Dark Matter Searches at Belle II

Minakshi Nayak on behalf of the Belle II Collaboration IISc, Bangalore

December 11-15, 2023

Belle II @ Super-KEKB Intensity Frontier Flavor Factory Experiment @ World's Highest-Luminosity Electron Positron Collider

KEK Tsukuba Campus Successor to Belle at KEKB (1999-2010)

1 km

~1100 researchers 123 institutions26 countries and regions

2 and and

B

E_{CM} : $\Upsilon(4S) = 10.58 \text{ GeV} + \text{scans}$

 $\sigma(e^+e^- \to \Upsilon(4S) \to B\bar{B}) = 1.1 \text{ nb}$ $\sigma(e^+e^- \to c\bar{c}) = 1.3 \text{ nb}$ $\sigma(e^+e^- \to \tau^+\tau^-) = 0.9 \text{ nb}$

Super B (+charm + τ) Factory

AND DECEMBER OF STREET

Belle II detector

Luminosity Status and projection

Peak Luminosity [x 10³⁵ cm⁻² s⁻¹]

- So far $L_{int} = 424 \text{ fb}^{-1}$ (~ BaBar, ~1/2 Belle)
- first long shutdown (LS1) mid 2022 end 2023
 - Install two-layer pixel detector
 - significant improvements made to the accelerator and detector
- Run 2 starts soon in about a month
- Goal: $L_{int} = 50 \text{ ab}^{-1} (50 \times \text{Belle})$
 - World record: $L_{\text{peak}} = 4.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
 - Target: $L_{\text{peak}} = 6 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$

A diversified Physics Program

Next precision CKM matrix

- Semileptonic B decays (CKM elements)
- Hadronic B decays (angles and CP violation)
- Time dependent CP violation

BSM Physics

- Rare decays
- NP in loop in $b \rightarrow s\gamma, b \rightarrow sll$
- Tests for LFU such as $R(D^{(*)})$
- radiative, semi-(leptonic) modes
- Charm Physics
- τ Physics
- Hadron Spectroscopy
- **Dark Sector**
 - Z', Axion, Dark Photon, HNL, LLP

Snowmass white paper

https://confluence.desy.de/display/BI/Journal+Publications September 2023 – 26 Belle II submissions + 16 in CWR1 or beyond

5

Light Dark Matter

Why Dark sector at Belle II?

In recent years the possibility that both DM and the particles mediating its interactions to the Standard Model (SM) have a mass at or below the GeV–scale has gained much attraction.

- Belle II has unique sensitivity to dark matter via missing energy decays.
- Belle II is sensitive to direct production of MeV to GeV scale Mediators between Standard Model and Dark Sectors
- Precise determination of missing energy/momentum
- Special Dark Sector Triggers enabled:

Trigger System

- Two-tier trigger system
 - Hardware based low level trigger (L1)
 - Software based high level trigger (HLT)
- Reduce effects from beam backgrounds (Touschek effect, beam-gas scattering, radiative Bhabha, ...)
- L1 trigger
 - Maximum trigger rate 30KHz
 - Combines 4 sub-detector triggers; Drift Chamber, Cherenkov detectors, Muon System, **Electromagnetic Calorimeter**
- Dedicated trigger lines for dark sector and low-multiplicity physics (not available in Belle):
 - Single photon / track
 - Multi track triggers
 - ▶ 2 full tracks with opening angle requirement used in dark higgsstrahlung/invisible Z' searches
 - ▶ Logical OR of a three-track trigger and a single-muon trigger used in X searches in $e^+e^- \rightarrow \mu^+\mu^-(X \rightarrow \tau^+\tau^-)$ and $e^+e^- \rightarrow \mu^+\mu^-(X \rightarrow \mu^+\mu^-)$ decays
 - 3D neural trigger

Search for Axion-like Particle (ALP) in $e^+e^- \rightarrow \gamma a, a \rightarrow \gamma \gamma$

- Search conducted with 445 pb^{-1} of data
- 98% CL UL on $g_{a\gamma\gamma}$
- × 1000 data)
- Belle II has a unique area of sensitivity

Search for Axion-like Particle (ALP) overview: projections

Recent Dark Sector searches overview

$$L_{\mu} - L_{\tau}$$

$$Z' \rightarrow \text{invisible}$$

$$Z' \rightarrow \mu \mu$$

$$Z' \rightarrow \tau \tau$$

LLP dark scalar in *B* decays $B \rightarrow KS(\rightarrow ee, \mu\mu, \pi\pi, KK)$

Dark Higgsstrahlung

A'h'

 $A' \rightarrow \mu\mu, h' \rightarrow \text{invisible}$

Invisible boson in τ decays

 $\tau \rightarrow e \alpha, \mu \alpha$

Search for Z': $L_{\mu} - L_{\tau}$ model

Search for Z': $L_{\mu} - L_{\tau}$ model

Search for Z': $L_{\mu} - L_{\tau}$ model

Search for an invisible Z'

- Search for the process: e⁺e⁻ → µ⁺µ⁻Z' → invisible
 Two possible interpretations:
 - 1. Vanilla, $BF(Z' \to \nu \bar{\nu}) \sim 33 100\%$

2. Full invisible , $BF(Z' \rightarrow \chi \bar{\chi}) \sim 100 \%$

- Look for a narrow peak in the recoil mass against a $\mu^+\mu^-$ pair in events where nothing else is detected
- Dominant background radiative QED processes:

1.
$$e^+e^- \rightarrow e^+e^-\mu^+\mu^-$$

2. $e^+e^- \rightarrow \tau^+\tau^-(\gamma)$
3. $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$

PRL 130, 231801 (20

Search for an invisible Z': Results

fully invisible Z' as origin of $(g - 2)_{\mu}$ excluded for 0.8 < $M_{Z'}$ < 5.0 GeV/c²

PRL 130, 231801 (2023

μ

Search for invisible Z': projections

17

Search for $Z' \rightarrow \tau^+ \tau^-$

- Search for a **di-tau resonance in** $e^+e^- \rightarrow \mu^+\mu^-\tau^+\tau^-$ as a peak in the recoil against two muons
- Reconstruct τ decays to one-charged particle $(+nh^0)$
 - Select four-track events with at least two tracks identified as muons
 - M(4tracks) < 9.5 GeV/c² to suppress the four-lepton backgrounds that peak at them c.m. energy
- Background suppression exploits features of kinematic variables in the signal
- Discrepancies between data and simulation due to contributions from non-simulated/unmodeled processes

Phys. Rev. Lett. 131, 121802

Search for $Z' \rightarrow \tau^+ \tau^-$: Results

• No significant excess observed in 62.8 fb^{-1} - 90% CL upper limits on $\sigma(e^+e^- \rightarrow \mu^+\mu^-(X \rightarrow \tau^+\tau^-))$, with X = Z', S, ALP• Exclusion limits on the couplings for three different models (Z', leptophilic scalar (S), and ALP) are derived:

Search for $Z' \rightarrow \mu^+ \mu^-$: Results

 $e^+e^- \rightarrow \mu^+\mu^- + \mu^+\mu^-$

Search for Dark Higgsstrahlung

Next to minimal dark photon model

- Dark photon (A') couples to SM photon via kinetic mixing parameter ϵ
- A' mass can be generated via a spontaneous symmetry breaking mechanism, adding a dark Higgs boson (h') to the theory. Phys. Rev. D 79, 115008 (2009)
- No dark Higgs mixing with SM Higgs.
- Both particles can be produced via dark Higgsstrahlung process.

Mass hierarchy scenarios

- $M_{h'} > M_{A'}: h' \to A' \to 4l, 4had, 2l + 2had \implies 6charged tracks$
 - Searches conducted by <u>Belle (2015)</u> and <u>BaBar (2012)</u>
- $M_{h'} < M_{A'}$: h' is long-lived and so invisible \implies 2 charged tracks o Partially constrained by <u>KLOE (2015)</u>

Exploring unconstrained regions at Belle II !

Search for Dark Higgsstrahlung: Analysis Strategy

Data sample: 2019 dataset $\implies 8.34 \text{ fb}^{-1}$

Detector signature

- Looking for invisible h' with $A' \rightarrow \mu^+ \mu^- \implies \mu \mu + \text{missing energy}$
- 2D peak in $M_{\mu\mu} < M_{rec}$ M_{rec} = invariant mass of the system recoiled against $\mu\mu$.

Surviving backgrounds:

• Main contributions:

 $\mu^{+}\mu^{-}\gamma \ (79\%)$ $\tau^{+}\tau^{-} \rightarrow \mu^{+}\mu^{-}, 4\nu \ (18\%)$ $e^{+}e^{-}\mu^{+}\mu^{-} \ (3\%)$

• Mostly localised near the kinematic limit, especially for $M_{\mu\mu} > 9$ GeV

Search for Dark Higgsstrahlung: Results

Search for excesses above expected background independently in the ~9k search windows

• Event counts in a single window interpreted as: $N = \epsilon_{sig} \times L \times \sigma_{DH} + B$ with systematic uncertainties taken into account.

Phys. Rev. Lett. 130, 071804

- Find no significant excess above background.
- 90% upper limits computed in a Bayesian approach on the cross section from 1.65 - 10.51 GeV in $M_{A'} (M_{h'} < M_{A'})$

World leading ULs in previously unexplored regions !

Search for Dark Higgsstrahlung: Results

Upper limits also computed in terms of the effective coupling:

World leading ULs in previously unexplored regions !

Search for Dark Higgsstrahlung: Projections

Search for a long-lived (pseudo)scalar in $b \rightarrow s$ transitions

Motivation:

- **First model-independent** search in rare $b \rightarrow s$ transition
- Possible missing with SM Higgs with mixing angle θ_s
- For $M_S < M_B$, decay to **DM** kinematically forbidden by relic density constraint \bullet
- Look for *S* decays into SM final states in 8 exclusive channels \bullet
 - $B^+ \to K^+ S(\to ee/\mu\mu/\pi\pi/KK)$
 - $B^0 \to K^{*0} (\to K^+ \pi^-) S(\to e e/\mu \mu / \pi \pi / KK)$

Analysis Overview:

- B-meson kinematics to reject combinatorial $e^+e^- \rightarrow q\bar{q}$ background
- Veto region/Control sample: K_S^0 mass region \rightarrow excellent control sample in data to \bullet evaluate LLP performance (efficiencies, shapes)
- Further peaking backgrounds suppressed by tighter displacement selection

Search for a long-lived (pseudo)scalar: signal extraction

- Bump hunt with unbinned maximum likelihood fit to the modified mass $M'(x^+x^-) = \sqrt{M^2(x^+x^-) - 4m_x^2}$
- Background determined directly in data (robust against un-modelled non-peaking background)

Submitted to PRL, arXiv:2306.02830

Search for a long-lived (pseudo)scalar: Results

Search for a long-lived (pseudo)scalar: Results

Submitted to PRL, arXiv:2306.02830

Search for invisible boson in lepton-flavor violating τ decays

- α is a spin-0 non-detected (invisible) particle
 - e.g. an ALP
- Interesting mass range from 100 MeV 1.6 GeV not covered by other searches
- Previous limits from ARGUS (1995): $10^{-2} 10^{-3}$ with α mass in the $(0 - 1.6) \text{ GeV}/c^2 \text{ range}$
- We report a search for LFV $\tau \rightarrow l\alpha$ decay

Analysis Strategy

- Data sample: 63 fb^{-1} •
- Tag with $\tau \to h^- h^+ h^- \nu_{\tau}$ $(h = \pi, K)$ with π^0 veto •
- Similar visible topology from background from $\tau \rightarrow l\nu\nu$ as signal ullet $\tau \rightarrow l\alpha \ (l = e, \mu)$
 - Use two body (signal) vs 3-body kinematics (background) to isolate signal
- Construct τ pseudo rest frame using •

•
$$p_{\text{sig}}^{\tau} \approx -\overrightarrow{p}_{3h}/|\overrightarrow{p}_{3h}|$$

•
$$E_{\tau}^{\text{signal}} = \sqrt{s/2}$$

Signal extraction

Use normalized lepton energy $x_l \equiv$ $m_{\tau}c^{2}/2$

where E_{i}^{*} is the lepton energy in τ pseudo rest frame

- Signal signature: Excess above the $\tau \rightarrow l\nu\nu$ background spectra of x_l
- Simulation derived templates fit for different α mass hypotheses

Signal results

- 95% C.L. branching fraction limits for M_{α} from 0 to 1.6 GeV
- 2 to 14 times more stringent than ARGUS

$\tau \rightarrow e\alpha$ search

$\tau \rightarrow \mu \alpha$ search

Big Picture

- The SM is very successful but leaves unanswered questions
- Belle II/SuperKEKB is a unique environment to search for light dark matter or mediators
- Excellent sensitivity for dark sector searches
- World leading results are obtained with a subset of the full available data
- Look forward to new results in physics from Belle II!

Thank you

