

EPS-HEP Conference 2021, July 26-30, 2021

CP violation in charm

- Highly suppressed in the standard model. Discovery tool for new physics.
- Observed in D⁰→(K+K−, π+π−) decays [PRL 122, 211803 (2019)], value in the standard model ballpark. Need better control of QCD to get its origin.
- Expand the search: look for CPV in radiative decays, test isospin sum-rules and SU(3) related modes...
- Huge program of measurements, where Belle/Belle II role with neutrals is crucial

CPV in $D^0 \rightarrow (K^+K^-, \pi^+\pi^-)$

-0.010-0.008-0.006-0.004-0.002 0.000 0.002 0.004 0.006 a_{CP}^{ind}

Today results from Belle

- **Belle**, steady and fruitful production of new results continues, although data-taking finished >10 years ago:

```
arXiv:2106.04286, submitted to JHEP
Phys. Rev. D 103, 112005 (2021)
arXiv:2103.06496, submitted to Phys. Rev. D
JHEP 06(2021)160,
Phys. Rev. D 103, 112002 (2021),
Phys. Rev. D 103, 111101 (2021),
Phys. Rev. D 103, 072004 (2021),
Phys. Rev. D 103, 072003 (2020),
Phys. Rev. D 103, 072002 (2020),
```

CPV and BR for $D^{0} \rightarrow (K+K-\eta, \pi+\pi-\eta, \phi\eta)$

CPV and BR for $D_S^+ \rightarrow (K^+\eta, K^+\pi^0, \pi^+\eta, \pi^+\pi^0)$

3

Today results from Belle and Belle II

- Belle II, getting ready for mixing and decay-time-dependent CPV analyses

Precise measurement of D⁰ and D⁺ lifetimes Brand new, exclusive for EPS!

- **Belle**, steady and fruitful production of new results continues, although data-taking finished >10 years ago:

```
arXiv:2106.04286, submitted to JHEP
Phys. Rev. D 103, 112005 (2021)
arXiv:2103.06496, submitted to Phys. Rev. D
JHEP 06(2021)160,
Phys. Rev. D 103, 112002 (2021),
Phys. Rev. D 103, 111101 (2021),
Phys. Rev. D 103, 072004 (2021),
Phys. Rev. D 103, 072003 (2020),
Phys. Rev. D 103, 072002 (2020),
```

CPV and BR for $D^0 \rightarrow (K+K-\eta, \pi+\pi-\eta, \phi\eta)$

CPV and BR for $D_S^+ \rightarrow (K^+\eta, K^+\pi^0, \pi^+\eta, \pi^+\pi^0)$

Belle

- Operated in asymmetric-energy
 e+e- collisions provided by KEKB
- Good performances on momentum/vertex resolution and particle identification.
- In about 10 years, accumulated a sample of ~1 ab⁻¹

CPV and BR for $D_S^+ \rightarrow (K^+\eta, K^+\pi^0, \pi^+\eta, \pi^+\pi^0)$

- Reconstruct both $D_s^* \rightarrow D_s \gamma$ tagged and untagged D_s^+ decays from 921 fb⁻¹ of data.
- Measure *CP* asymmetries and branching fractions (relative to $D_{s^+} \rightarrow [\phi \rightarrow K^+K^-]\pi^+$).
- Suppress background with neural-net classifiers exploiting signal kinematic and topology.
- Measures raw asymmetries from fitted signal yields, and correct for K^+ and π^+ efficiency asymmetries.

CPV and BR for $D_S^+ \rightarrow (K^+\eta, K^+\pi^0, \pi^+\eta, \pi^+\pi^0)$

- Obtain world's best results for both BR and CP asymmetries.
- No evidence of $D_s^+ \rightarrow \pi^+ \pi^0$, set an upper limit on its BR.
- No evidence of *CP* violation in these decays.

[Phys. Rev. D 103, 112005 (2021)]

$$\mathcal{B}(D_s^+ \to K^+ \pi^0) = (0.735 \pm 0.052 \pm 0.030 \pm 0.026) \times 10^{-3}$$

$$\mathcal{B}(D_s^+ \to K^+ \eta) = (1.75 \pm 0.05 \pm 0.05 \pm 0.06) \times 10^{-3}$$

$$\mathcal{B}(D_s^+ \to \pi^+ \pi^0) = (0.037 \pm 0.055 \pm 0.021 \pm 0.001) \times 10^{-3}$$

$$\mathcal{B}(D_s^+ \to \pi^+ \eta) = (19.00 \pm 0.10 \pm 0.59 \pm 0.68) \times 10^{-3},$$

Uncertainties: stat, syst, and from $BR(D_{s^+} \rightarrow [\phi \rightarrow K^+K^-]\pi^+)$

$$\mathcal{B}(D_s^+ \to \pi^+ \pi^0) < 1.2 \times 10^{-4}$$
 (90% C.L.)

$$A_{CP}(D_s^+ \to K^+ \pi^0) = 0.064 \pm 0.044 \pm 0.011$$

 $A_{CP}(D_s^+ \to K^+ \eta) = 0.021 \pm 0.021 \pm 0.004$
 $A_{CP}(D_s^+ \to \pi^+ \eta) = 0.002 \pm 0.003 \pm 0.003$.

CPV and BR for $D^0 \rightarrow (K+K-\eta, \pi+\pi-\eta, \phi\eta)$

- D*-tagged decays from 980 fb⁻¹ of data.
- Measure *CP* asymmetries and branching fractions (relative to $D^0 \rightarrow K^-\pi^+\eta$).
- Fit the Q-values distributions and correct the signal yields in bins of the Dalitz plot

Cancel with weights for $\pi_{soft}(p_T, cos\theta)$

CPV and BR for $D^0 \rightarrow (K+K-\eta, \pi^+\pi^-\eta, \phi\eta)$

- First search for CPV in $D^0 \rightarrow (\pi^+\pi^-\eta, \phi\eta)$. No evidence of asymmetries found.

$$A_{CP}(D^0 \to \pi^+ \pi^- \eta) = [0.9 \pm 1.2 \,(\text{stat}) \pm 0.4 \,(\text{syst})]\%,$$

 $A_{CP}(D^0 \to K^+ K^- \eta) = [-1.4 \pm 3.3 \,(\text{stat}) \pm 1.0 \,(\text{syst})]\%,$
 $A_{CP}(D^0 \to \phi \eta) = [-1.9 \pm 4.4 \,(\text{stat}) \pm 0.6 \,(\text{syst})]\%.$

- First observation of the color-suppressed decay $D^0 \rightarrow \phi \eta$. Improved determination of the branching fractions of $D^0 \rightarrow (K+K-\eta, \pi+\pi-\eta)$

arXiv:2106.04286 submitted to JHEP

$$\mathcal{B}(D^0 \to \pi^+ \pi^- \eta) = [1.22 \pm 0.02 \,(\text{stat}) \pm 0.02 \,(\text{syst}) \pm 0.03 \,(\mathcal{B}_{ref})] \times 10^{-3} \,,$$

$$\mathcal{B}(D^0 \to K^+ K^- \eta) = [1.80^{+0.07}_{-0.06} \,(\text{stat}) \pm 0.04 \,(\text{syst}) \pm 0.05 \,(\mathcal{B}_{ref})] \times 10^{-4} \,,$$

$$\mathcal{B}(D^0 \to \phi \eta) = [1.84 \pm 0.09 \,(\text{stat}) \pm 0.06 \,(\text{syst}) \pm 0.05 \,(\mathcal{B}_{ref})] \times 10^{-4} \,,$$

Belle II

- 2nd generation *B*-factory detector, aiming at collecting *50x Belle* dataset
- SuperKEKB: nano-beams scheme with aggressive vertical focusing, holds world luminosity record of ~3.1x10³⁴ cm⁻² s⁻¹
- Data-taking started in 2019.

 Currently ~210 fb⁻¹ of data on disk.
- Much improved vertexing w.r.t. Belle: first silicon layer (pixel) at only 1.4 cm from the interaction region.

Impact on decay-time-dependent analyses

G. Casarosa, *ICHEP 2020* (Belle II with 9 fb⁻¹)

- High-precision measurement of D lifetimes proves excellent vertexing performance and in-depth understanding of systematic effects for time-dependent CPV/mixing analyses.
- World's best *D* lifetimes from FOCUS: sub-1% precision dominated by systematic uncertainty. No update since then (~20 years).
- Early Belle II dataset already competitive. Controlling systematics is crucial.

At a glance

- Select high-purity samples of D^* -tagged $D^0 \rightarrow K^-\pi^+$ and $D^+ \rightarrow K^-\pi^+\pi^+$ decays. Avoid any cut that biases the decay time.
- Get the decay-time (and its uncertainty) from the displacement between the decay vertex and the interaction region (and the *D* momentum).
- Fit the distribution of the decay time with accurate modelling of the resolution
- Check, check and check... any systematic bias associated to the measurement

$$t = m_D \frac{\overrightarrow{d} \cdot \overrightarrow{p}}{p^2 c}$$

 $\langle d_{D^+} \rangle \sim 500 \, \mu m$

Signal decays

- High-purity samples, selected to limit background-related systematic uncertainty.

Lifetime fit

- Fit to unbinned (t, σ_t) distribution
- Background neglected for $D^0 \rightarrow K^-\pi^+$, while it is modelled using data sidebands for $D^+ \rightarrow K^-\pi^+\pi^+$
- Resolution function (2 gaussian for D^0 , gaussian for D^+) determined directly in data. Width of ~60-70 fs.

Uncertainty budget

- Most critical contribution from misalignment of the vertex detector, as it affects the scale of the flight length.

 Periodic calibration with control data measures misaligned sensors with few µm accuracy.
- For *D*⁺ dominant systematic from background modelling.
- Both contributions can improve.

Source	Uncertainty (fs)			
	$D^0 \to K^- \pi^+$	$D^+ \to K^- \pi^+ \pi^+$		
Statistical	1.1	4.7		
Resolution model	0.16	0.39		
Backgrounds	0.24	2.52		
Detector alignment	0.72	1.70		
Momentum scale	0.19	0.48		
Total systematic	0.8	3.1		

- Validation with independent sample of $D^{*+} \rightarrow D^{0} (\rightarrow K^{-}\pi^{+}\pi^{-}\pi^{+})\pi^{+}$. Different decay topology, larger (~1%) background contamination than $D^{0} \rightarrow K^{-}\pi^{+}$. Measure D^{0} lifetime with 1.2 fs precision (stat-only) in agreement with $D^{0} \rightarrow K^{-}\pi^{+}$ result.

(Preliminary) Results

$$\tau(D^0) = 410.5 \pm 1.1 \pm 0.8 \,\text{fs}$$

 $\tau(D^+) = 1030.4 \pm 4.7 \pm 3.1 \,\text{fs}$

More precise than, and consistent with, the respective world-average values $(410.1\pm1.5 \text{ fs and } 1040\pm7 \text{ fs}).$

Few-per-mille accuracy establishes excellent performance of our detector!

Determine also lifetimes ratio considering correlations between uncertainties:

$$\tau(D^+)/\tau(D^0) = 2.510 \pm 0.015$$

Conclusion and prospect

- Belle continues to harvest new results on charm to improve *CPV* and *BR* measurements.
- Belle II in great shape: established excellent vertexing performance with world's best D lifetimes measurement.
- Have already >200 fb⁻¹ of data on disk currently being analysed.
 New results soon to come!

$D_S^+ \rightarrow (K^+ \eta, K^+ \pi^0, \pi^+ \eta, \pi^+ \pi^0)$: systematic errors

Source	$\frac{\mathcal{B}(K^+\pi^0)}{\mathcal{B}(\phi\pi^+)}$	$\frac{\mathcal{B}(K^+\eta_{\gamma\gamma})}{\mathcal{B}(\phi\pi^+)}$	$\frac{\mathcal{B}(K^+\eta_{3\pi})}{\mathcal{B}(\phi\pi^+)}$	$\frac{\mathcal{B}(\pi^+\pi^0)}{\mathcal{B}(\phi\pi^+)}$	$\frac{\mathcal{B}(\pi^+\eta_{\gamma\gamma})}{\mathcal{B}(\phi\pi^+)}$	$\frac{\mathcal{B}(\pi^+\eta_{3\pi})}{\mathcal{B}(\phi\pi^+)}$
Tracking	0.7	0.7	_	0.7	0.7	_
Particle identification	1.8	1.8	1.9	1.9	1.9	4.0
$\pi^0/\eta \to \gamma\gamma$	2.4	2.4	2.4	2.4	2.4	2.4
$O_{\rm NN}$ requirement	1.1	1.3	1.2	1.3	1.3	1.3
D_s^{*+} fraction in ε	0.7	0.7	0.7	0.7	0.7	0.7
MC statistics	0.8	0.8	0.8	0.8	0.7	0.7
Fitting	2.2	2.6	2.4	56.2	1.5	1.2
$\mathcal{B}(\eta o \gamma \gamma)$	_	0.5	_	_	0.5	_
$\mathcal{B}(\eta \to \pi^+\pi^-\pi^0)$	_	_	1.2	_	_	1.2
Overall uncertainty	4.1	4.4	4.4	56.3	3.9	5.2

CP asymmetries

Or adjunited to						
Source	$K^+\pi^0$	$K^+\eta_{\gamma\gamma}$	$K^+\eta_{3\pi}$	$\pi^+\eta_{\gamma\gamma}$	$\pi^+\eta_{3\pi}$	$\phi\pi^+$
Fitting	0.0056	0.0035	0.0020	0.0005	0.0005	0.0002
$D^+ \to \pi^+(\pi^0/\eta)$ background	0.0062	0.0022	0.0031	_	_	_
$\cos \theta_{D_s}^{\rm CM}$ binning	0.0068	0.0028	0.0068	_	_	_
A_{CP} in $D_s^+ \to \phi \pi^+$	_	_	_	0.0027	0.0027	_
Overall uncertainty	0.0108	0.0050	0.0077	0.0027	0.0027	0.0002

$D^0 \rightarrow (K+K-\eta, \pi^+\pi^-\eta, \phi\eta)$: systematic errors

Systematic sources	$\frac{\mathcal{B}(D^0 \to \pi^+\pi^-\eta)}{\mathcal{B}(D^0 \to K^-\pi^+\eta)}$	$\frac{\mathcal{B}(D^0 \to K^+ K^- \eta)}{\mathcal{B}(D^0 \to K^- \pi^+ \eta)}$	$\frac{\mathcal{B}(D^0 \to (\phi \to K^+K^-)\eta)}{\mathcal{B}(D^0 \to K^-\pi^+\eta)}$
PID efficiency correction	1.8%	1.9%	1.9%
Signal PDF	0.3%	0.5%	0.9%
Background PDF	0.0%	0.0%	0.1%
Mass resolution calibration	0.1%	0.3%	0.0%
Yield correction with efficiency map	0.3%	0.7%	_
MC statistics	0.3%	0.4%	0.4%
K_S^0 veto	0.1%	_	_
Interference in M_{KK}	_	_	2.5%
Total syst. error	1.9%	2.1%	3.3%

Sources	$\sigma_{A_{CP}}(D^0 \to \pi^+\pi^-\eta)$	$\sigma_{A_{CP}}(D^0 \to K^+K^-\eta)$	$\sigma_{A_{CP}}(D^0 \to \phi \eta)$
Signal and bkg	0.004	0.010	0.006
$\cos \theta^*$ binning	0.002	0.004	0.002
$A_{\varepsilon}(\pi_s)$ map	0.001	0.001	0.001
Total syst. error	0.005	0.011	0.006