Güney Polat

CPPM Marseille

on behalf of the Belle II collaboration

Phenomenology 2021 Symposium - 24/05/2021

SuperKEKB and status of Belle II

Belle II detector

Motivations for tau studies

The large tau production cross section allows us to study tau physics with high precision, as a probe of new physics or a test of the standard model.

Tau studies at Belle II:

- Lepton flavour violating (LFV) decays: $\tau \rightarrow l\gamma$, lll, lhh, lV⁰...
- LFV decay with new particles: $\tau \rightarrow l + \alpha$,
- Tau electric dipole moment,
- CP violation: $\tau \rightarrow K_s \pi \nu$,
- Tau mass measurement,
- Tau lifetime measurement,
- Michel parameters determination,
- V_{us} and α_s determinations,

• ...

Motivations:

- LFV decays: testing predictions from SUSY, little Higgs models, leptoquark models, etc.,
- $\tau \rightarrow l + \alpha$: related to axion-like particles and dark matter studies (cf. backup slides),
- <u>Tau mass and lifetime</u>: tests of leptonic universality depend on these parameters and their accuracies...

└ Direct New Physics (NP) searches

- Precise test of the Standard Model (SM) Indirect NP searches

Tau mass measurement (Preliminary)

- Tau mass measurement analysis performed using Belle II early Phase 3 data (integrated luminosity of 8.8 fb⁻¹).
- $[\tau \rightarrow 3\pi\nu] + [\tau \rightarrow 1$ -prong] events are selected and the tau mass is measured following the pseudomass technique developed by the ARGUS collaboration:

$$M_{min} = \sqrt{M_{3\pi}^2 + 2(E_{beam} - E_{3\pi})(E_{3\pi} - P_{3\pi})} \le m_{\tau}$$

• The tau mass is extracted by fitting the pseudomass to an empirical edge function.

24/05/2021

Tau mass measurement (Preliminary)

 Current best fit by Belle (414 fb⁻¹): 1776.61 ± 0.13_{stat} ± 0.35_{syst} MeV

K. Belous et al, Phys. Rev. Lett. 99, 011801 (2007)

- More precise measurement done by BES III near τ pair production threshold: 1776.91 ± 0.12_{stat} ± 0.13_{syst} MeV M. Ablikim et al, Phys. Rev. D 90 012001 (2014)
- Preliminary result from Belle II early Phase 3 data: m_τ = 1777.28 ± 0.75_{stat} ± 0.33_{syst} MeV BELLE2-CONF-PH-2020-010

 \rightarrow Consistent with previous measurements, improvable statistical uncertainty, systematic error similar to Belle but could be reduced in the future.

Systematic uncertainty MeV/c^2 Momentum shift due to the B-field map 0.29Estimator bias 0.12Choice of p.d.f. 0.08Fit window 0.04Beam energy shifts 0.03Mass dependence of bias 0.02Trigger efficiency < 0.01Initial parameters < 0.01Background processes < 0.01Tracking efficiency ≤ 0.01

Phenomenology 2021 Symposium

Tau lifetime measurement

 ℓ_{τ} = decay |

Phenomenology 2021 Symposium

t = proper decay time

- **Tau lifetime** is measured thanks to the relation:
 - \rightarrow the challenge consists in measuring precisely ℓ_{τ} and p_{τ} .
- Events corresponding to $[\tau \rightarrow 3\pi\nu] + [\tau \rightarrow \rho\nu]$ are ٠ selected, the measurement is done on the 3-prong τ .
- The proper time is fitted with the convolution of an • exponential distribution and a resolution function: and the lifetime τ_{τ} is extracted from there.
- World-best measurement comes from Belle (711 fb⁻¹): ٠

 τ_{τ} = 290.17 ± 0.53_{stat} ± 0.33_{syst} fs

- Belle II's study on simulation done with 200 fb⁻¹: τ_{τ} = 287.2 ± 0.5_{stat} fs generated τ_{τ} = 290.2 ± 0.4_{stat} fs

Belle II already competitive at ~ 150 fb⁻¹ (5× more events than in Belle study)

$$\ell_{\tau} = \beta \gamma ct = \frac{p_{\tau}c}{m_{\tau}} t$$

 $\ell_{\tau} = \text{decay length in lab. frame}$
 $p_{\tau} = \text{momentum in lab. frame}$

mco

 $p(t; \tau_{\tau}) = \frac{1}{\tau_{\tau}} e^{-\frac{t}{\tau_{\tau}}} * \mathcal{R}(t)$ Belle II 2020 (Simulation) 10⁵ $q\bar{q} q=u,d,s$ Events / (40 fs) 10³ 10² K. Belous et al, Phys. Rev. Lett. 112, 031801 (2014)

1500

2000

500

•

0

Tau lepton flavour violation

- Lepton flavour violation is heavily suppressed in the SM (extended with neutrino masses).
- Many NP models allow LFV at scales that can be probed by particle physics experiments.
- In tau physics, the "golden modes" are τ→μγ and τ→3μ, but a lot more are also studied (lγ, lll, lhh, lV⁰...).

μ

W

 $\mathrm{Br} \sim \mathcal{O}(10^{-54})$

Tau lepton flavour violation

- The signal is looked for within the M_{τ} - ΔE space ($\Delta E = E_{\tau} E_{beam}$), in an optimised region defined around the signal peak in simulation.
- Usually the signal region is rotated to get rid of the correlations:

$$\begin{pmatrix} M'_{\tau} \\ \Delta E' \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} M_{\tau} \\ \Delta E \end{pmatrix}$$

• Background is evaluated from side bands. Some channels require a more thorough background suppression strategy (e.g. $\tau \rightarrow \mu \gamma$ is much more contaminated than $\tau \rightarrow 3\mu$).

Rotated signal region ($\tau \rightarrow \mu \gamma$)

LFV decay $\tau \rightarrow l + \alpha$ (invisible)

- Search for LFV two-body decay $\tau \rightarrow l + \alpha$, $l = e/\mu$ and α being an invisible particle. ٠
- The opposite τ decays as $\tau \rightarrow 3\pi\nu$. Due to the missing energy from neutrino, we approximate: $E_{\tau} \approx E_{CMS}/2$, $\vec{p}_{\tau} \approx \vec{p}_{3\pi}$
- Signal manifests as a **peak in the τ momentum in pseudo-rest** ٠ **frame**, stacking on the $\tau \rightarrow l\nu\nu$ background.
- Full spectrum is fitted with (SM) and (SM+NP) expectations and ٠ respective likelihoods are compared.

- Latest results are from:
 - ARGUS (472 pb⁻¹)
 - MARK III (9.4 pb⁻¹)

Güney Polat

- The Belle II experiment is currently collecting data with a final goal of 50 ab⁻¹ by \sim 2031. $\rightarrow \sim 5 \times 10^{10} \tau$ pairs, much larger sample than in previous B-factories.
- This amount of data will enable researchers to perform analyses probing new physics or testing with high precision the parameters of the standard model with respect to τ particles.
- Some analyses are already progressing well:
 - Tau mass measurement: $m_{\tau} = 1777.28 \pm 0.75 \pm 0.33$ MeV (with a small set of data),
 - Tau lifetime measurement: already competitive w.r.t. Belle,
 - Lepton flavour violating decays: $\tau \rightarrow \mu \gamma \& \tau \rightarrow 3\mu, \tau \rightarrow l + \alpha...$
- Many other analyses are ongoing or in preparation (electric dipole moment, CP violation, hadronic currents...).

$\tau \rightarrow l + \alpha$: Links to ALP and Z'

Future results from $\tau \rightarrow l + \alpha$ searches at Belle II might put boundaries on several NP models, for example:

 Models with axion-like particles, where Belle II should be able to put a stronger constraint on f_a (decay constant in effective Lagrangian) than the bound from ARGUS, in particular for high ALP masses.

 Models giving rise to a Z' boson, that could address issues like the (g – 2)_µ anomaly or in dark matter phenomenology. Searches for τ→µ+(missing energy) can constrain the Z' parameter space (g'_R: right-handed coupling).

W. Altmannshofer et al., Phys.Lett. B762 (2016) 389-398

CP violation in $\tau \rightarrow K_s \pi v$

- A decay rate asymmetry is expected in $\tau \rightarrow K_s \pi \nu$ according to the SM because the K_s is subject to CP violation:
- The SM predicts: $\mathcal{A}_{\tau}^{SM} \approx (0.36 \pm 0.01)\%$ I. I. Bigi and A. I. Sanda, Phys. Lett. B 625, 47 (2005)
- ... while BaBar has measured: $\mathcal{A}_{\tau}^{BaBar} = (-0.36 \pm 0.23 \pm 0.11)\%$ J. P. Lees et al., Phys. Rev. D 85, 031102 (2012)
 - \rightarrow **2.8** σ discrepancy w.r.t. the SM.

24/05/2021

$$\mathcal{A}_{\tau} = \frac{\Gamma(\tau^+ \to \pi^+ K^0_S \overline{\nu}_{\tau}) - \Gamma(\tau^- \to \pi^- K^0_S \nu_{\tau})}{\Gamma(\tau^+ \to \pi^+ K^0_S \overline{\nu}_{\tau}) + \Gamma(\tau^- \to \pi^- K^0_S \nu_{\tau})}$$

Güney Polat

Phenomenology 2021 Symposium

Güney Polat

Second-class hadronic currents: $\tau \rightarrow \pi \eta \nu$

- Second-class hadronic currents violate G-parity, still present in the SM because of the charge and mass differences between up and down quarks, but heavily suppressed.
- $\tau \rightarrow \pi \eta \nu$ is a SCC, therefore it is a potential probe for new physics.
- The SM predicts: ${\rm Br}(\tau o \pi \eta \nu) \sim 10^{-5}$
- A. Pich, Phys. Lett. B 196, 561 (1987)

Phenomenology 2021 Symposium

• Upper limits from two previous experiments:

```
• BaBar (470 fb<sup>-1</sup>): Br(\tau \rightarrow \pi \eta \nu) < 9.9 × 10<sup>-5</sup>
K. Hayasaka, PoS EPS-HEP2009, 374 (2009)
```

• Belle (670 fb⁻¹): Br($\tau \rightarrow \pi\eta\nu$) < 7.3 × 10⁻⁵ P. del Amo Sanchez et al., Phys. Rev. D 83, 032002 (2011) $\tau^{-} \qquad H^{-}$ Charged Higgs a_{0}, a'_{0} exchange LQ(-2/3)

Other topics

Michel parameters:

- 4 parameters ρ , η , ξ and δ (combinations of coupling constants in four-lepton point interaction Lagrangian), experimentally accessible in decay $\tau \rightarrow l\nu_l \nu_{\tau}$.
- Belle II expected to improve statistical uncertainties at 50 ab⁻¹ by one order of magnitude w.r.t. Belle ($10^{-3} \rightarrow 10^{-4}$).

Electric and magnetic dipole moments of the τ :

- Evaluating some observables that are proportional to the EDM and getting maximal sensitivity by combining results from multiple τ decay modes. Belle II expected to gain in precision by a factor 40: $|\text{Re, Im}(d_{\tau})| < 10^{-18} 10^{-19}$.
- g-2 can be evaluated similarly but sensitivity is expected to be worse than that of the τ EDM.

Measurements of V_{us} and α_s :

• Determinations of the CKM matrix element and the strong coupling constant at the tau mass (+ running to the Z mass) with the help of inclusive hadronic τ decays and observable: $R_{\tau} = \frac{\Gamma(\tau \to \nu_{\tau} \text{ hadrons}^{-}(\gamma))}{\Gamma(\tau \to \nu_{\tau} e^{-} \overline{\nu}_{e}(\gamma))}$

More details in:

The Belle II Physics Book, Prog. Theor. Exp. Phys. (2019), 123C01

