Latest results on beauty and charm hadron decay at Belle II

JAPAN SOCIETY FOR THE PROMOTION OF SCIENCE 上堂新版國会

EXAMPLE A CONTRACT A CONTRACTA A CONTRACTA A CONTRACTACIA A CONTRACTACIA

Eiasha Waheed

20th Lomonosov Conference on Elementary Particle Physics, Moscow State University, August 25, 2021

Eiasha WAHEED

Outline

- **B** Physics
- Introduction to Belle II experiment
- Recent Results
 - Charm Lifetime
 - $B^+ \to K^+ \ell^+ \ell^-$ measurement
 - $B^+ \to K^+ \nu \bar{\nu}$ measurement
 - ϕ_3/γ measurement with $B \to D^{(*)}h(h = K/\pi)$ decays
 - Semileptonic decays (Inclusive $B \to X_c \ell \nu$, Exclusive $B \to D^{(*)} \ell \nu$)
- Outlook

B Physics and B factories

- Weak decays of B meson \rightarrow tests of the Standard Model and its parameters.
 - Determination of the weak mixing angles,
 - Test the unitarity of the Cabibbo- Kobayashi-Maskawa (CKM) matrix,
 - CP violation.
 - New Physics (beyond the Standard Model)
- e+e- experiments at the $\Upsilon(4S)$ resonance \rightarrow a lot of information on heavy-quark decays
- B factories: SLAC, KEK, Cornell, and DESY
 - Clean environment \rightarrow Efficient detection of neutrals ($\gamma, \pi^0, \eta, ...$)
 - $B^0 \bar{B}^0$ pairs \rightarrow effective flavor tagging efficiency : ~34% (Belle II) ~5% (LHCb)
 - Large sample of **T** leptons
 - Full reconstruction tagging possible \rightarrow a powerful tool to measure
 - $b \rightarrow u$ semileptonic decays (CKM)
 - decays with large missing energy

SuperKEKB

- Asymmetric e^+e^- collider with center-of-mass energy at $B\bar{B}$ threshold (10.58 GeV)
- e^+e^- collisions very clean compared to pp collisions
- Aims at an integrated luminosity of 50 ab^{-1} (50 × Belle) \rightarrow Challenge harsh beam background conditions
- Plan to deliver collisions at a peak luminosity of $6.5 \times 10^{35} \text{cm}^{-2} \text{s}^{-1}$
- 30 × Luminosity of KEKB achieved by
 - × 1.5 beam current increase
 - \times 20 beam size decrease
 - Data taking till Summer run 2021: 213.49 fb⁻¹
 - Peak luminosity record: $3.1 \ge 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

Eiasha WAHEED

The Belle II Detector

- Designed to operate with a performance better than Belle despite higher backgrounds
- Belle II enables us
 - K/π separation compatible with Belle
 - High reconstruction efficiency with very low trigger bias
 - Better reconstruction of final states containing photons from π^0 , ρ^{\pm} , η
 - Neutral K_L mesons efficiently reconstructed.
 - Better K_{s} efficiency
 - Detection of the decay products of one B allows the flavour of the other B to be tagged.
 - Good vertex resolution
 - Analyses of missing mass since initial state perfectly known
 - Production of large sample of charm mesons and τ leptons

Belle II Physics Program

Talk: "The Belle II prospects for charmonium and bottomonium studies" by Pavel Krokovny

Talk: "Latest results on the dark sector and tau physics at Belle II" by Ewan Hill

 \checkmark Topics I will cover in this talk

Eiasha WAHEED

Charm Lifetime

- High-precision measurement of $D^{0/+}$ lifetimes require
 - excellent vertex-detector alignment,
 - Precise calibration of final state particle momenta
 - Powerful background discrimination
- Early Belle II dataset already competitive \rightarrow Challenge is to control systematics

- Reconstructed $D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+) \pi^+$ and $D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+ \pi^+) \pi^0$ from D^* -tagged.
- High-purity samples, selected to limit backgroundrelated systematic uncertainty.

Fit Strategy for Lifetime Measurement

- Unbinned maximum-likelihood fits to the (t, σ_t)
 - [1.855, 1.833] GeV/c² for $m(K^-\pi^+\pi^+)$
 - [1.851, 1.878] GeV/c² for $m(K^-\pi^+)$
 - For D^0 : background neglected in the fit \rightarrow systematic assigned.
- For D⁺: background included in fit \rightarrow modeled using data sidebands
- Resolution function: \rightarrow (2 gaussian for D⁰, 1 gaussian for D⁺) determined directly from fit
 - Width: $\sim 60-70$ fs.
- Systematics:
 - Mostly from misalignment of vertex detector
- Background modeling of D⁺

KEK

Results (preliminary)

- Most precise to date and consistent with previous measurements
- Few-per-mille accuracy establishes excellent vertex capability of Belle II

$$\tau(D^0) = 410 \pm 1.1(\text{stat}) \pm 0.8(\text{syst})$$
 fs

$$f(D^+) = 1030.4 \pm 4.7(\text{stat}) \pm 3.1(\text{syst}) \text{ fs}$$

• Assuming all systematic uncertainties are fully correlated between $\tau(D^0)$ and $\tau(D^0) \rightarrow$ correlation coefficient is 18%

 $\frac{\tau(D^+)}{\tau(D^0)} = 2.510 \pm 0.013 (\text{stat}) \pm 0.007 (\text{syst}) \,.$

1

$B^+ \to K^+ \ell^+ \ell^-$ Measurement

- Important FCNC decay measurement $B^+ \to K^+ \ell^+ \ell^- (1 = e, \mu)$ sensitive to many SM extensions.
- $B^{\pm} \rightarrow_{R} K^{\pm} \ell^{+} \ell^{-} \ell^{-}$ • Rediscovery of $B^+ \to K^+ \ell^+ \ell^-$
- BDT (event shape wertex related and missing energy variables) to suppress background from light quark and inclusive B decays.
- First observation with just 63 fb⁻¹ data
- 2D fit to $\Delta E = E_R^* E_{beam}$ and $= e, \mu$ $M_{bc} = \sqrt{E_{beam}^2 - \vec{p}_B^2} \text{ distribution}$ $B^{\pm} \rightarrow K^{\pm} \ell \ell - R$ • Signal Yield : $8.6^{+4.3}_{-3.9} \pm 0.4 \text{ events}$
 - $(2.7\sigma \text{ significane})$

events in

More data needed for B.F measurement, R_K , $\Delta E = E_B^{\Delta * E} = \sqrt{\frac{s/(4c^4)}{p_B^{*2}/c^2} - p_B^{*2}/c^2} \sqrt{s/2}$

Eiasha WAHEED

 (3 MeV/c^2)

Candidates

$B^+ \rightarrow K^+ \nu \nu$ Measurement

- Complementary probe of BSM physics scenarios proposed to explain flavour anomalies $\mathscr{B}(B^{\pm} \to K^{\pm} \nu \bar{\nu}) = (4.6 \pm 0.5) \times 10^{-6}$
- BSM models with lepto-quarks [PRD 102, 015023 (2020)], axions [PRD 101, 095006 (2020)], or DM [PRD 98, 055003 (2018)] can be constrained
- SM prediction for $\mathscr{B}(B^+ \to K^+ \nu \nu) = (4.6 \pm 0.5) \times 10^{-6} [arXiv: 1606.00919]$
- Experimentally very challenging with two (escapized) $\pm n \in \mathbb{R}^{\pm}(\mathbb{R}) \xrightarrow{+} (4+6 \pm 0.5) \times \mathbb{E}_{1000}^{\pm 0.6}$ information of the other B meson is required
- Measured using inclusive tagging approach
 - Exploit distinct topology and kinematics to achieve higher signal efficiency (~4%) \rightarrow better compared to earlier approaches (semileptonic/hadronic tagging) used
 - Two boosted decision tree classifiers, of which the 2nd one is nested, to $B^{\pm} \to K^{\pm} \nu \bar{\nu}$ DESY. fight against various backgrounds

Eiasha WAHEED

$B^+ \rightarrow K^+ \nu \nu$ Measurement

- Select highest p_T track as signal kaon candidate
- Use off-resonance data to constrain yields from continuum processes $(q\bar{q}, \tau\bar{\tau})$
- Validate BDT: using data of $B^+ \to K^+ J/\psi (\to \mu^+ \mu^-)$ decays where the muons can be removed to mimic signal

- Compare response of BDTs in data and simulation
- Correct kaon momentum using simulated signal events
- Fraction of events in signal region (BDT2 > 0.95, data/simulation) =1.06 \pm 0.10

$B^+ \to K^+ \nu \nu \operatorname{Results}(\operatorname{preliminar}) \pm 0.5) \times 10^{-6}$

(assuming SM signal)

ϕ_3/γ Measurement with $B \to D^{(*)}h(h = K/\pi)$

- Decays $B^- \to D^{(*)0}K^-$ are important for precise determination CKM angle γ/ϕ_3 .
 - $B^- \to D^0(K_S^0 \pi^+ \pi^-) K^-$ is the golden mode for γ/ϕ_3 measurement for Belle/Belle II.
 - Dominant and clean decay $\underline{B^-} \to D^{(*)0}\pi^-$ and $\underline{B^0} \to D^{(*)+}\pi^-$ provide good control sample.
- Signal enhanced with $M_{bc} = \sqrt{E_{beam}^2 \vec{p}_B^2} > 5.27$ GeV/c² and PID to K/π from signal B,
- Unbinned ML fit in $\Delta E = E_R^* E_{beam}$ and MVA output (with event shape variables).

$$\frac{\mathscr{B}(\overline{B}^{-} \to D^{0}(K_{s}^{0}\pi^{-}\pi^{+})K^{-})}{\mathscr{B}(\overline{B}^{-} \to D^{0}(K_{s}^{0}\pi^{-}\pi^{+})\pi^{-})} = 6.32 \pm 0.81^{+0.09}_{-0.11}$$

- Many systematics cancel in Ratio
- Results agree with PDG (LHCb)

Aiming for first Belle+Belle II for ϕ_3 combined result very soon

Inclusive $B \to X_c \ell \nu$

$$\Gamma = \frac{G_F^2 m_b^5}{192\pi^2} |V_{cb}|^2 \left(1 + \frac{c_5(\mu) \langle O_5 \rangle(\mu)}{m_b^2} + \frac{c_6(\mu) \langle O_6 \rangle(\mu)}{m_b^3} + \mathcal{O}\left(\frac{1}{m_b^4}\right) \right)$$

- Different analysis strategies will help resouve the inclusive/exclusive discrepancy in $b \to c\ell\nu$ and $b \to u\ell\nu$
- Measure the q²-moments (moments of lepton energy or hadronic mass) in order to simultaneously determine the non perturbative elements and $|V_{cb}|$
- Belle II performed both the untagged and the hadronic tagged analyses.

Untagged analysis

- Require one well identified lepton
- Exploit missing mass and momentum to reject backgrounds
- Measure the branching fraction with a fit to p_1^*

$$\mathcal{B}(B \to X_c \ell \nu) = (9.75 \pm 0.03(stat) \pm 0.47(syst))$$

Conclusions

- Belle II in great shape have already >200 fb⁻¹ of data being analyzed \rightarrow more new results coming soon
- Established excellent vertexing performance with world's best D lifetimes measurement.
- First excellent result of $B^+ \to K^+ \nu \nu$ with prospects to measure $B^+ \to K^+ \nu \nu$ very soon
- Re-optimization of Belle ϕ_3 analysis ongoing \rightarrow aiming for first Belle+Belle II combined result
- Within the next years Belle II will be able to address the inclusive/exclusive $|V_{cb}| / |V_{ub}|$ tension by precisely measuring semileptonic B decays
- SuperKEKB has set a new world record in peak luminosity and is entering the regime of a "Super B factory"
- Belle II detector is working very well and is producing very promising physics results

Looking forward to an exciting era of discoveries and a healthy competition and complementarity of Belle II and LHCb

Eiasha WAHEED

TWENTIETH LOMONOSOV CONFERENCE August, 19-25, 2021 **ON ELEMENTARY PARTICLE PHYSICS**

Thank You

