mu^\pm} pprox 90\%$, wrong $h^\pm o \mu^\pm$ ID pprox 4%

7.9m (H)

New Physics Search at Belle II

New physics search at Belle II

$$\Gamma_{\rm SM}(B \to f) = |A_{\rm SM}(B \to f)|^2 \xrightarrow{\rm NP}_{\rm contribution} \Gamma_{\rm obs}(B \to f) = |A_{\rm SM}(B \to f) + A_{\rm NP}(B \to f)|^2$$

- Discovery of $\Delta \neq 0 \rightarrow$ discovery of a **new physics**
- Development of a list of Δ_i, collation of the list with the predictions by NP models → pinning down the most appropriate NP model

Quantum effect

The quantum effect allows a NP particle that is much heavier than our $\sqrt{s} = 10.58$ GeV to appear in a loop. The NP particle intervene in the process mediated by the SM loop diagram.

Belle II is able to explore a NPenergy scale of $\gtrsim 100$ TeV. E. Kou, P. Urquijo *et al.*,Prog. Theor. Exp. Phys.2019, 123C01 (2019).

 $(S_{WA} = +0.699 \pm 0.017)$ Preliminary R 0.5 $34.6 f b^{-1}$ $V_{td}V_{tb}^*$ 0.0 \mathcal{B} -0.5-2 -8 -6 0 2 -4 $b \rightarrow c \overline{c} s$ $b \rightarrow ucs/cus$ $b \rightarrow c \ell \nu$ Time-dependent CPV Δt [ps] $V_{cd}V_{cb}^*$

 $B^0 \rightarrow J/\psi K_L^0$ reconstruction for ϕ_1

- The K_L^0 is identified by a hadron shower ٠ in the KLM (K_L^0 and muon detector).
- Only the direction of the $p_{K_I^0}$ is measured • \rightarrow only the E_B is measured instead of $M_{\rm bc}$.

 $S_{c\bar{c}s} = \sin 2\phi_1$

8

ϕ_1^{sqq} : Effective ϕ_1 in $b \rightarrow sq\overline{q}$ (q = u, d, s)

	$sin(2\beta^{eff})$	$\equiv \sin(2\phi_1^6)$	eff)	HFLAV Moriond 2021 PRELIMINARY
b→ccs	World Average			0.70 ± 0.02
φK ⁰	Average	+	-	0.74 +0.11
η′ K⁰	Average	+★		0.63 ± 0.06
K _s K _s K _s	Average		*	0.83 ± 0.17
$\pi^0 K^0$	Average	⊢★		0.57 ± 0.17
ρ⁰ K _S	Average	⊢★		0.54 ^{+0.18} -0.21
ωK _s	Average	–		0.71 ± 0.21
f₀ K _S	Average	⊢	•	0.69 ^{+0.10} -0.12
$f_2 K_S$	Average	*		0.48 ± 0.53
$f_X K_S$	Average	÷ •		0.20 ± 0.53
$\pi^0 \pi^0 K_{S}$	Average	⊢ ×		0.66 ± 0.28
$\phi \: \pi^0 \: K_{\mathrm{S}}$	Average	▶ ─ ─ ├	*	0.97 +0.03 -0.52
π⁺ π¯ K _S I	N A verage			0.01 ± 0.33
K ⁺ K ⁻ K ⁰	Average			0.68 ^{+0.09} -0.10
-1.6 -1.4 -	1.2 -1 -0.8 -0.6 -0.4 -0.2	0.2 0.4 0.6 0).8 1	1.2 1.4 1.6
$(\sin 2\phi_1)_{c\bar{c}s} = 0.699 \pm 0.017$				

 $B^0 \rightarrow \eta' K_S^0$ reconstruction: an exciting NP probe for its small theoretical ambiguity.

Used data size: 62. 8 $fb^{-1} < 9\%$ of Belle

UT Angle ϕ_2

- The ϕ_2 can be measured with the $b \rightarrow u \overline{u} d$ transition.
- $S_{u\overline{u}d} = \sin 2\phi_2$. $b = V_{ub} = V_{ud}^* = u$

 $B^0 \rightarrow \pi^+\pi^-$ reconstruction

 $\mathcal{B}(B^0 \to \pi^+ \pi^-) = [5.8 \pm 0.7 \pm 0.3] \times 10^{-6}$ $\mathcal{B}(B^+ \to \pi^+ \pi^0) = [5.5^{+1.0}_{-0.9} \pm 0.7] \times 10^{-6}$ $\mathcal{B}(B^+ \to \rho^+ \rho^0) = [20.6 \pm 3.2 \pm 4.0] \times 10^{-6}$

$\boldsymbol{B} \rightarrow \boldsymbol{D}^{(*)}\boldsymbol{h}$ Study $(h = K, \pi)$

• The ϕ_3 can be measured with interference between CF (D^0K^-) and CS (\overline{D}^0K^-) decays.

$$\frac{A_{\rm CS}(B^- \to \overline{D}{}^0 K^-)}{A_{\rm CF}(B^- \to D^0 K^-)} = r_B \exp(i\delta_B - i\phi_3)$$

 r_B : amplitude ratio, δ_B : strong phase difference

$$\begin{aligned} \frac{\mathcal{B}(B^{-} \to D^{0}K^{-})}{\mathcal{B}(B^{-} \to D^{0}\pi^{-})} &= (7.66 \pm 0.55^{+0.11}_{-0.08}) \times 10^{-2} \ (D^{0} \to K^{-}\pi^{+}) \\ \frac{\mathcal{B}(B^{-} \to D^{0}K^{-})}{\mathcal{B}(B^{-} \to D^{0}\pi^{-})} &= (6.32 \pm 0.81^{+0.09}_{-0.11}) \times 10^{-2} \ (D^{0} \to K^{0}_{S}\pi^{+}\pi^{-}) \\ \frac{\mathcal{B}(B^{-} \to D^{*0}K^{-})}{\mathcal{B}(B^{-} \to D^{*0}\pi^{-})} &= (6.80 \pm 1.01 \pm 0.07) \times 10^{-2} \\ \frac{\mathcal{B}(\bar{B}^{0} \to D^{+}K^{-})}{\mathcal{B}(\bar{B}^{0} \to D^{+}\pi^{-})} &= (9.22 \pm 0.58 \pm 0.09) \times 10^{-2} \\ \frac{\mathcal{B}(\bar{B}^{0} \to D^{*}K^{-})}{\mathcal{B}(\bar{B}^{0} \to D^{*+}K^{-})} &= (5.99 \pm 0.82^{+0.17}_{-0.08}) \times 10^{-2} \end{aligned}$$

$K\pi$ Puzzle

• Belle reported a difference in the direct CPV parameter values:

$$A_{CP}^{K^{+}\pi^{-}} \equiv \frac{\left(N_{\bar{B}^{0}\to K^{-}\pi^{+}} - N_{B^{0}\to K^{-}\pi^{+}}\right)}{\left(N_{\bar{B}^{0}\to K^{-}\pi^{+}} + N_{B^{0}\to K^{-}\pi^{+}}\right)} = -0.069 \pm 0.014 \pm 0.014$$
$$A_{CP}^{K^{+}\pi^{0}} \equiv \frac{\left(N_{B^{-}\to K^{-}\pi^{0}} - N_{B^{+}\to K^{+}\pi^{0}}\right)}{\left(N_{B^{-}\to K^{-}\pi^{0}} + N_{B^{+}\to K^{+}\pi^{0}}\right)} = +0.043 \pm 0.024 \pm 0.002$$
$$A_{CP}^{K^{+}\pi^{0}} - A_{CP}^{K^{+}\pi^{-}} = +0.112 \pm 0.027 \pm 0.007$$

Full Event Interpretation (FEI)

Tagging eff. (evaluated on Belle MC) of FEI ϵ_{tag} for had: 0.78%(B^+), 0.46%(B^0)

 ϵ_{tag} for SL: 1.80%(B⁺), 2.04%(B⁰)

Motivation for FEI, motivation study of $b \rightarrow u/c \ell v_{\ell}$

- There is a $\sim 3\sigma$ tension between incl. and excl. determinations for both $|V_{ub}|$, $|V_{cb}|$.
- $X_c \ell v_\ell$ is used to test the lepton flavor universality (sensitive to $LQ, H^+, ...$).

We focus on $|V_{ub}|$ today.

- Essential technique to study *B* decay modes containing $v_{\ell}(s)$.
- Reconstruct the B_{tag} momentum with multivariate technique through $\mathcal{O}(10^3) B_{\text{tag}}$ decay modes.
- Infer the the B_{sig} momentum and determine the \vec{p}_{miss} of the event.

T. Keck *et al*. Comp. Soft. Big Sci. (2019) 3:6.

arXiv:2103.02629

CKM Matrix Element $|V_{ub}|$ $(b \rightarrow u\ell v_{\ell})$

 $b \rightarrow c$

Preliminary

Preliminary

Inclusive $b \to u \ell \nu_\ell$

- E_{ℓ} from $b \to u\ell v_{\ell}$ tends to be larger than that from $b \to c\ell v_{\ell}$ because $m_c > m_u$.
- Select events in the E_{ℓ} endpoint region: $2.1 < E_{\ell} < 2.8$ GeV.

Observed $b \rightarrow u \ell v_{\ell}$ excess in data (> 3 σ).

Exclusive $B^0 o \pi^- \ell^+ \nu_\ell$

- Infer the B_{sig} momentum $p_{B_{sig}}$ with FEI.
- Identify ℓ^{\pm}, π^{\mp} and determine the signal yield by fitting the M_{miss}^2 distribution to the MC-estimated distribution.

 $\mathcal{B}(B^0 \to \pi^- \ell^+ \nu_\ell) \\ = [1.58 \pm 0.43 \pm 0.07] \times 10^{-4} (5.69\sigma)$

$B^+ \to K^+ \nu \overline{\nu}$

- The SM prediction of $\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})$ is $(4.6 \pm 0.5) \times 10^{-6}$.
- No evidence for signal was observed so far, but the NP could potentially enhance $\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})$.

$B^+ \to K^+ \nu \overline{\nu}$ reconstruction

- The signal candidate K⁺ is required to have the largest p_T in the event, ≥1 vertex detector hit(s), good kaon ID.
- The FastBDT algorithm is employed to extract signal events. Two BDTs are used:
 - BDT_1 for the event selection ($BDT_1 > 0.9$).
 - BDT₂ for background suppression (see \rightarrow)
- No signal excess above the expected BG.

Preliminary, arXiv:2104.12624

$${\cal B}(B^+ o K^+
u ar{
u}) = (1.9^{+1.3}_{-1.3} {}^{+0.8}_{-0.7}) imes 10^{-5} \ 4.1 { imes} 10^{-5}$$
 @90% CL

 Z^{-}

 W_{\sim}

Tau Physics

A B-factory is also a au-factory because $\sigma_{b\overline{b}} pprox \sigma_{ au au}$ at $\sqrt{s} = 10.58$ GeV.

Measurement of the au mass

• In the SM, $\mathcal{B}(\tau^- \to \ell^- \bar{\nu}_\ell \nu_\tau) \equiv \mathcal{B}_{\tau\ell}$ is related to m_{τ} , τ_{τ} by $\mathcal{B}_{\tau\ell}^{SM} \propto \mathcal{B}_{\mu e} \frac{\tau_{\tau}}{\tau_{\mu}} \frac{m_{\tau}^5}{m_{\mu}^5}$ which motivates their precise measurements.

•
$$\tau$$
 reconstruction: $\tau^- \to \pi^- \pi^- \pi^+ \nu_{\tau}$.
• $M_{\min} \equiv \sqrt{M_{3\pi}^2 + 2(E_{\text{beam}} - E_{3\pi})(E_{3\pi} - p_{3\pi})}$
 $F(M_{\min}; m_{\tau}, P_2 \dots P_5)$
 $= (P_3 + P_4 M_{\min}) \cdot \tan^{-1} \left[\frac{M_{\min} - m_{\tau}}{P_2} \right] + P_5 M_{\min} + 1$
 $Preliminary$
 $m_{\tau} = \mathbf{1777.28 \pm 0.75 \pm 0.33} \text{ MeV}/c^2$
 $(PDG: m_{\tau} = 1776.86 \pm 0.12 \text{ MeV}/c^2)$
 $(PDG: m_{\tau} = 1776.86 \pm 0.12 \text{ MeV}/c^2)$

• Preparation for the τ lifetime measurement is ongoing.

Invisible Particle Search

Search for a new gauge boson Z' that couples only with μ , τ , ν_{μ} , ν_{τ}

- The Z' can answer to the g-2 problem, $R_{K^{(*)}}$ issue, *etc*.
- Signal: $e^+e^- \rightarrow \mu^+\mu^- \mathbf{Z}' \rightarrow \mu^+\mu^- + (\chi\chi)$ Dominant BG: $e^+e^- \rightarrow \tau^+\tau^- \rightarrow \mu^+\mu^- + 4\nu$

No evidence for Z' $g_{Z'\ell\ell} < 5 \times 10^{-2} \dots 1$ for $m_{Z'} \le 6 \text{ GeV}/c^2$

I. Adachi *et al*. (Belle II), Phys. Rev. Lett. **124**, 141801 (2020)

Axion-Like Particle Search

Search for an axion like particle (ALP)

- A GeV-scale ALP (*a*) is a pseudoscalar portal mediator between Dark Sector and Standard Model.
- Signal: $e^+e^- \rightarrow \gamma_{\text{recoil}} + a \rightarrow \gamma_{\text{recoil}} + (\gamma\gamma); \sqrt{s^2} = p_{\text{recoil}}^2 + p_{\gamma\gamma}^2$.

 e^{-}

 γ_{recoil}

Charm Physics (*D*⁰, *D*⁺ lifetimes)

• τ_D (and τ_B) provides with useful input for testing the "effective models", along which low-energy QCD interaction is computed.

τ_{D^0} and τ_{D^+} measurement

• τ_{D^0} and τ_{D^+} are obtained from the *D* momentum \vec{p}_D and the distance \vec{L} from the production to the decay vertices of the *D*.

Belle II Prospect

We will collect 50 ab^{-1} data in the next ~10 years.

Summary

- In quest for a new physics beyond the SM, we had kicked off the operation of Belle II in 2019.
- We are operating Belle II very nicely coping with COVID-19 difficulties. We have collected 213 fb⁻¹ data.
- We are actively working on Belle II data analyses. Several cutting-edge results in data analyses have been presented.
- Plenty of exciting physics results are coming in the next few years.

Backup Slides

Belle II Operation History

Accelerator + outer detector

Phase 1 Accelerator commissioning with no collisions

Outer detector and reduced-scale VXD installation

Belle II physics results

- Dark gauge boson Z' search
- Axion like particle search

VXD installation and commissioning

collected **472 pb⁻¹ data**

commissioning

Full data taking

SuperKEKB

- $\int \mathcal{L}dt = 213 \text{ fb}^{-1}$
- $\mathcal{L}_{max} = 2.96 \times 10^{34} / \text{cm}^2 \text{s}$

$$\sqrt{I_e + I_e} = 0.83 \text{ A}$$

Belle II physics results

- $B \to K \nu \bar{\nu}$ search
- *D*-meson lifetime
- Preparation for the *CP*-violation meas ...

2016

2017

2018

2019

Cosmic

rày run

Phase 2

Phase 3

Tracking Detector Performance

Estimated using cosmic rays.

Vertex Detector Performance

Lepton Identification

 $M_{o^+o^-}$ [GeV/c²]

e^{\pm} -ID and μ^{\pm} -ID efficiencies ϵ_{ℓ} and mis-ID rate $w_{h \to \ell}$

 $M_{\mu^+\mu^-}$ [GeV/c²]

K/π Separation

Quasi K/π tagging

- 1. Reconstruct $\pi_{slow} + (h_1^+ + h_2^-)$
- 2. When $\pi_{\text{slow}} = \pi_{\text{slow}}^+$, $[\pi_{\text{slow}} + (h_1^+ + h_2^-)] = D^{*+}$, $[h_1^+ + h_2^-] = D^0$, and $h_1^+ = \pi^+$ and $h_2^- = K^-$.
- 3. When $\pi_{slow} = \pi_{slow}^-$, $h_1^+ = K^+$ and $h_2^- = \pi^-$.

BELLE2-NOTE-PL-2020-024

CKM Matrix Element $|V_{cb}|$ $(b \rightarrow c\ell v_{\ell})$

Potential anomaly in $R_{D^{(*)}} \equiv \mathcal{B}(B \to D^{(*)}\tau^{-}\overline{\nu}_{\tau})/\mathcal{B}(B \to D^{(*)}\ell^{-}\overline{\nu}_{\ell})$

BaBar (2012), had. tag $0.440 \pm 0.058 \pm 0.042$

Belle (2015), had. tag

 $0.375 \pm 0.064 \pm 0.026$

Belle (2019), sl. tag

 $0.307 \pm 0.037 \pm 0.016$

 $0.340 \pm 0.027 \pm 0.013$

0.2

HFLAV2019 (modified)

SM pred. average

• The $(R_D, R_{D^*}) = (R_D^{\text{SM}}, R_{D^*}^{\text{SM}})$ is disfavored at a 3.08 σ level.

Exclusive
$$B^0 \to D^{*-} \ell^+ \nu_\ell$$

- Use the EFI tagging method and infer the signal-B momentum $p_{B_{sig}}$.
- Reconstruct D^0 from $K^-\pi^+$ and reconstruct D^{*+} from $D^0\pi_s^+$ (π_s^+ : slow pion).
- Determine the signal yield by fitting the $M^2_{
 m miss}$ distribution where $M_{
 m miss} = (p_{B_{
 m sig}} (p_{D^*} + p_\ell).$

Preliminary, arXiv:2008.10299

$$\mathcal{B}(B^0 \to D^{*-}\ell^+\nu_\ell) = (4.51 \pm 0.41 \pm 0.27 \pm 0.45) \times 10^{-4}$$

The first and second errors are statistical and systematic uncertainties, respectively. The third error is an uncertainty in the slow pion efficiency.

BaBar (2012), had. tag

 $0.332 \pm 0.024 \pm 0.018$ Belle (2015), had. tag

 $0.293 \pm 0.038 \pm 0.015$

 $0.270 \pm 0.035 \pm 0.07$

Belle (2019), sl.tag $0.283 \pm 0.018 \pm 0.014$

 $0.336 \pm 0.027 \pm 0.030$ LHCb (2018), (had. tau) $0.280 \pm 0.018 \pm 0.029$

Average $0.295 \pm 0.011 \pm 0.008$

0.2

0.3

0.4 R(D*)

SM pred. average 0.258 ± 0.005

Belle (2017), (had, tau)

LHCb (2015), (muonic ta

HFLAV

0.4

Spring 2019

R(D)

Electroweak Penguin $(b \rightarrow s\ell\ell)$

Motivation for a study of $b \rightarrow s \ell^+ \ell^-$

- $b \rightarrow s\ell^+\ell^-$ is sensitive to a NP effect to Wilson coefficients C_7 , C_9 , C_{10}
- LHCb reported a 3.1σ tension between the observation and the SM-predicted values R_K which suggests a lepton universality violation.

$$R_K \equiv \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ e^+ e^-)$$

5.22 5.23 5.24 5.25 5.26

arXiv:2103.11769

5.27 5.28 5.29

M_{bc} [GeV/c²]

Radiative Penguin $(b \rightarrow s\gamma)$

Belle II will make a vital contribution to the inclusive measurement.

BELLE2-NOTE-PL-2021-004

The bottom plot shows a difference between the observed number of candidates and the sum of expected numbers of background candidates.

The bump in the bottom plot indicates an evidence for $B \rightarrow X_{s,d}$ events at Belle II (shown uncertainties are statistical only).

Exotic Hadrons

Reconstruction of $B \to X(3872)(J/\psi \pi^+\pi^-)K$

S.-K. Choi *et al*. (Belle), Phys. Rev. Lett. 91, 262001 (2003)

- A new resonance X(3872) was first reported by Belle in 2003 by reconstructing $B^+ \rightarrow J/\psi \pi^+ \pi^- K^+$ decay.
- We reconfirmed evidence for X(3872) in Belle II data with 4.6σ significance.

