

Review on latest results on $R(D^{(*)})$ & Outlook

Minisymposium on Precision Measurements with Leptons

1. How do we measure?

2. Latest measurements from Belle & LHCb

Measurement Strategies

2. Albeit not necessarily a rare decay of O(%) in BF, TRICKY to separate from normalisation and backgrounds

LHCb: Isolation criteria, displacement of *τ*, kinematics B-Factories: Full reconstruction of event (Tagging), matching topology, kinematics

Measurement Strategies

3. Semileptonic decays at **B-Factories**

- ▶ e⁺/e⁻ collision produces $Y(4S) \rightarrow B\overline{B}$
- Fully reconstruct one of the two Bmesons ('tag') → possible to assign all particles to either signal or tag B
- Missing four-momentum (neutrinos) can be reconstructed with high precision

$$p_{\text{miss}} = (p_{\text{beam}} - p_{B\text{tag}} - p_{D^{(*)}} - p_{\ell})$$

Small efficiency (~0.2-0.4%) compensated by large integrated luminosity

Measurement Strategies

4. Semileptonic decays at LHCb

- No constraint from beam energy at a hadron machine, **but..**
- Large Lorentz boost with decay lengths in the range of mm

✓ Well-separated decay vertices

- Momentum direction of decaying particle is well known
- With known masses and other decay products can even reconstruct fourmomentum transfer squared q² up to a two-fold ambiguity

$$q^2 = \left(p_{X_b} - p_{X_q}\right)^2$$

Even bit more complicated for leptonic tau decays

Latest $R(D^{(*)})$ from Belle

G. Caria et al (Belle), Phys. Rev. Lett. 124, 161803, April 2020 [arXiv:1904.08794]

- Reconstruct one of the two B-mesons ('tag') in semileptonic modes → possible to assign all particles in detector to tag- & signal-side
- Demand Matching topology + unassigned energy in the calorimeter
 *E*_{ECL} to discriminate background from signal

Separation of signal & normalization

- Use kinematic properties to separate $B \to D^{(*)} \tau \nu$ signal from $B \to D^{(*)} \ell \nu$ normalization
- Construct BDT with 3 variables: $\cos \theta_{B-D^{(*)}\ell}$, E_{vis} , $m_{\text{miss}}^2 = p_{\text{miss}}^2$

Separation of signal & normalization

- Use kinematic properties to separate $B \to D^{(*)} \tau \nu$ signal from $B \to D^{(*)} \ell \nu$ normalization
- Construct BDT with 3 variables: $\cos \theta_{B-D^{(*)}\ell}$, E_{vis} , $m_{\text{miss}}^2 = p_{\text{miss}}^2$

Separation of signal & normalization

- Use kinematic properties to separate $B \to D^{(*)} \tau \nu$ signal from $B \to D^{(*)} \ell \nu$ normalization
- Construct BDT with 3 variables: $\cos \theta_{B-D^{(*)}\ell}$, E_{vis} , $m_{\text{miss}}^2 = p_{\text{miss}}^2$

• Tau reconstructed via $\tau \rightarrow \pi^+ \pi^+ \pi^- (\pi^0) v$, only two neutrinos missing

Although a semileptonic decay is studied, nearly no background from $B \rightarrow D^* X \mu v$

• Main background: prompt $X_b \rightarrow D^* \pi \pi \pi + neutrals$

BF ~ 100 times larger than signal, all pions are promptly produced

 Suppressed by requiring minimum distance between X_b & τ vertices (> 4 σΔz)

 $\sigma_{\Delta z}$: resolution of vertices separation

 Reduces this background by three orders of magnitude

• Tau reconstructed via $\tau \rightarrow \pi^+ \pi^+ \pi^- (\pi^0) v$, only two neutrinos missing

Although a semileptonic decay is studied, nearly no background from $B \rightarrow D^* X \mu v$

- Remaining double charm bkgs:
 - $X_b \rightarrow D^* D_s^+ X \sim 10 \text{ x Signal}$ $X_b \rightarrow D^* D^+ X \sim 1 \text{ x Signal}$
 - $X_b \rightarrow D^* D_{s0} X \sim 0.2 \text{ x Signal}$

• Main background: prompt $X_b \rightarrow D^* \pi \pi \pi + neutrals$

BF ~ 100 times larger than signal, all pions are promptly produced

 Suppressed by requiring minimum distance between X_b & τ vertices (> 4 σΔz)

 $\sigma_{\Delta z}$: resolution of vertices separation

 Reduces this background by three orders of magnitude

Remaining backgrounds reduced via isolation & MVA

Require signal candidates to be well isolated

Events with additional neutral energy are suppressed with a MVA

More information about that in backup

K+

Selection

Purer MVA

1 Signal component for $\tau \rightarrow \pi^+ \pi^- (\pi^0) v$

11 Background components

- ~ 1296 ± 86 Signal events
- Using normalisation mode and light lepton BFs:

More information about normalization in backup

FB, M. Franco Sevilla, D. Robinson, G. Wormser [arXiv:2101.08326], submitted to Review of Modern Physics

See also: https://hflav-eos.web.cern.ch/hflav-eos/semi/spring19/html/RDsDsstar/RDRDs.html

https://arxiv.org/abs/1908.09398

- RD=297+-0.003, RD*=0.250+-0.003

FB, M. Franco Sevilla, D. Robinson, G. Wormser [arXiv:2101.08326], submitted to Review of Modern Physics

Outlook

Outlook

combinatorial background at Sec. 4 are still the most imporevents with 18.6% purity, when used in Sec. 4.

More Slides

Run 1		LS1		Run 2			LS2		Run 3		LS3		Run 4		LS4		Run 5		LS5	Ru	n 6					
2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
1.1	2.0	-	-	0.3	1.7	1.7	2.2	-	-	-	8.3	8.3	8.3	-	-	-	8.3	8.3	8.3	-	50	50	50	-	50	50

 $\mathcal{R}(D^*)$

 $\mathscr{R}(D^{*+})$

Limiting Systematics

					Syste	ematic u	ncertainty [%]	Total	uncert	. [%]
Result	Experiment	τ decay	Tag	MC stats	$D^{(*)}l\nu$	$D^{**}l\nu$	Other bkg.	Other sources	Syst.	Stat.	Total
	BABAR ^a	$\ell u u$	Had.	5.7	2.5	5.8	3.9	0.9	9.6	13.1	16.2
$\mathcal{R}(D)$	$\operatorname{Belle}^{\mathrm{b}}$	$\ell u u$	Semil.	4.4	0.7	0.8	1.7	3.4	5.2	12.1	13.1
	$\operatorname{Belle}^{\operatorname{c}}$	$\ell u u$	Had.	4.4	3.3	4.4	0.7	0.5	7.1	17.1	18.5
	BABAR ^a	$\ell u u$	Had.	2.8	1.0	3.7	2.3	0.9	5.6	7.1	9.0
	$\operatorname{Belle}^{\mathrm{b}}$	$\ell u u$	Semil.	2.3	0.3	1.4	0.5	4.7	4.9	6.4	8.1
$\mathcal{D}(D^*)$	$\operatorname{Belle}^{\operatorname{c}}$	$\ell u u$	Had.	3.6	1.3	3.4	0.7	0.5	5.2	13.0	14.0
$\mathcal{K}(D^{-})$	$\operatorname{Belle}^{\operatorname{d}}$	$\pi u, ho u$	Had.	3.5	2.3	2.4	8.1	2.9	9.9	13.0	16.3
	$\mathrm{LHCb}^{\mathrm{e}}$	$\pi\pi\pi\pi(\pi^0) u$	·	4.9	4.0	2.7	5.4	4.8	10.2	6.5	12.0
	$\mathrm{LHCb}^{\mathrm{f}}$	$\mu u u$		6.3	2.2	2.1	5.1	2.0	8.9	8.0	12.0

Latest $R(D^{(*)})$ from Belle: Systematics

Docult	Contribution	Uncertainty [%]			
nesun	Contribution	Sys.	Stat.		
	$B \to D^{**} \ell \bar{\nu}_{\ell}$	0.8			
	PDF modeling	4.4			
	Other bkg.	2.0			
$\mathcal{R}(D)$	$\epsilon_{ m sig}/\epsilon_{ m norm}$	1.9			
	Total systematic	5.2			
	Total statistical		12.1		
	Total	13.1			
	$B \to D^{**} \ell \bar{\nu}_{\ell}$	1.4			
	PDF modeling	2.3			
	Other bkg.	1.4			
$\mathcal{R}(D^*)$	$\epsilon_{ m sig}/\epsilon_{ m norm}$	4.1			
	Total systematic	4.9			
	Total statistical		6.4		
	Total		8.1		

Contribution	Uncertainty				
Contribution	Sys.	Ext.	Stat.		
Double-charm bkg.	5.4				
Simulated sample size	4.9				
Corrections to simulation	3.0				
$B \to D^{**} l \nu$ bkg.	2.7				
Normalization yield	2.2				
Trigger	1.6				
PID	1.3				
Signal FFs	1.2				
Combinatorial bkg.	0.7				
Modeling of τ decay	0.4				
Total systematic	9.1				
$\mathcal{B}(B \to D^* \pi \pi \pi)$		3.9			
$\mathcal{B}(B \to D^* \ell \nu)$		2.3			
$\mathcal{B}(\tau^+ \to 3\pi\nu)/\mathcal{B}(\tau^+ \to 3\pi\pi^0\nu)$)	0.7			
Total external		4.6			
Total statistical			6.5		
Total		12.0			

• Actually measure BF relative to $B^0 \rightarrow D^* \pi^+ \pi^+ \pi^-$

$$K_{had}(D^*) = \frac{BR(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{BR(B^0 \to D^{*-} \pi^+ \pi^- \pi^+)} = \frac{N(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{N(B^0 \to D^{*+} \pi^- \pi^+ \pi^-)} \times \frac{1}{BR(\tau^+ \to \pi^+ \pi^- \pi^+ (\pi^0) \bar{\nu}_{\tau})} \times \frac{\varepsilon(B^0 \to D^{*+} \pi^- \pi^+ \pi^-)}{\varepsilon(B^0 \to D^{*-} \tau^+ \nu_{\tau})}$$

Measured to about 4% precision

most precise measurement from BaBar: Phys. Rev. D94 (2016) 091101)

- Extraction in 3D maximum likelihood fit to MVA : q² : τ decay time

Invariant masses of 3π system Invariant mass of $D^*3\pi$ system Neutral isolation variables

Possible to reconstruct rest frame variables such as tau decay time and q². These variables have **negligible biases**, and **sufficient resolution** to preserve good discrimination between signal and background.

Slide from C. Bozzi

Use exclusive $D_s \rightarrow 3\pi$ decays to select a $X_b \rightarrow D^{*-}D_s^+X$ control sample Determine the different $X_b \rightarrow D^{*-}D_s^+X$ contributions from a fit to m(D*Ds):

• $B^0 \rightarrow D^*D_s, B^0 \rightarrow D^*D_s^*, B^0 \rightarrow D^*D_{s0}^*, B^0 \rightarrow D^*D_{s1}^\prime, B_s \rightarrow D^*D_s X, B \rightarrow D^{**}D_s X$

only 20% of D_s originates directly from B, 40% originates from Ds^{*}, 40% from Ds^{**}

• Uncertainties in the fit parameters propagated to final analysis.

LHCb-PAPER-2017-017

LHCb Measurement of $R(D^*)$: Control samples

 $X_b \rightarrow D^{*-} D^0 X$ decays can be isolated by selecting exclusive $D^0 \rightarrow K^- 3\pi$ decays (kaon recovered using isolation tools).

A correction to the q² distributions is applied to the Monte Carlo to match data.

In contrast to the D_s^+ case, most 3π final states in D⁺ and D[°] decays originate from D^{+,0} $\rightarrow K^{0,+} 3\pi$

For the D°, the inclusive 4 prongs BR constrains strongly the rate of 3π events

Unfortunately, this constraint does not exist for the D⁺ mesons, $K3\pi\pi^{\circ}$ is poorly known, the inclusive BR is not measured

We let the D⁺ component float in the fit

Slide from C. Bozzi